aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/hog.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/hog.cl')
-rw-r--r--src/core/CL/cl_kernels/hog.cl456
1 files changed, 0 insertions, 456 deletions
diff --git a/src/core/CL/cl_kernels/hog.cl b/src/core/CL/cl_kernels/hog.cl
deleted file mode 100644
index 407ee2f3cf..0000000000
--- a/src/core/CL/cl_kernels/hog.cl
+++ /dev/null
@@ -1,456 +0,0 @@
-/*
- * Copyright (c) 2017-2018 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-#include "types.h"
-
-#if defined(CELL_WIDTH) && defined(CELL_HEIGHT) && defined(NUM_BINS) && defined(PHASE_SCALE)
-
-/** This OpenCL kernel computes the HOG orientation binning
- *
- * @attention The following variables must be passed at compile time:
- *
- * -# -DCELL_WIDTH = Width of the cell
- * -# -DCELL_HEIGHT = height of the cell
- * -# -DNUM_BINS = Number of bins for each cell
- * -# -DPHASE_SCALE = Scale factor used to evaluate the index of the local HOG
- *
- * @note Each work-item computes a single cell
- *
- * @param[in] mag_ptr Pointer to the source image which stores the magnitude of the gradient for each pixel. Supported data types: S16
- * @param[in] mag_stride_x Stride of the magnitude image in X dimension (in bytes)
- * @param[in] mag_step_x mag_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] mag_stride_y Stride of the magnitude image in Y dimension (in bytes)
- * @param[in] mag_step_y mag_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] mag_offset_first_element_in_bytes The offset of the first element in the magnitude image
- * @param[in] phase_ptr Pointer to the source image which stores the phase of the gradient for each pixel. Supported data types: U8
- * @param[in] phase_stride_x Stride of the phase image in X dimension (in bytes)
- * @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] phase_stride_y Stride of the the phase image in Y dimension (in bytes)
- * @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] phase_offset_first_element_in_bytes The offset of the first element in the the phase image
- * @param[out] dst_ptr Pointer to the destination image which stores the local HOG for each cell Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
- * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void hog_orientation_binning(IMAGE_DECLARATION(mag),
- IMAGE_DECLARATION(phase),
- IMAGE_DECLARATION(dst))
-{
- float bins[NUM_BINS] = { 0 };
-
- // Compute address for the magnitude and phase images
- Image mag = CONVERT_TO_IMAGE_STRUCT(mag);
- Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
-
- __global uchar *mag_row_ptr = mag.ptr;
- __global uchar *phase_row_ptr = phase.ptr;
-
- for(int yc = 0; yc < CELL_HEIGHT; ++yc)
- {
- int xc = 0;
- for(; xc <= (CELL_WIDTH - 4); xc += 4)
- {
- // Load magnitude and phase values
- const float4 mag_f32 = convert_float4(vload4(0, (__global short *)mag_row_ptr + xc));
- float4 phase_f32 = convert_float4(vload4(0, phase_row_ptr + xc));
-
- // Scale phase: phase * scale + 0.5f
- phase_f32 = (float4)0.5f + phase_f32 * (float4)PHASE_SCALE;
-
- // Compute histogram index.
