aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl1099
1 files changed, 1099 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
new file mode 100644
index 0000000000..caf6e3ffd8
--- /dev/null
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -0,0 +1,1099 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+/** This OpenCL kernel computes the "vector" 1x4 transposition of input matrix
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_transpose1x4_f32(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+
+ /* Compute address for Matrix B - source */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+
+ /* Compute address for Matrix B transposed - destination. X and Y are swapped */
+ uint dst_addr_in_bytes = y * 16 + ((x * dst_stride_y + dst_offset_first_element_in_bytes));
+
+ float4 b0 = vload4(0, (__global float *)src.ptr);
+
+ vstore4(b0, 0, (__global float *)(dst_ptr + dst_addr_in_bytes));
+}
+
+/** This OpenCL kernel computes the "vector" 1x8 transposition of input matrix
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F16
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_transpose1x8_f16(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+
+ /* Compute address for Matrix B - source */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+
+ /* Compute address for Matrix B transposed - destination. X and Y are swapped */
+ uint dst_addr_in_bytes = y * 16 + ((x * dst_stride_y + dst_offset_first_element_in_bytes));
+
+ half8 b0 = vload8(0, (__global half *)src.ptr);
+
+ vstore8(b0, 0, (__global half *)(dst_ptr + dst_addr_in_bytes));
+}
+
+/** This OpenCL kernel computes the "vector" 1x16 transposition of input matrix
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: U8
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: U8
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_transpose1x16_u8(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+
+ /* Compute address for Matrix B - source */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+
+ /* Compute address for Matrix B transposed - destination. X and Y are swapped */
+ uint dst_addr_in_bytes = y * 16 + ((x * dst_stride_y + dst_offset_first_element_in_bytes));
+
+ uchar16 b0 = vload16(0, (__global uchar *)src.ptr);
+
+ vstore16(b0, 0, (__global uchar *)(dst_ptr + dst_addr_in_bytes));
+}
+
+/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: U32/S32/F32
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: U32/S32/F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_interleave4x4_32bit(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Load values from Matrix A */
+ float4 a0 = vload4(0, (__global float *)(offset(&src, 0, 0)));
+ float4 a1 = vload4(0, (__global float *)(offset(&src, 0, 1)));
+ float4 a2 = vload4(0, (__global float *)(offset(&src, 0, 2)));
+ float4 a3 = vload4(0, (__global float *)(offset(&src, 0, 3)));
+
+ float4 val0 = (float4)(a0.s0, a1.s0, a2.s0, a3.s0);
+ vstore4(val0, 0, ((__global float *)dst.ptr) + 0);
+
+ val0 = (float4)(a0.s1, a1.s1, a2.s1, a3.s1);
+ vstore4(val0, 0, ((__global float *)dst.ptr) + 4);
+
+ val0 = (float4)(a0.s2, a1.s2, a2.s2, a3.s2);
+ vstore4(val0, 0, ((__global float *)dst.ptr) + 8);
+
+ val0 = (float4)(a0.s3, a1.s3, a2.s3, a3.s3);
+ vstore4(val0, 0, ((__global float *)dst.ptr) + 12);
+}
+
+/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: U16/S16/F16
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: U16/S16/F16
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_interleave4x4_16bit(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Load values from Matrix A */
+ half8 a0 = vload8(0, (__global half *)(offset(&src, 0, 0)));
+ half8 a1 = vload8(0, (__global half *)(offset(&src, 0, 1)));
+ half8 a2 = vload8(0, (__global half *)(offset(&src, 0, 2)));
+ half8 a3 = vload8(0, (__global half *)(offset(&src, 0, 3)));
+
+ half8 val0 = (half8)((half4)(a0.s0, a1.s0, a2.s0, a3.s0), (half4)(a0.s1, a1.s1, a2.s1, a3.s1));
+ vstore8(val0, 0, ((__global half *)dst.ptr) + 0);
+
+ val0 = (half8)((half4)(a0.s2, a1.s2, a2.s2, a3.s2), (half4)(a0.s3, a1.s3, a2.s3, a3.s3));
+ vstore8(val0, 0, ((__global half *)dst.ptr) + 8);
+
