aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl6360
1 files changed, 0 insertions, 6360 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
deleted file mode 100644
index 8a956010e7..0000000000
--- a/src/core/CL/cl_kernels/gemm.cl
+++ /dev/null
@@ -1,6360 +0,0 @@
-/*
- * Copyright (c) 2017-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "gemm_helpers.h"
-#include "repeat.h"
-
-#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH)
-#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
-#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
-#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
-#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
-#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
-#define CONCAT_INC(K0) INC##K0
-#define INC(K0) CONCAT_INC(K0)
-
-#if(SRC_WIDTH % K0)
-#define BOUNDARY_CONDITION_X(x, a) \
- ({ \
- a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
- })
-#else // (SRC_WIDTH % K0)
-#define BOUNDARY_CONDITION_X(x, a) \
- ({})
-#endif // (SRC_WIDTH % K0)
-
-/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
- * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
- * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note Only the following values for M0, K0 and V0 are supported:
- * M0: 2,3,4,5,6,7,8
- * K0: 2,3,4,8,16
- * V0: greater than 0
- * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- *
- * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
- * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- */
-__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst)
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
- )
-{
- // Block size
-#define BLOCK_SIZE ((M0) * (K0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (K0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (K0) * (V0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (K0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
- (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
-
- // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src_stride_z by DEPTH_GEMM3D
-
- input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- input_ptr += z * (uint)src_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- output_ptr += z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- // Load values from the LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, input_ptr, 0, src_stride_y, zin);
- BOUNDARY_CONDITION_X(x, a0);
-#if M0 > 1
- BOUNDARY_CONDITION_X(x, a1);
-#endif // M0 > 1
-#if M0 > 2
- BOUNDARY_CONDITION_X(x, a2);
-#endif // M0 > 2
-#if M0 > 3
- BOUNDARY_CONDITION_X(x, a3);
-#endif // M0 > 3
-#if M0 > 4
- BOUNDARY_CONDITION_X(x, a4);
-#endif // M0 > 4
-#if M0 > 5
- BOUNDARY_CONDITION_X(x, a5);
-#endif // M0 > 5
-#if M0 > 6
- BOUNDARY_CONDITION_X(x, a6);
-#endif // M0 > 6
-#if M0 > 7
- BOUNDARY_CONDITION_X(x, a7);
-#endif // M0 > 7
- // ---------------------------Store output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-
-#if M0 == 2
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 3 // M0 == 3
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 4 // M0 == 4
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 5 // M0 == 5
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- DATA_TYPE res1 = a4.s##i; \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
- })
-#elif M0 == 6 // M0 == 6
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VEC_DATA_TYPE(DATA_TYPE, 2) \
- res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- VSTORE(2) \
- (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
- })
-#elif M0 == 7 // M0 == 7
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VEC_DATA_TYPE(DATA_TYPE, 3) \
- res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- VSTORE(3) \
- (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
- })
-#elif M0 == 8 // M0 == 8
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#else // M0 not supported
-#error "M0 value not supported"
-#endif // N0 conditions
-
-/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
- * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
- * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note Only the following values for M0, K0 and V0 are supported:
- * M0: 2,3,4,5,6,7,8
- * K0: 2,3,4,8,16
- * V0: greater than 0
- * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- *
- * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
- * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- */
-__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst)
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
- )
-{
- // Block size
-#define BLOCK_SIZE ((M0) * (K0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (M0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (M0) * (V0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (M0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
- (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
-
- // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src_stride_z by DEPTH_GEMM3D
-
- input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- input_ptr += z * (uint)src_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- output_ptr += z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
-
- // Load values from the LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, input_ptr, 0, src_stride_y, zin);
- BOUNDARY_CONDITION_X(x, a0);
-#if M0 > 1
- BOUNDARY_CONDITION_X(x, a1);
-#endif // M0 > 1
-#if M0 > 2
- BOUNDARY_CONDITION_X(x, a2);
-#endif // M0 > 2
-#if M0 > 3
- BOUNDARY_CONDITION_X(x, a3);
-#endif // M0 > 3
-#if M0 > 4
- BOUNDARY_CONDITION_X(x, a4);
-#endif // M0 > 4
-#if M0 > 5