- int4 hidx_s32 = convert_int4(phase_f32);
-
- // Compute magnitude weights (w0 and w1)
- const float4 hidx_f32 = convert_float4(hidx_s32);
-
- // w1 = phase_f32 - hidx_s32
- const float4 w1_f32 = phase_f32 - hidx_f32;
-
- // w0 = 1.0 - w1
- const float4 w0_f32 = (float4)1.0f - w1_f32;
-
- // Calculate the weights for splitting vote
- const float4 mag_w0_f32 = mag_f32 * w0_f32;
- const float4 mag_w1_f32 = mag_f32 * w1_f32;
-
- // Weighted vote between 2 bins
-
- // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
- hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
-
- // Bin 0
- bins[hidx_s32.s0] += mag_w0_f32.s0;
- bins[hidx_s32.s1] += mag_w0_f32.s1;
- bins[hidx_s32.s2] += mag_w0_f32.s2;
- bins[hidx_s32.s3] += mag_w0_f32.s3;
-
- hidx_s32 += (int4)1;
-
- // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
- hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
-
- // Bin1
- bins[hidx_s32.s0] += mag_w1_f32.s0;
- bins[hidx_s32.s1] += mag_w1_f32.s1;
- bins[hidx_s32.s2] += mag_w1_f32.s2;
- bins[hidx_s32.s3] += mag_w1_f32.s3;
- }
-
- // Left over computation
- for(; xc < CELL_WIDTH; xc++)
- {
- const float mag_value = *((__global short *)mag_row_ptr + xc);
- const float phase_value = *(phase_row_ptr + xc) * (float)PHASE_SCALE + 0.5f;
- const float w1 = phase_value - floor(phase_value);
-
- // The quantised phase is the histogram index [0, NUM_BINS - 1]
- // Check limit of histogram index. If hidx == NUM_BINS, hidx = 0
- const uint hidx = (uint)(phase_value) % NUM_BINS;
-
- // Weighted vote between 2 bins
- bins[hidx] += mag_value * (1.0f - w1);
- bins[(hidx + 1) % NUM_BINS] += mag_value * w1;
- }
-
- // Point to the next row of magnitude and phase images
- mag_row_ptr += mag_stride_y;
- phase_row_ptr += phase_stride_y;
- }
-
- // Compute address for the destination image
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Store the local HOG in the global memory
- int xc = 0;
- for(; xc <= (NUM_BINS - 4); xc += 4)
- {
- float4 values = vload4(0, bins + xc);
-
- vstore4(values, 0, ((__global float *)dst.ptr) + xc);
- }
-
- // Left over stores
- for(; xc < NUM_BINS; ++xc)
- {
- ((__global float *)dst.ptr)[xc] = bins[xc];
- }
-}
-#endif /* CELL_WIDTH and CELL_HEIGHT and NUM_BINS and PHASE_SCALE */
-
-#if defined(NUM_CELLS_PER_BLOCK_HEIGHT) && defined(NUM_BINS_PER_BLOCK_X) && defined(NUM_BINS_PER_BLOCK) && defined(HOG_NORM_TYPE) && defined(L2_HYST_THRESHOLD)
-
-#ifndef L2_NORM
-#error The value of enum class HOGNormType::L2_NORM has not be passed to the OpenCL kernel
-#endif /* not L2_NORM */
-
-#ifndef L2HYS_NORM
-#error The value of enum class HOGNormType::L2HYS_NORM has not be passed to the OpenCL kernel
-#endif /* not L2HYS_NORM */
-
-#ifndef L1_NORM
-#error The value of enum class HOGNormType::L1_NORM has not be passed to the OpenCL kernel
-#endif /* not L1_NORM */
-
-/** This OpenCL kernel computes the HOG block normalization
- *
- * @attention The following variables must be passed at compile time:
- *
- * -# -DNUM_CELLS_PER_BLOCK_HEIGHT = Number of cells for each block
- * -# -DNUM_BINS_PER_BLOCK_X = Number of bins for each block along the X direction
- * -# -DNUM_BINS_PER_BLOCK = Number of bins for each block