+ val0 = (half8)((half4)(a0.s4, a1.s4, a2.s4, a3.s4), (half4)(a0.s5, a1.s5, a2.s5, a3.s5));
+ vstore8(val0, 0, ((__global half *)dst.ptr) + 16);
+
+ val0 = (half8)((half4)(a0.s6, a1.s6, a2.s6, a3.s6), (half4)(a0.s7, a1.s7, a2.s7, a3.s7));
+ vstore8(val0, 0, ((__global half *)dst.ptr) + 24);
+}
+
+/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: U8/S8
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_interleave4x4_8bit(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Load values from Matrix A */
+ uchar16 a0 = vload16(0, (__global uchar *)(offset(&src, 0, 0)));
+ uchar16 a1 = vload16(0, (__global uchar *)(offset(&src, 0, 1)));
+ uchar16 a2 = vload16(0, (__global uchar *)(offset(&src, 0, 2)));
+ uchar16 a3 = vload16(0, (__global uchar *)(offset(&src, 0, 3)));
+
+ uchar16 val0 = (uchar16)((uchar4)(a0.s0, a1.s0, a2.s0, a3.s0), (uchar4)(a0.s1, a1.s1, a2.s1, a3.s1),
+ (uchar4)(a0.s2, a1.s2, a2.s2, a3.s2), (uchar4)(a0.s3, a1.s3, a2.s3, a3.s3));
+ vstore16(val0, 0, ((__global uchar *)dst.ptr) + 0);
+
+ val0 = (uchar16)((uchar4)(a0.s4, a1.s4, a2.s4, a3.s4), (uchar4)(a0.s5, a1.s5, a2.s5, a3.s5),
+ (uchar4)(a0.s6, a1.s6, a2.s6, a3.s6), (uchar4)(a0.s7, a1.s7, a2.s7, a3.s7));
+ vstore16(val0, 0, ((__global uchar *)dst.ptr) + 16);
+
+ val0 = (uchar16)((uchar4)(a0.s8, a1.s8, a2.s8, a3.s8), (uchar4)(a0.s9, a1.s9, a2.s9, a3.s9),
+ (uchar4)(a0.sA, a1.sA, a2.sA, a3.sA), (uchar4)(a0.sB, a1.sB, a2.sB, a3.sB));
+ vstore16(val0, 0, ((__global uchar *)dst.ptr) + 32);
+
+ val0 = (uchar16)((uchar4)(a0.sC, a1.sC, a2.sC, a3.sC), (uchar4)(a0.sD, a1.sD, a2.sD, a3.sD),
+ (uchar4)(a0.sE, a1.sE, a2.sE, a3.sE), (uchar4)(a0.sF, a1.sF, a2.sF, a3.sF));
+ vstore16(val0, 0, ((__global uchar *)dst.ptr) + 48);
+}
+
+/** This kernel accumulates each row with the biases vector
+ *
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
+ * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
+ * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
+ * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as input.
+ * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemm_accumulate_biases_f32(
+ IMAGE_DECLARATION(accum),
+ VECTOR_DECLARATION(biases))
+{
+ Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
+ Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
+
+ float4 accum_value = vload4(0, (__global float *)accum.ptr);
+ float4 biases_value = vload4(0, (__global float *)biases.ptr);
+ accum_value = biases_value + accum_value;
+
+ // Store result in the accummulate buffer
+ vstore4(accum_value, 0, (__global float *)accum.ptr);
+}
+
+/** This kernel accumulates each row with the biases vector
+ *
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
+ * @param[in] accum_stride_x Stride of the accumulate tensor in X dimension (in bytes)
+ * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
+ * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as input.
+ * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemm_accumulate_biases_f16(
+ IMAGE_DECLARATION(accum),
+ VECTOR_DECLARATION(biases))
+{
+ Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
+ Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
+
+ half8 accum_value = vload8(0, (__global half *)accum.ptr);
+ half8 biases_value = vload8(0, (__global half *)biases.ptr);
+ accum_value = biases_value + accum_value;
+
+ // Store result in the accummulate buffer
+ vstore8(accum_value, 0, (__global half *)accum.ptr);
+}
+
+#if(defined WIDTH_MATRIX_B)
+/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_u8 and @ref gemm_transpose1x16_u8 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported formats: U8
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported formats: U8
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported formats: U8
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] a_offset Offset to be added to each element of the matrix A
+ * @param[in] b_offset Offset to be added to each element of the matrix B.
+ * @param[in] c_offset Offset to be added to each element of the matrix C.
+ * @param[in] c_mult_int Multiplied with each element of the matrix C.
+ * @param[in] shift Number of bits to shift right the result.