- BOUNDARY_CONDITION_X(x, a5);
-#endif // M0 > 5
-#if M0 > 6
- BOUNDARY_CONDITION_X(x, a6);
-#endif // M0 > 6
-#if M0 > 7
- BOUNDARY_CONDITION_X(x, a7);
-#endif // M0 > 7
- // ---------------------------Transpose and store block -----------------------
-
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
-#if K0 > 2
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
-#endif // K0 > 2
-#if K0 > 3
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
-#endif // K0 > 3
-#if K0 > 4
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
-#endif // K0 > 4
-#if K0 > 8
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
-#endif // K0 > 8
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH)
-
-#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
-/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
- * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- * @note Only the following values for K0, N0 and H0 are supported:
- * N0: 2,3,4,8,16
- * K0: 1,2,3,4,8,16
- * H0: greater than 0
- *
- * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
- * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Block size
-#define BLOCK_SIZE ((K0) * (N0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (N0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (N0) * (H0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (N0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
- x / (uint)H0)
- * (uint)dst_stride_y)
- + z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
-
- REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0;
-
- // Load values from the RHS matrix
- a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
-#if K0 > 1
- if(y * (uint)K0 + 1 < SRC_HEIGHT)
- {
- a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- }
-#endif // K0 > 1
-#if K0 > 2
- if(y * (uint)K0 + 2 < SRC_HEIGHT)
- {
- a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
- }
-#endif // K0 > 2
-#if K0 > 3
- if(y * (uint)K0 + 3 < SRC_HEIGHT)
- {
- a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
- }
-#endif // K0 > 3
-#if K0 > 4
- if(y * (uint)K0 + 4 < SRC_HEIGHT)
- {
- a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
- }
- if(y * (uint)K0 + 5 < SRC_HEIGHT)
- {
- a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
- }
- if(y * (uint)K0 + 6 < SRC_HEIGHT)
- {
- a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
- }
- if(y * (uint)K0 + 7 < SRC_HEIGHT)
- {
- a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
- }
-#endif // K0 > 4
-#if K0 > 8
- if(y * (uint)K0 + 8 < SRC_HEIGHT)
- {
- a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
- }
- if(y * (uint)K0 + 9 < SRC_HEIGHT)
- {
- a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
- }
- if(y * (uint)K0 + 10 < SRC_HEIGHT)
- {
- aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
- }
- if(y * (uint)K0 + 11 < SRC_HEIGHT)
- {
- aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
- }
- if(y * (uint)K0 + 12 < SRC_HEIGHT)
- {
- aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
- }
- if(y * (uint)K0 + 13 < SRC_HEIGHT)
- {
- aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
- }
- if(y * (uint)K0 + 14 < SRC_HEIGHT)
- {
- aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
- }
- if(y * (uint)K0 + 15 < SRC_HEIGHT)
- {
- aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
- }
-#endif // K0 > 8
-
- // ---------------------------Store output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-
-#if defined(TRANSPOSE)
-/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
- * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- * @note The option -DTRANSPOSE must passed at compile time.
- * @note Only the following values for K0, N0 and H0 are supported:
- * N0: 2,3,4,8,16
- * K0: 2,3,4,8,16
- * H0: greater than 0
- *
- * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
- * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Block size
-#define BLOCK_SIZE ((K0) * (N0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (K0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (K0) * (H0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (K0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
- (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0;
-
- // Load values from the RHS matrix
- a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
- if(y * (uint)K0 + 1 < SRC_HEIGHT)
- {
- a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- }
-#if K0 > 2
- if(y * (uint)K0 + 2 < SRC_HEIGHT)
- {
- a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
- }
-#endif // K0 > 2
-#if K0 > 3
- if(y * (uint)K0 + 3 < SRC_HEIGHT)
- {
- a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
- }
-#endif // K0 > 3
-#if K0 > 4
- if(y * (uint)K0 + 4 < SRC_HEIGHT)
- {
- a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
- }
- if(y * (uint)K0 + 5 < SRC_HEIGHT)
- {
- a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
- }
- if(y * (uint)K0 + 6 < SRC_HEIGHT)
- {
- a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
- }
- if(y * (uint)K0 + 7 < SRC_HEIGHT)
- {
- a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
- }
-#endif // K0 > 4
-#if K0 > 8
- if(y * (uint)K0 + 8 < SRC_HEIGHT)
- {
- a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
- }
- if(y * (uint)K0 + 9 < SRC_HEIGHT)
- {
- a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
- }
- if(y * (uint)K0 + 10 < SRC_HEIGHT)
- {
- aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
- }
- if(y * (uint)K0 + 11 < SRC_HEIGHT)
- {
- aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
- }
- if(y * (uint)K0 + 12 < SRC_HEIGHT)
- {
- aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