- * -# -DHOG_NORM_TYPE = Normalization type
- * -# -DL2_HYST_THRESHOLD = Threshold used for L2HYS_NORM normalization method
- * -# -DL2_NORM = Value of the enum class HOGNormType::L2_NORM
- * -# -DL2HYS_NORM = Value of the enum class HOGNormType::L2HYS_NORM
- * -# -DL1_NORM = Value of the enum class HOGNormType::L1_NORM
- *
- * @note Each work-item computes a single block
- *
- * @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
- * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] dst_ptr Pointer to the destination image which stores the normlized HOG Supported data types: F32. Number of channels supported: equal to the number of histogram bins per block
- * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void hog_block_normalization(IMAGE_DECLARATION(src),
- IMAGE_DECLARATION(dst))
-{
- float sum = 0.0f;
- float4 sum_f32 = (float4)(0.0f);
-
- // Compute address for the source and destination tensor
- Image src = CONVERT_TO_IMAGE_STRUCT(src);
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- for(size_t yc = 0; yc < NUM_CELLS_PER_BLOCK_HEIGHT; ++yc)
- {
- const __global float *hist_ptr = (__global float *)(src.ptr + yc * src_stride_y);
-
- int xc = 0;
- for(; xc <= (NUM_BINS_PER_BLOCK_X - 16); xc += 16)
- {
- const float4 val0 = vload4(0, hist_ptr + xc + 0);
- const float4 val1 = vload4(0, hist_ptr + xc + 4);
- const float4 val2 = vload4(0, hist_ptr + xc + 8);
- const float4 val3 = vload4(0, hist_ptr + xc + 12);
-
-#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
- // Compute val^2 for L2_NORM or L2HYS_NORM
- sum_f32 += val0 * val0;
- sum_f32 += val1 * val1;
- sum_f32 += val2 * val2;
- sum_f32 += val3 * val3;
-#else /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
- // Compute |val| for L1_NORM
- sum_f32 += fabs(val0);
- sum_f32 += fabs(val1);
- sum_f32 += fabs(val2);
- sum_f32 += fabs(val3);
-#endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
-
- // Store linearly the input values un-normalized in the output image. These values will be reused for the normalization.
- // This approach will help us to be cache friendly in the next for loop where the normalization will be done because all the values
- // will be accessed consecutively
- vstore4(val0, 0, ((__global float *)dst.ptr) + xc + 0 + yc * NUM_BINS_PER_BLOCK_X);
- vstore4(val1, 0, ((__global float *)dst.ptr) + xc + 4 + yc * NUM_BINS_PER_BLOCK_X);
- vstore4(val2, 0, ((__global float *)dst.ptr) + xc + 8 + yc * NUM_BINS_PER_BLOCK_X);
- vstore4(val3, 0, ((__global float *)dst.ptr) + xc + 12 + yc * NUM_BINS_PER_BLOCK_X);
- }
-
- // Compute left over
- for(; xc < NUM_BINS_PER_BLOCK_X; ++xc)
- {
- const float val = hist_ptr[xc];
-
-#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
- sum += val * val;
-#else /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
- sum += fabs(val);
-#endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
-
- ((__global float *)dst.ptr)[xc + 0 + yc * NUM_BINS_PER_BLOCK_X] = val;
- }
- }
-
- sum += dot(sum_f32, (float4)1.0f);
-
- float scale = 1.0f / (sqrt(sum) + NUM_BINS_PER_BLOCK * 0.1f);
-
-#if(HOG_NORM_TYPE == L2HYS_NORM)
- // Reset sum
- sum_f32 = (float4)0.0f;
- sum = 0.0f;
-
- int k = 0;