+ */
+__kernel void gemm_mm_u8(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst),
+ int a_offset,
+ int b_offset,
+ int c_offset,
+ int c_mult_int,
+ int shift)
+{
+ /* src_addr.s0 = address of matrix A */
+ /* src_addr.s1 = address of matrix B */
+
+ /* Compute address for matrix A and B */
+ int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
+ (src1_stride_y));
+
+ /* Add offset_first_element_in_bytes */
+ src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ /* Compute end row address for matrix B */
+ int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
+
+ /* Reset accumulators */
+ int16 c00 = 0.0f;
+ int16 c10 = 0.0f;
+ int16 c20 = 0.0f;
+ int16 c30 = 0.0f;
+
+ for(; src_addr.s1 <= (end_row_mtx_b - 8); src_addr += (int2)(8, 32))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ int8 a0 = (int8)a_offset + convert_int8(vload8(0, ((__global uchar *)src0_ptr) + src_addr.s0));
+ int16 b0 = (int16)b_offset + convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
+
+ c00 += (int16)a0.s0 * b0;
+ c10 += (int16)a0.s1 * b0;
+ c20 += (int16)a0.s2 * b0;
+ c30 += (int16)a0.s3 * b0;
+
+ int16 b1 = (int16)b_offset + convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1 + 16));
+
+ c00 += (int16)a0.s4 * b1;
+ c10 += (int16)a0.s5 * b1;
+ c20 += (int16)a0.s6 * b1;
+ c30 += (int16)a0.s7 * b1;
+ }
+
+ for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 16))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ int4 a0 = (int4)a_offset + convert_int4(vload4(0, ((__global uchar *)src0_ptr) + src_addr.s0));
+ int16 b0 = (int16)b_offset + convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
+
+ c00 += (int16)a0.s0 * b0;
+ c10 += (int16)a0.s1 * b0;
+ c20 += (int16)a0.s2 * b0;
+ c30 += (int16)a0.s3 * b0;
+ }
+
+ /* Compute destination address */
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Multiply by the weight of matrix product */
+ c00 = (((int16)c_offset + c00) * (int16)c_mult_int) >> shift;
+ c10 = (((int16)c_offset + c10) * (int16)c_mult_int) >> shift;
+ c20 = (((int16)c_offset + c20) * (int16)c_mult_int) >> shift;
+ c30 = (((int16)c_offset + c30) * (int16)c_mult_int) >> shift;
+
+ /* Store 4x16 block */
+ vstore16(convert_uchar16_sat(c00), 0, (__global uchar *)(offset(&dst, 0, 0)));
+ vstore16(convert_uchar16_sat(c10), 0, (__global uchar *)(offset(&dst, 0, 1)));
+ vstore16(convert_uchar16_sat(c20), 0, (__global uchar *)(offset(&dst, 0, 2)));
+ vstore16(convert_uchar16_sat(c30), 0, (__global uchar *)(offset(&dst, 0, 3)));
+}
+#endif
+
+#if(defined WIDTH_MATRIX_B && defined ALPHA)
+/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_f32 and @ref gemm_transpose1x4_f32 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B and -DALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_mm_f32_midgard(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ /* src_addr.s0 = address of matrix A */
+ /* src_addr.s1 = address of matrix B */
+
+ /* Compute address for matrix A and B */
+ int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
+ (src1_stride_y));
+
+ /* Add offset_first_element_in_bytes */
+ src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ /* Divide by 4 in order to get the src_addr in unit of float */
+ src_addr = src_addr >> 2;
+
+ /* Compute end row address for matrix B */
+ int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
+
+ /* Reset accumulators */
+ float4 c00 = 0.0f;
+ float4 c10 = 0.0f;
+ float4 c20 = 0.0f;
+ float4 c30 = 0.0f;
+
+ for(; src_addr.s1 <= (end_row_mtx_b - 8); src_addr += (int2)(8, 8))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ float4 a0 = vload4(0, ((__global float *)src0_ptr) + src_addr.s0);
+ float4 b0 = vload4(0, ((__global float *)src1_ptr) + src_addr.s1);
+
+ c00 += (float4)a0.s0 * b0;