- }
- if(y * (uint)K0 + 13 < SRC_HEIGHT)
- {
- aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
- }
- if(y * (uint)K0 + 14 < SRC_HEIGHT)
- {
- aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
- }
- if(y * (uint)K0 + 15 < SRC_HEIGHT)
- {
- aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
- }
-#endif // K0 > 8
-
- // ---------------------------Transpose the block ------------------------------
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0;
-
-#if K0 == 2
- // This part computes the following transpositions:
- // 2x2 -> 2x2
- // 2x4 -> 4x2
- // 2x8 -> 8x2
- // 2x16 -> 16x2
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF);
-#endif // N0 > 8
-
-#elif K0 == 3 // K0 == 2
- // This part computes the following transpositions:
- // 3x2 -> 2x3
- // 3x4 -> 4x3
- // 3x8 -> 8x3
- // 3x16 -> 16x3
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF);
-#endif // N0 > 8
-
-#elif K0 == 4 // K0 == 4
- // This part computes the following transpositions:
- // 4x2 -> 2x4
- // 4x4 -> 4x4
- // 4x8 -> 8x4
- // 4x16 -> 16x4
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
-#endif // N0 > 8
-
-#elif K0 == 8 // K0 == 8
- // This part computes the following transpositions:
- // 8x2 -> 2x8
- // 8x4 -> 4x8
- // 8x8 -> 8x8
- // 8x16 -> 16x8
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
-#endif // N0 > 8
-
-#elif K0 == 16 // K0 == 16
-
- // This part computes the following transpositions:
- // 16x2 -> 2x16
- // 16x4 -> 4x16
- // 16x8 -> 8x16
- // 16x16 -> 16x16
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
- a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
- a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
- a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
- a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
- a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
- a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
- a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
- a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
- a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
- a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
- a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
- a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
- a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
- a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
- a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
- a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
-#endif // N0 > 8
-
-#else // N0 == 16
-#error "Not supported N0 value"
-#endif // N0 > 2
-
- // ---------------------------Store the output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-#endif // defined(TRANSPOSE)
-#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
-
-#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
-
-#define CONCAT(a, b) a##b
-
-#define ARM_DOT1(a, b, c) \
- ({ \
- c = fma(a, b, c); \
- })
-#define ARM_DOT2(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- })
-#define ARM_DOT3(a, b, c) \
- ({ \
- ARM_DOT2(a, b, c); \
- c = fma((a.s2), (b.s2), c); \
- })
-#define ARM_DOT4(a, b, c) \
- ({ \
- ARM_DOT3(a, b, c); \
- c = fma((a.s3), (b.s3), c); \
- })
-#define ARM_DOT8(a, b, c) \
- ({ \
- ARM_DOT4((a.lo), (b.lo), c); \
- ARM_DOT4((a.hi), (b.hi), c); \
- })
-#define ARM_DOT16(a, b, c) \
- ({ \
- ARM_DOT8((a.lo), (b.lo), c); \
- ARM_DOT8((a.hi), (b.hi), c); \
- })
-
-#if N0 == 2
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- })
-#elif N0 == 3 // N0 == 3
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- })
-#elif N0 == 4 // N0 == 4
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- })
-#elif N0 == 8 // N0 == 8
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##4), (c.s4)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##5), (c.s5)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##6), (c.s6)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##7), (c.s7)); \
- })
-#elif N0 == 16 // N0 == 16
-#define ARM_DOT_K0XN0(k0, a, b, c) \
- ({ \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##0), (c.s0)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##1), (c.s1)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##2), (c.s2)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##3), (c.s3)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##4), (c.s4)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##5), (c.s5)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##6), (c.s6)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##7), (c.s7)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##8), (c.s8)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##9), (c.s9)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##A), (c.sA)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##B), (c.sB)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##C), (c.sC)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##D), (c.sD)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##E), (c.sE)); \
- CONCAT(ARM_DOT, k0) \
- ((a), (b##F), (c.sF)); \
- })
-#else // N0 not supported
-#error "N0 value not supported"
-#endif // N0 conditions
-
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
- * The LHS matrix is NOT reshaped
- * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
- *
- * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
- * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
- * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
- * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
- * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