- for(; k <= NUM_BINS_PER_BLOCK - 16; k += 16)
- {
- float4 val0 = vload4(0, ((__global float *)dst.ptr) + k + 0);
- float4 val1 = vload4(0, ((__global float *)dst.ptr) + k + 4);
- float4 val2 = vload4(0, ((__global float *)dst.ptr) + k + 8);
- float4 val3 = vload4(0, ((__global float *)dst.ptr) + k + 12);
-
- // Scale val
- val0 = val0 * (float4)scale;
- val1 = val1 * (float4)scale;
- val2 = val2 * (float4)scale;
- val3 = val3 * (float4)scale;
-
- // Clip val if over _threshold_l2hys
- val0 = fmin(val0, (float4)L2_HYST_THRESHOLD);
- val1 = fmin(val1, (float4)L2_HYST_THRESHOLD);
- val2 = fmin(val2, (float4)L2_HYST_THRESHOLD);
- val3 = fmin(val3, (float4)L2_HYST_THRESHOLD);
-
- // Compute val^2
- sum_f32 += val0 * val0;
- sum_f32 += val1 * val1;
- sum_f32 += val2 * val2;
- sum_f32 += val3 * val3;
-
- vstore4(val0, 0, ((__global float *)dst.ptr) + k + 0);
- vstore4(val1, 0, ((__global float *)dst.ptr) + k + 4);
- vstore4(val2, 0, ((__global float *)dst.ptr) + k + 8);
- vstore4(val3, 0, ((__global float *)dst.ptr) + k + 12);
- }
-
- // Compute left over
- for(; k < NUM_BINS_PER_BLOCK; ++k)
- {
- float val = ((__global float *)dst.ptr)[k] * scale;
-
- // Clip scaled input_value if over L2_HYST_THRESHOLD
- val = fmin(val, (float)L2_HYST_THRESHOLD);
-
- sum += val * val;
-
- ((__global float *)dst.ptr)[k] = val;
- }
-
- sum += dot(sum_f32, (float4)1.0f);
-
- // We use the same constants of OpenCV
- scale = 1.0f / (sqrt(sum) + 1e-3f);
-
-#endif /* (HOG_NORM_TYPE == L2HYS_NORM) */
-
- int i = 0;
- for(; i <= (NUM_BINS_PER_BLOCK - 16); i += 16)
- {
- float4 val0 = vload4(0, ((__global float *)dst.ptr) + i + 0);
- float4 val1 = vload4(0, ((__global float *)dst.ptr) + i + 4);
- float4 val2 = vload4(0, ((__global float *)dst.ptr) + i + 8);
- float4 val3 = vload4(0, ((__global float *)dst.ptr) + i + 12);
-
- // Multiply val by the normalization scale factor
- val0 = val0 * (float4)scale;
- val1 = val1 * (float4)scale;
- val2 = val2 * (float4)scale;
- val3 = val3 * (float4)scale;
-
- vstore4(val0, 0, ((__global float *)dst.ptr) + i + 0);
- vstore4(val1, 0, ((__global float *)dst.ptr) + i + 4);
- vstore4(val2, 0, ((__global float *)dst.ptr) + i + 8);
- vstore4(val3, 0, ((__global float *)dst.ptr) + i + 12);
- }
-
- for(; i < NUM_BINS_PER_BLOCK; ++i)
- {
- ((__global float *)dst.ptr)[i] *= scale;
- }
-}
-#endif /* NUM_CELLS_PER_BLOCK_HEIGHT and NUM_BINS_PER_BLOCK_X and NUM_BINS_PER_BLOCK and HOG_NORM_TYPE and L2_HYST_THRESHOLD */
-
-#if defined(NUM_BLOCKS_PER_DESCRIPTOR_Y) && defined(NUM_BINS_PER_DESCRIPTOR_X) && defined(THRESHOLD) && defined(MAX_NUM_DETECTION_WINDOWS) && defined(IDX_CLASS) && defined(DETECTION_WINDOW_STRIDE_WIDTH) && defined(DETECTION_WINDOW_STRIDE_HEIGHT) && defined(DETECTION_WINDOW_WIDTH) && defined(DETECTION_WINDOW_HEIGHT)
-
-/** This OpenCL kernel computes the HOG detector using linear SVM
- *
- * @attention The following variables must be passed at compile time:
- *
- * -# -DNUM_BLOCKS_PER_DESCRIPTOR_Y = Number of blocks per descriptor along the Y direction
- * -# -DNUM_BINS_PER_DESCRIPTOR_X = Number of bins per descriptor along the X direction
- * -# -DTHRESHOLD = Threshold for the distance between features and SVM classifying plane