+ c10 += (float4)a0.s1 * b0;
+ c20 += (float4)a0.s2 * b0;
+ c30 += (float4)a0.s3 * b0;
+
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ a0 = vload4(0, ((__global float *)src0_ptr) + src_addr.s0 + 4);
+ b0 = vload4(0, ((__global float *)src1_ptr) + src_addr.s1 + 4);
+
+ c00 += (float4)a0.s0 * b0;
+ c10 += (float4)a0.s1 * b0;
+ c20 += (float4)a0.s2 * b0;
+ c30 += (float4)a0.s3 * b0;
+ }
+
+ for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 4))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ float4 a0 = vload4(0, ((__global float *)src0_ptr) + src_addr.s0);
+ float4 b0 = vload4(0, ((__global float *)src1_ptr) + src_addr.s1);
+
+ c00 += (float4)a0.s0 * b0;
+ c10 += (float4)a0.s1 * b0;
+ c20 += (float4)a0.s2 * b0;
+ c30 += (float4)a0.s3 * b0;
+ }
+
+ /* Compute destination address */
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Multiply by the weight of matrix product */
+ c00 = c00 * (float4)ALPHA;
+ c10 = c10 * (float4)ALPHA;
+ c20 = c20 * (float4)ALPHA;
+ c30 = c30 * (float4)ALPHA;
+
+ /* Store 4x4 block */
+ vstore4(c00, 0, (__global float *)(offset(&dst, 0, 0)));
+ vstore4(c10, 0, (__global float *)(offset(&dst, 0, 1)));
+ vstore4(c20, 0, (__global float *)(offset(&dst, 0, 2)));
+ vstore4(c30, 0, (__global float *)(offset(&dst, 0, 3)));
+}
+
+/** This OpenCL kernel is optimised for Bifrost. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_f32 and @ref gemm_transpose1x4_f32 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B and -DALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_mm_f32_bifrost(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ __global float *src_addr_a = (__global float *)(src0_ptr + get_global_id(1) * src0_stride_y + src0_offset_first_element_in_bytes);
+ __global float *src_addr_b = (__global float *)(src1_ptr + get_global_id(0) * src1_stride_y + src1_offset_first_element_in_bytes);
+
+ // Compute end row address for matrix B
+ __global float *src_end_addr_b = src_addr_b + WIDTH_MATRIX_B;
+
+ // Reset accumulators
+ float c00 = 0.0f;
+ float c01 = 0.0f;
+ float c02 = 0.0f;
+ float c03 = 0.0f;
+ float c10 = 0.0f;
+ float c11 = 0.0f;
+ float c12 = 0.0f;
+ float c13 = 0.0f;
+ float c20 = 0.0f;
+ float c21 = 0.0f;
+ float c22 = 0.0f;
+ float c23 = 0.0f;
+ float c30 = 0.0f;
+ float c31 = 0.0f;
+ float c32 = 0.0f;
+ float c33 = 0.0f;
+
+ for(; src_addr_b <= (src_end_addr_b - 16); src_addr_a += 16, src_addr_b += 16)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = vload4(0, src_addr_a);
+ float4 b0 = vload4(0, src_addr_b);
+
+ c00 = fma(a0.s0, b0.s0, c00);
+ c01 = fma(a0.s0, b0.s1, c01);
+ c02 = fma(a0.s0, b0.s2, c02);
+ c03 = fma(a0.s0, b0.s3, c03);
+
+ c10 = fma(a0.s1, b0.s0, c10);
+ c11 = fma(a0.s1, b0.s1, c11);
+ c12 = fma(a0.s1, b0.s2, c12);
+ c13 = fma(a0.s1, b0.s3, c13);
+
+ c20 = fma(a0.s2, b0.s0, c20);
+ c21 = fma(a0.s2, b0.s1, c21);
+ c22 = fma(a0.s2, b0.s2, c22);
+ c23 = fma(a0.s2, b0.s3, c23);
+
+ c30 = fma(a0.s3, b0.s0, c30);
+ c31 = fma(a0.s3, b0.s1, c31);
+ c32 = fma(a0.s3, b0.s2, c32);
+ c33 = fma(a0.s3, b0.s3, c33);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a + 4);
+ b0 = vload4(0, src_addr_b + 4);
+
+ c00 = fma(a0.s0, b0.s0, c00);
+ c01 = fma(a0.s0, b0.s1, c01);
+ c02 = fma(a0.s0, b0.s2, c02);
+ c03 = fma(a0.s0, b0.s3, c03);
+
+ c10 = fma(a0.s1, b0.s0, c10);
+ c11 = fma(a0.s1, b0.s1, c11);
+ c12 = fma(a0.s1, b0.s2, c12);
+ c13 = fma(a0.s1, b0.s3, c13);
+
+ c20 = fma(a0.s2, b0.s0, c20);
+ c21 = fma(a0.s2, b0.s1, c21);
+ c22 = fma(a0.s2, b0.s2, c22);
+ c23 = fma(a0.s2, b0.s3, c23);
+
+ c30 = fma(a0.s3, b0.s0, c30);
+ c31 = fma(a0.s3, b0.s1, c31);
+ c32 = fma(a0.s3, b0.s2, c32);
+ c33 = fma(a0.s3, b0.s3, c33);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a + 8);
+ b0 = vload4(0, src_addr_b + 8);
+