- * @note Only the following configurations of M0, N0 and K0 are currently supported:
- * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
- * - N0 = 2, 3, 4, 8, 16
- * - K0 = 2, 3, 4, 8, 16
- * - H0 >= 1
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
- *
- * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32
- * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
- * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
- * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
- * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
- * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
- * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
- * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
- * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
- * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
- * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (K0)
-#define RHS_STEP_X ((K0) * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (K0)
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
-
- // Compute RHS reshaped matrix address
- uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_offset += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS reshaped matrix
- LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
-
- // Accumulate
- ARM_DOT_K0XN0(K0, a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(K0, a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(K0, a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(K0, a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(K0, a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(K0, a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(K0, a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(K0, a7, b, c7);
-#endif // M0 > 7
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- rhs_offset += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
- }
-
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS reshaped matrix
- LOAD_BLOCK(N0, 1, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
-
- // Accumulate
- ARM_DOT_K0XN0(1, a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(1, a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(1, a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(1, a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(1, a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(1, a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(1, a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(1, a7, b, c7);
-#endif // M0 > 7
-
- lhs_offset += sizeof(DATA_TYPE);
- rhs_offset += sizeof(DATA_TYPE);
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
- 2) * bias_stride_z;
-
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
- STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-}
-
-#define VFMA(a, b, c) \
- ({ \
- c = fma(a, b, c); \
- })
-
-#if M0 == 1
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- })
-#elif M0 == 2 // M0 == 2
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- })
-#elif M0 == 3 // M0 == 3
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- })
-#elif M0 == 4 // M0 == 4
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- })
-#elif M0 == 5 // M0 == 5
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- })
-#elif M0 == 6 // M0 == 6
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- })
-#elif M0 == 7 // M0 == 7
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- })
-#elif M0 == 8 // M0 == 8
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
- })
-#else // M0 not supported
-#error "M0 not supported"
-#endif // M0 not supported
-
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
- * The LHS matrix is NOT reshaped
- * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
- *
- * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
- * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
- * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
- * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
- * @note Only the following configurations of M0, N0 and K0 are currently supported:
- * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
- * - N0 = 2, 3, 4, 8, 16
- * - K0 = 2, 3, 4, 8, 16
- * - H0 >= 1
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
- *
- * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32
- * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
- * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
- * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
- * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
- * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
- * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
- * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
- * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
- * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
- * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (N0)
-#define RHS_STEP_X ((N0) * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (N0)
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
-
- // Compute RHS reshaped matrix address
- uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_offset += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zin0=0,zin1=0,zin2=0,... zin7=0;
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); //uint zero0=0,zero1=0,zero2=0,... zero7=0;
-
-#if defined(REINTERPRET_INPUT_AS_3D)
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0;
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
-
- LD_RHS_VFMA_M0xN0(0, a, c);
- LD_RHS_VFMA_M0xN0(1, a, c);
-#if K0 > 2
- LD_RHS_VFMA_M0xN0(2, a, c);
-#endif // K0 > 2
-#if K0 > 3