- * -# -DMAX_NUM_DETECTION_WINDOWS = Maximum number of possible detection windows. It is equal to the size of the DetectioWindow array
- * -# -DIDX_CLASS = Index of the class to detect
- * -# -DDETECTION_WINDOW_STRIDE_WIDTH = Detection window stride for the X direction
- * -# -DDETECTION_WINDOW_STRIDE_HEIGHT = Detection window stride for the Y direction
- * -# -DDETECTION_WINDOW_WIDTH = Width of the detection window
- * -# -DDETECTION_WINDOW_HEIGHT = Height of the detection window
- *
- * @note Each work-item computes a single detection window
- *
- * @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
- * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[in] hog_descriptor Pointer to HOG descriptor. Supported data types: F32
- * @param[out] dst Pointer to DetectionWindow array
- * @param[out] num_detection_windows Number of objects detected
- */
-__kernel void hog_detector(IMAGE_DECLARATION(src),
- __global float *hog_descriptor,
- __global DetectionWindow *dst,
- __global uint *num_detection_windows)
-{
- // Check if the DetectionWindow array is full
- if(*num_detection_windows >= MAX_NUM_DETECTION_WINDOWS)
- {
- return;
- }
-
- Image src = CONVERT_TO_IMAGE_STRUCT(src);
-
- const int src_step_y_f32 = src_stride_y / sizeof(float);
-
- // Init score_f32 with 0
- float4 score_f32 = (float4)0.0f;
-
- // Init score with 0
- float score = 0.0f;
-
- __global float *src_row_ptr = (__global float *)src.ptr;
-
- // Compute Linear SVM
- for(int yb = 0; yb < NUM_BLOCKS_PER_DESCRIPTOR_Y; ++yb, src_row_ptr += src_step_y_f32)
- {
- int xb = 0;
-
- const int offset_y = yb * NUM_BINS_PER_DESCRIPTOR_X;
-
- for(; xb < (int)NUM_BINS_PER_DESCRIPTOR_X - 8; xb += 8)
- {
- // Load descriptor values
- float4 a0_f32 = vload4(0, src_row_ptr + xb + 0);
- float4 a1_f32 = vload4(0, src_row_ptr + xb + 4);
-
- float4 b0_f32 = vload4(0, hog_descriptor + xb + 0 + offset_y);
- float4 b1_f32 = vload4(0, hog_descriptor + xb + 4 + offset_y);
-
- // Multiply accumulate
- score_f32 += a0_f32 * b0_f32;
- score_f32 += a1_f32 * b1_f32;
- }
-
- for(; xb < NUM_BINS_PER_DESCRIPTOR_X; ++xb)
- {
- const float a = src_row_ptr[xb];
- const float b = hog_descriptor[xb + offset_y];
-
- score += a * b;
- }
- }
-
- score += dot(score_f32, (float4)1.0f);
-
- // Add the bias. The bias is located at the position (descriptor_size() - 1)
- // (descriptor_size - 1) = NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y
- score += hog_descriptor[NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y];
-
- if(score > (float)THRESHOLD)
- {
- int id = atomic_inc(num_detection_windows);
- if(id < MAX_NUM_DETECTION_WINDOWS)
- {
- dst[id].x = get_global_id(0) * DETECTION_WINDOW_STRIDE_WIDTH;
- dst[id].y = get_global_id(1) * DETECTION_WINDOW_STRIDE_HEIGHT;
- dst[id].width = DETECTION_WINDOW_WIDTH;
- dst[id].height = DETECTION_WINDOW_HEIGHT;
- dst[id].idx_class = IDX_CLASS;
- dst[id].score = score;
- }
- }
-}
-#endif /* NUM_BLOCKS_PER_DESCRIPTOR_Y && NUM_BINS_PER_DESCRIPTOR_X && THRESHOLD && MAX_NUM_DETECTION_WINDOWS && IDX_CLASS &&
- * DETECTION_WINDOW_STRIDE_WIDTH && DETECTION_WINDOW_STRIDE_HEIGHT && DETECTION_WINDOW_WIDTH && DETECTION_WINDOW_HEIGHT */