+ c00 = fma(a0.s0, b0.s0, c00);
+ c01 = fma(a0.s0, b0.s1, c01);
+ c02 = fma(a0.s0, b0.s2, c02);
+ c03 = fma(a0.s0, b0.s3, c03);
+
+ c10 = fma(a0.s1, b0.s0, c10);
+ c11 = fma(a0.s1, b0.s1, c11);
+ c12 = fma(a0.s1, b0.s2, c12);
+ c13 = fma(a0.s1, b0.s3, c13);
+
+ c20 = fma(a0.s2, b0.s0, c20);
+ c21 = fma(a0.s2, b0.s1, c21);
+ c22 = fma(a0.s2, b0.s2, c22);
+ c23 = fma(a0.s2, b0.s3, c23);
+
+ c30 = fma(a0.s3, b0.s0, c30);
+ c31 = fma(a0.s3, b0.s1, c31);
+ c32 = fma(a0.s3, b0.s2, c32);
+ c33 = fma(a0.s3, b0.s3, c33);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a + 12);
+ b0 = vload4(0, src_addr_b + 12);
+
+ c00 = fma(a0.s0, b0.s0, c00);
+ c01 = fma(a0.s0, b0.s1, c01);
+ c02 = fma(a0.s0, b0.s2, c02);
+ c03 = fma(a0.s0, b0.s3, c03);
+
+ c10 = fma(a0.s1, b0.s0, c10);
+ c11 = fma(a0.s1, b0.s1, c11);
+ c12 = fma(a0.s1, b0.s2, c12);
+ c13 = fma(a0.s1, b0.s3, c13);
+
+ c20 = fma(a0.s2, b0.s0, c20);
+ c21 = fma(a0.s2, b0.s1, c21);
+ c22 = fma(a0.s2, b0.s2, c22);
+ c23 = fma(a0.s2, b0.s3, c23);
+
+ c30 = fma(a0.s3, b0.s0, c30);
+ c31 = fma(a0.s3, b0.s1, c31);
+ c32 = fma(a0.s3, b0.s2, c32);
+ c33 = fma(a0.s3, b0.s3, c33);
+ }
+
+ for(; src_addr_b < src_end_addr_b; src_addr_a += 4, src_addr_b += 4)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = vload4(0, src_addr_a);
+ float4 b0 = vload4(0, src_addr_b);
+
+ c00 = fma(a0.s0, b0.s0, c00);
+ c01 = fma(a0.s0, b0.s1, c01);
+ c02 = fma(a0.s0, b0.s2, c02);
+ c03 = fma(a0.s0, b0.s3, c03);
+
+ c10 = fma(a0.s1, b0.s0, c10);
+ c11 = fma(a0.s1, b0.s1, c11);
+ c12 = fma(a0.s1, b0.s2, c12);
+ c13 = fma(a0.s1, b0.s3, c13);
+
+ c20 = fma(a0.s2, b0.s0, c20);
+ c21 = fma(a0.s2, b0.s1, c21);
+ c22 = fma(a0.s2, b0.s2, c22);
+ c23 = fma(a0.s2, b0.s3, c23);
+
+ c30 = fma(a0.s3, b0.s0, c30);
+ c31 = fma(a0.s3, b0.s1, c31);
+ c32 = fma(a0.s3, b0.s2, c32);
+ c33 = fma(a0.s3, b0.s3, c33);
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Multiply by the weight of matrix product
+ c00 = c00 * ALPHA;
+ c01 = c01 * ALPHA;
+ c02 = c02 * ALPHA;
+ c03 = c03 * ALPHA;
+ c10 = c10 * ALPHA;
+ c11 = c11 * ALPHA;
+ c12 = c12 * ALPHA;
+ c13 = c13 * ALPHA;
+ c20 = c20 * ALPHA;
+ c21 = c21 * ALPHA;
+ c22 = c22 * ALPHA;
+ c23 = c23 * ALPHA;
+ c30 = c30 * ALPHA;
+ c31 = c31 * ALPHA;
+ c32 = c32 * ALPHA;
+ c33 = c33 * ALPHA;
+
+ barrier(CLK_GLOBAL_MEM_FENCE);
+
+ // Store 4x4 block
+ vstore4((float4)(c00, c01, c02, c03), 0, (__global float *)(offset(&dst, 0, 0)));
+ vstore4((float4)(c10, c11, c12, c13), 0, (__global float *)(offset(&dst, 0, 1)));
+ vstore4((float4)(c20, c21, c22, c23), 0, (__global float *)(offset(&dst, 0, 2)));
+ vstore4((float4)(c30, c31, c32, c33), 0, (__global float *)(offset(&dst, 0, 3)));
+}
+
+/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_f16 and @ref gemm_transpose1x8_f16 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B and -DALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F16
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_mm_f16(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ /* src_addr.s0 = address of matrix A */
+ /* src_addr.s1 = address of matrix B */
+
+ /* Compute address for matrix A and B */
+ int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
+ (src1_stride_y));
+
+ /* Add offset_first_element_in_bytes */
+ src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ /* Divide by 2 in order to get the src_addr in unit of half */
+ src_addr = src_addr >> 1;
+
+ /* Compute end row address for matrix B */
+ int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
+
+ /* Reset accumulators */
+ half8 c00 = 0.0f;
+ half8 c10 = 0.0f;
+ half8 c20 = 0.0f;
+ half8 c30 = 0.0f;
+
+ for(; src_addr.s1 <= (end_row_mtx_b - 8); src_addr += (int2)(8, 16))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ half4 a0 = vload4(0, ((__global half *)src0_ptr) + src_addr.s0);