- LD_RHS_VFMA_M0xN0(3, a, c);
-#endif // K0 > 3
-#if K0 > 4
- LD_RHS_VFMA_M0xN0(4, a, c);
- LD_RHS_VFMA_M0xN0(5, a, c);
- LD_RHS_VFMA_M0xN0(6, a, c);
- LD_RHS_VFMA_M0xN0(7, a, c);
-#endif // K0 > 4
-#if K0 > 8
- LD_RHS_VFMA_M0xN0(8, a, c);
- LD_RHS_VFMA_M0xN0(9, a, c);
- LD_RHS_VFMA_M0xN0(A, a, c);
- LD_RHS_VFMA_M0xN0(B, a, c);
- LD_RHS_VFMA_M0xN0(C, a, c);
- LD_RHS_VFMA_M0xN0(D, a, c);
- LD_RHS_VFMA_M0xN0(E, a, c);
- LD_RHS_VFMA_M0xN0(F, a, c);
-#endif // K0 > 8
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- rhs_offset += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE);
- }
-
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
-#if M0 > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
-#endif // M0 > 7
-
- LD_RHS_VFMA_M0xN0(0, a, c);
-
- lhs_offset += sizeof(DATA_TYPE);
- rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE);
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
- 2) * bias_stride_z;
-
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
- STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-}
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
-
-#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
-
-#if defined(MIXED_PRECISION)
-#if K0 == 2
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += a.s0 * b.s0; \
- c += a.s1 * b.s1; \
- })
-#elif K0 == 3 // K0 == 3
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += a.s0 * b.s0; \
- c += a.s1 * b.s1; \
- c += a.s2 * b.s2; \
- })
-#elif K0 == 4 // K0 == 4
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += a.s0 * b.s0; \
- c += a.s1 * b.s1; \
- c += a.s2 * b.s2; \
- c += a.s3 * b.s3; \
- })
-#elif K0 == 8 // K0 == 8
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += a.s0 * b.s0; \
- c += a.s1 * b.s1; \
- c += a.s2 * b.s2; \
- c += a.s3 * b.s3; \
- c += a.s4 * b.s4; \
- c += a.s5 * b.s5; \
- c += a.s6 * b.s6; \
- c += a.s7 * b.s7; \
- })
-#elif K0 == 16 // K0 == 16
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c += a.s0 * b.s0; \
- c += a.s1 * b.s1; \
- c += a.s2 * b.s2; \
- c += a.s3 * b.s3; \
- c += a.s4 * b.s4; \
- c += a.s5 * b.s5; \
- c += a.s6 * b.s6; \
- c += a.s7 * b.s7; \
- c += a.s8 * b.s8; \
- c += a.s9 * b.s9; \
- c += a.sA * b.sA; \
- c += a.sB * b.sB; \
- c += a.sC * b.sC; \
- c += a.sD * b.sD; \
- c += a.sE * b.sE; \
- c += a.sF * b.sF; \
- })
-#else // K0 not supported
-#error "K0 value not supported"
-#endif // K0 conditions
-#else // defined(MIXED_PRECISION)
-#if K0 == 2
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- })
-#elif K0 == 3 // K0 == 3
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- c = fma(a.s2, b.s2, c); \
- })
-#elif K0 == 4 // K0 == 4
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- c = fma(a.s2, b.s2, c); \
- c = fma(a.s3, b.s3, c); \
- })
-#elif K0 == 8 // K0 == 8
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- c = fma(a.s2, b.s2, c); \
- c = fma(a.s3, b.s3, c); \
- c = fma(a.s4, b.s4, c); \
- c = fma(a.s5, b.s5, c); \
- c = fma(a.s6, b.s6, c); \
- c = fma(a.s7, b.s7, c); \
- })
-#elif K0 == 16 // K0 == 16
-#define ARM_DOT_K0(a, b, c) \
- ({ \
- c = fma(a.s0, b.s0, c); \
- c = fma(a.s1, b.s1, c); \
- c = fma(a.s2, b.s2, c); \
- c = fma(a.s3, b.s3, c); \
- c = fma(a.s4, b.s4, c); \
- c = fma(a.s5, b.s5, c); \
- c = fma(a.s6, b.s6, c); \
- c = fma(a.s7, b.s7, c); \
- c = fma(a.s8, b.s8, c); \
- c = fma(a.s9, b.s9, c); \
- c = fma(a.sA, b.sA, c); \
- c = fma(a.sB, b.sB, c); \
- c = fma(a.sC, b.sC, c); \
- c = fma(a.sD, b.sD, c); \
- c = fma(a.sE, b.sE, c); \
- c = fma(a.sF, b.sF, c); \
- })
-#else // K0 not supported
-#error "K0 value not supported"
-#endif // K0 conditions
-#endif // defined(MIXED_PRECISION)
-
-#if N0 == 2
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- })
-#elif N0 == 3 // N0 == 3
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- })
-#elif N0 == 4 // N0 == 4
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- ARM_DOT_K0((a), (b##3), (c.s3)); \
- })
-#elif N0 == 8 // N0 == 8
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- ARM_DOT_K0((a), (b##3), (c.s3)); \
- ARM_DOT_K0((a), (b##4), (c.s4)); \
- ARM_DOT_K0((a), (b##5), (c.s5)); \
- ARM_DOT_K0((a), (b##6), (c.s6)); \
- ARM_DOT_K0((a), (b##7), (c.s7)); \
- })
-#elif N0 == 16 // N0 == 16
-#define ARM_DOT_K0XN0(a, b, c) \
- ({ \
- ARM_DOT_K0((a), (b##0), (c.s0)); \
- ARM_DOT_K0((a), (b##1), (c.s1)); \
- ARM_DOT_K0((a), (b##2), (c.s2)); \
- ARM_DOT_K0((a), (b##3), (c.s3)); \
- ARM_DOT_K0((a), (b##4), (c.s4)); \
- ARM_DOT_K0((a), (b##5), (c.s5)); \
- ARM_DOT_K0((a), (b##6), (c.s6)); \
- ARM_DOT_K0((a), (b##7), (c.s7)); \
- ARM_DOT_K0((a), (b##8), (c.s8)); \
- ARM_DOT_K0((a), (b##9), (c.s9)); \
- ARM_DOT_K0((a), (b##A), (c.sA)); \
- ARM_DOT_K0((a), (b##B), (c.sB)); \
- ARM_DOT_K0((a), (b##C), (c.sC)); \
- ARM_DOT_K0((a), (b##D), (c.sD)); \
- ARM_DOT_K0((a), (b##E), (c.sE)); \
- ARM_DOT_K0((a), (b##F), (c.sF)); \
- })
-#else // N0 not supported
-#error "N0 value not supported"
-#endif // N0 conditions
-
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
- * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
- * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The data type used for the accumulators must be passed at compile time using -DDATA_TYPE_ACCUMULATOR (e.g. -DDATA_TYPE_ACCUMULATOR=float)
- * @note The F16 computation also supports mixed precision through the option -DMIXED_PRECISION passed at compile time. If enabled, DATA_TYPE_ACCUMULATOR should be set to float
- * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions M and N must be passed at compile time using -DM and -DN (e.g. -DM=52 and -DN=90).
- * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
- * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
- * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
- * @note Only the following configurations of M0, N0 and K0 are currently supported:
- * - M0 = 2, 3, 4, 5, 6, 7, 8
- * - N0 = 2, 3, 4, 8, 16
- * - K0 = 2, 3, 4, 8, 16
- * - V0 >= 1
- * - H0 >= 1
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
- *
- * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
- * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
- * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
- * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
- * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
- * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
- * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
- * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
- * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
- * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
- * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
- * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint k,
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Block size
-#define LHS_BLOCK_SIZE ((K0) * (M0))
-
-#if defined(LHS_INTERLEAVE)
-#define LHS_OFFSET_X (K0)
-#define LHS_STEP_X ((K0) * (V0))
-#define LHS_STEP_LOOP (1)
-#else // defined(INTERLEAVE)
-#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
-#define LHS_STEP_X (K0)
-#define LHS_STEP_LOOP (V0)
-#endif // defined(INTERLEAVE)
-
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (K0)
-#define RHS_STEP_X ((K0) * (H0))
-#define RHS_STEP_LOOP (1)
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (K0)
-#define RHS_STEP_LOOP (H0)
-#endif // defined(RHS_INTERLEAVE)
-
-#if defined(DUMMY_WORK_ITEMS)
- if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
- (get_global_id(2) * lhs_stride_z);
-
- // Compute RHS matrix address
- __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_addr += get_global_id(2) * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
- for(int i = 0; i < k; i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
-
- // Load values from RHS matrix
- LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X * sizeof(DATA_TYPE), zero);
-
- // Accumulate
- ARM_DOT_K0XN0(a0, b, c0);
-#if M0 > 1
- ARM_DOT_K0XN0(a1, b, c1);
-#endif // M0 > 1
-#if M0 > 2
- ARM_DOT_K0XN0(a2, b, c2);
-#endif // M0 > 2
-#if M0 > 3
- ARM_DOT_K0XN0(a3, b, c3);
-#endif // M0 > 3
-#if M0 > 4
- ARM_DOT_K0XN0(a4, b, c4);
-#endif // M0 > 4
-#if M0 > 5
- ARM_DOT_K0XN0(a5, b, c5);
-#endif // M0 > 5
-#if M0 > 6
- ARM_DOT_K0XN0(a6, b, c6);
-#endif // M0 > 6
-#if M0 > 7
- ARM_DOT_K0XN0(a7, b, c7);
-#endif // M0 > 7
-
- lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
- rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += get_global_id(2) * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
-#if defined(MIXED_PRECISION)
- CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
- ADD_BLOCK_BROADCAST(M0, c, bias_hp0);
-#else // defined(MIXED_PRECISION)
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-#endif // defined(MIXED_PRECISION)
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
- 2) * bias_stride_z;
-
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
-#if defined(MIXED_PRECISION)
- CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
- ADD_BLOCK(M0, c, bias_hp);
-#else // defined(MIXED_PRECISION)
- ADD_BLOCK(M0, c, bias);
-#endif // defined(MIXED_PRECISION)
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
-#if defined(MIXED_PRECISION)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, c, A_VAL, B_VAL);
-#else // defined(MIXED_PRECISION)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
-#endif // defined(MIXED_PRECISION)
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
-#if defined(MIXED_PRECISION)
- CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-#else // defined(MIXED_PRECISION)
- STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-#endif // defined(MIXED_PRECISION)
-
-#undef LHS_BLOCK_SIZE
-#undef LHS_OFFSET_X
-#undef LHS_STEP_X
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-}
-
-#if defined(LHS_TRANSPOSE)
-
-#define VTYPE(TYPE, SIZE) VEC_DATA_TYPE(TYPE, SIZE)
-
-#if defined(MIXED_PRECISION)
-
-#if(GPU_ARCH == GPU_ARCH_MIDGARD)
-#define ARM_VFMA(N0, a, b, c) c += (CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))) * (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0)));