+ half8 b0 = vload8(0, ((__global half *)src1_ptr) + src_addr.s1);
+
+ c00 += (half8)a0.s0 * b0;
+ c10 += (half8)a0.s1 * b0;
+ c20 += (half8)a0.s2 * b0;
+ c30 += (half8)a0.s3 * b0;
+
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ a0 = vload4(0, ((__global half *)src0_ptr) + src_addr.s0 + 4);
+ b0 = vload8(0, ((__global half *)src1_ptr) + src_addr.s1 + 8);
+
+ c00 += (half8)a0.s0 * b0;
+ c10 += (half8)a0.s1 * b0;
+ c20 += (half8)a0.s2 * b0;
+ c30 += (half8)a0.s3 * b0;
+ }
+
+ for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 8))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ half4 a0 = vload4(0, ((__global half *)src0_ptr) + src_addr.s0);
+ half8 b0 = vload8(0, ((__global half *)src1_ptr) + src_addr.s1);
+
+ c00 += (half8)a0.s0 * b0;
+ c10 += (half8)a0.s1 * b0;
+ c20 += (half8)a0.s2 * b0;
+ c30 += (half8)a0.s3 * b0;
+ }
+
+ /* Compute destination address */
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Multiply by the weight of matrix product */
+ c00 = c00 * (half8)ALPHA;
+ c10 = c10 * (half8)ALPHA;
+ c20 = c20 * (half8)ALPHA;
+ c30 = c30 * (half8)ALPHA;
+
+ /* Store 4x8 block */
+ vstore8(c00, 0, (__global half *)(offset(&dst, 0, 0)));
+ vstore8(c10, 0, (__global half *)(offset(&dst, 0, 1)));
+ vstore8(c20, 0, (__global half *)(offset(&dst, 0, 2)));
+ vstore8(c30, 0, (__global half *)(offset(&dst, 0, 3)));
+}
+
+#if(defined WIDTH_VECTOR_A)
+/** This OpenCL kernel computes the vector by matrix multiplication between the vector A (src0) and matrix B (src1)
+ *
+ * @attention The width of vector A, the width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_VECTOR_A -DWIDTH_MATRIX_B and -DALPHA
+ *
+ * @attention The input vector A and matrix B must not be reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_vm_f32(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ int idx = get_global_id(0) * 4;
+
+ /* Compute the address for the vector A and matrix B */
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+ src_addr.s1 += idx * sizeof(float);
+
+ int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
+
+ float4 acc = 0.0f;
+
+ for(; src_addr.s0 <= (end_row_vec_a - 2 * sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
+ {
+ float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
+ float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
+
+ acc += b0 * (float4)a0.s0;
+ acc += b1 * (float4)a0.s1;
+ }
+
+ for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
+ {
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0));
+ float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+
+ acc += b0 * (float4)a0;
+ }
+
+ /* Compute destination address */
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Multiply by the weight of vector-matrix product */
+ acc = acc * (float4)ALPHA;
+
+ vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
+}
+
+/** This OpenCL kernel computes the vector by matrix multiplication between the vector A (src0) and matrix B (src1)
+ *
+ * @attention The width of vector A, the width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_VECTOR_A -DWIDTH_MATRIX_B and -DALPHA
+ *
+ * @attention The input vector A and matrix B must not be reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F16
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_vm_f16(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ int idx = get_global_id(0) * 8;
+
+ /* Compute the address for the vector A and matrix B */
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+ src_addr.s1 += idx * sizeof(half);
+
+ int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(half));
+
+ half8 acc = 0.0f;
+
+ for(; src_addr.s0 <= (end_row_vec_a - 4 * sizeof(half)); src_addr += (int2)(4 * sizeof(half), 4 * src1_stride_y))
+ {
+ half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0));
+ half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
+ half8 b1 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
+ half8 b2 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 2 * src1_stride_y));
+ half8 b3 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 3 * src1_stride_y));
+
+ acc += b0 * (half8)a0.s0;
+ acc += b1 * (half8)a0.s1;
+ acc += b2 * (half8)a0.s2;
+ acc += b3 * (half8)a0.s3;
+ }
+
+ for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(half), src1_stride_y))
+ {
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0));
+ half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
+
+ acc += b0 * (half8)a0;
+ }
+
+ /* Compute destination address */
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Multiply by the weight of vector-matrix product */
+ acc = acc * (half8)ALPHA;
+
+ vstore8(acc, 0, (__global half *)(offset(&dst, 0, 0)));
+}
+#endif /* (defined WIDTH_VECTOR_A) */
+#endif /* (defined WIDTH_MATRIX_B && defined ALPHA) */
+
+#if(defined BETA)
+/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
+ *
+ * @attention The beta's value need to be passed at compile time using -DBETA
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_ma_f32(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Load values from A x B */
+ float4 alpha_ab = vload4(0, (__global float *)dst.ptr);
+
+ /* Load values from Matrix C */
+ float4 c = vload4(0, (__global float *)src.ptr);
+
+ /* Computes alpha * axb + beta * c */
+ float4 out = alpha_ab + (float4)BETA * c;
+
+ /* Store final result in axb matrix */
+ vstore4(out, 0, (__global float *)dst.ptr);
+}
+
+/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F16
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_ma_f16(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Load values from A x B */
+ half8 alpha_ab = vload8(0, (__global half *)dst.ptr);
+
+ /* Load values from Matrix C */
+ half8 c = vload8(0, (__global half *)src.ptr);
+
+ /* Computes alpha * axb + beta * c */
+ half8 out = alpha_ab + (half8)BETA * c;
+
+ /* Store final result in axb matrix */
+ vstore8(out, 0, (__global half *)dst.ptr);
+}
+#endif /* (defined BETA) */
+
+#if(defined WIDTH_VECTOR_A)
+/** This OpenCL kernel computes the vector by matrix multiplication between each row of A (src0) and matrix B (src1) used for locally connected layer
+ *
+ * @attention The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
+ *
+ * @attention The input A and matrix B must not be reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: F32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_lc_vm_f32(IMAGE_DECLARATION(src0),
+ TENSOR3D_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ int idx = get_global_id(0) * 4;
+ int idy = get_global_id(1);
+
+ /* Compute the address for the vector A and matrix B */
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes + src0_stride_y * idy, src1_offset_first_element_in_bytes + src1_stride_z * idy));
+ src_addr.s1 += idx * sizeof(float);
+
+ int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
+
+ float4 acc = 0.0f;
+
+ for(; src_addr.s0 <= (end_row_vec_a - 2 * sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
+ {
+ float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
+ float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
+
+ acc += b0 * (float4)a0.s0;
+ acc += b1 * (float4)a0.s1;
+ }
+
+ for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
+ {
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0));
+ float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+
+ acc += b0 * (float4)a0;
+ }
+
+ /* Compute destination address */
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
+}
+#endif /* (defined WIDTH_VECTOR_A) */