-#else // GPU_ARCH == GPU_ARCH_MIDGARD
-#define ARM_VFMA(N0, a, b, c) c = fma((CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (c));
-#endif // GPU_ARCH == GPU_ARCH_MIDGARD
-
-#else // defined(MIXED_PRECISION
-
-#if(GPU_ARCH == GPU_ARCH_MIDGARD)
-#define ARM_VFMA(N0, a, b, c) c += (a) * (b);
-#else // GPU_ARCH == GPU_ARCH_MIDGARD
-#define ARM_VFMA(N0, a, b, c) c = fma((a), (b), (c));
-#endif // GPU_ARCH == GPU_ARCH_MIDGARD
-
-#endif // defined(MIXED_PRECISION)
-
-#define ARM_VVM_T_NT_1xN0x1(N0, TYPE, a, b, C) \
- ({ \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a), b, (C##0)); \
- })
-#define ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C) \
- ({ \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s0), b, (C##0)); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s1), b, (C##1)); \
- })
-#define ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C) \
- ({ \
- ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s2), b, (C##2)); \
- })
-#define ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C) \
- ({ \
- ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s3), b, (C##3)); \
- })
-#define ARM_VVM_T_NT_8xN0x1(N0, TYPE, a, b, C) \
- ({ \
- ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s4), b, (C##4)); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s5), b, (C##5)); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s6), b, (C##6)); \
- ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s7), b, (C##7)); \
- })
-
-// Factory macro for the column-vector (transposed) by row-vector (not transposed) multiplication. K0 = 1
-// a is the column-vector (transposed)
-// b is the row-vector (not transposed)
-// C is the output matrix
-// Lower case is a vector (a, b)
-// Upper case is a matrix (C)
-#define ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, a, b, C) ARM_VVM_T_NT_##M0##xN0x1(N0, TYPE, a, b, C)
-
-#define ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C) \
- ({ \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##0), (B##0), C); \
- })
-#define ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C) \
- ({ \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##1), (B##1), C); \
- })
-#define ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C) \
- ({ \
- ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##2), (B##2), C); \
- })
-#define ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C) \
- ({ \
- ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##3), (B##3), C); \
- })
-#define ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C) \
- ({ \
- ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##4), (B##4), C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##5), (B##5), C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##6), (B##6), C); \
- ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##7), (B##7), C); \
- })
-#define ARM_MM_T_NT_M0xN0x16(M0, N0, TYPE, A, B, C) \
- ({ \
- ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##8), (B##8), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##9), (B##9), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##A), (B##A), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##B), (B##B), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##C), (B##C), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##D), (B##D), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##E), (B##E), C); \
- ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##F), (B##F), C); \
- })
-
-// Factory macro for the matrix (transposed) by matrix (not transposed) multiplication.
-// The dimensions for this matrix multiplications are defined through M0, N0 and K0
-// The dimensions supported are:
-// M0: 1, 2, 3, 4, 8
-// N0: 1, 2, 3, 4, 8, 16
-// K0: 1, 2, 3, 4, 8, 16
-// This macro calls the vector-by-matrix macro K0 times
-// A, B and C are matrices
-#define ARM_MM_T_NT(M0, N0, K0, TYPE, A, B, C) \
- CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
- (M0, N0, TYPE, A, B, C)
-
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
- * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
- * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
- *
- * @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
- * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions M and N must be passed at compile time using -DM and -DN (e.g. -DM=52 and -DN=90).
- * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
- * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
- * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
- * @note Only the following configurations of M0, N0 and K0 are currently supported:
- * - M0 = 2, 3, 4, 8
- * - N0 = 2, 3, 4, 8, 16
- * - K0 = 2, 3, 4, 8, 16
- * - V0 >= 1
- * - H0 >= 1
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
- *
- * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
- * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
- * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
- * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
- * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
- * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
- * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
- * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
- * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
- * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
- * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
- * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint k,
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Block size
-#define LHS_BLOCK_SIZE ((K0) * (M0))
-
-#if defined(LHS_INTERLEAVE)
-#define LHS_OFFSET_X (M0)
-#define LHS_STEP_X ((M0) * (V0))
-#define LHS_STEP_LOOP (1)
-#else // defined(INTERLEAVE)
-#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
-#define LHS_STEP_X (M0)
-#define LHS_STEP_LOOP (V0)
-#endif // defined(INTERLEAVE)
-
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#if defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (N0)
-#define RHS_STEP_X ((N0) * (H0))
-#else // defined(RHS_INTERLEAVE)
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-#define RHS_STEP_X (N0)
-#endif // defined(RHS_INTERLEAVE)
-
- const uint x = get_global_id(0);
- const uint y = get_global_id(1);
- const uint z = get_global_id(2);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
-
- // Compute RHS matrix address
- __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_addr += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
-
- __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
- __global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
-
- for(int i = 0; i < k; i += K0)
- {
- VEC_DATA_TYPE(DATA_TYPE, M0)
- a0 = VLOAD(M0)(0, lhs);
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
-#if K0 > 1
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-#endif // K0 > 1
-
-#if K0 > 2
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-#endif // K0 > 2
-
-#if K0 > 3
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-#endif // K0 > 3
-
-#if K0 > 4
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-#endif // K0 > 4
-
-#if K0 > 8
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-
- a0 = VLOAD(M0)(0, lhs);
- b0 = VLOAD(N0)(0, rhs);
-
- ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
-
- lhs += LHS_STEP_X;
- rhs += RHS_STEP_X;
-#endif // K0 > 8
-
-#ifndef LHS_INTERLEAVE
- lhs += (M0 * K0 * (V0 - 1));
-#endif // LHS_INTERLEAVE
-
-#ifndef RHS_INTERLEAVE
- rhs += (N0 * K0 * (H0 - 1));
-#endif // RHS_INTERLEAVE
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
-#if defined(MIXED_PRECISION)
- CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
- ADD_BLOCK_BROADCAST(M0, c, bias_hp0);
-#else // defined(MIXED_PRECISION)
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-#endif // defined(MIXED_PRECISION)
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z;
-
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
-#if defined(MIXED_PRECISION)
- CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, bias, bias_hp);
- ADD_BLOCK(M0, c, bias_hp);
-#else // defined(MIXED_PRECISION)
- ADD_BLOCK(M0, c, bias);
-#endif // defined(MIXED_PRECISION)
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
-#if defined(MIXED_PRECISION)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, c, A_VAL, B_VAL);
-#else // defined(MIXED_PRECISION)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
-#endif // defined(MIXED_PRECISION)
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
-#if defined(MIXED_PRECISION)
- CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-#else // defined(MIXED_PRECISION)
- STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-#endif // defined(MIXED_PRECISION)
-
-#undef LHS_BLOCK_SIZE
-#undef LHS_OFFSET_X
-#undef LHS_STEP_X
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-}
-
-#endif // defined(LHS_TRANSPOSE)
-
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
-
-#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
-
-#define VFMA(a, b, c) \
- ({ \
- c = fma(a, b, c); \
- })
-
-#if M0 == 1
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- })
-#elif M0 == 2 // M0 == 2
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- })
-#elif M0 == 3 // M0 == 3
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- })
-#elif M0 == 4 // M0 == 4
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- })
-#elif M0 == 5 // M0 == 5
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- })
-#elif M0 == 6 // M0 == 6
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- })
-#elif M0 == 7 // M0 == 7
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- })
-#elif M0 == 8 // M0 == 8
-#define RHS_VFMA_M0xN0(i, a, b, c) \
- ({ \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
- })
-#else // M0 not supported
-#error "M0 not supported"
-#endif // M0 not supported
-
-/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
- * The LHS matrix is NOT reshaped
- * The RHS matrix is NOT reshaped
- *
- * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
- * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
- * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
- * @note The number of K0 partial accumulations must be passed at compile time using -DK0 (e.g., -DK0=2)
- * @note The number of N0 columns to process must be passed at compile time using -DN0 (e.g. -DN0=2)
- * @note Only the following configurations of M0, N0 and K0 are currently supported:
- * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
- * - N0 = 2, 3, 4, 8, 16
- * - K0 = 2, 3, 4, 8, 16
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
- *
- * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32
- * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
- * @param[in] lhs_step_x lhs_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
- * @param[in] lhs_step_y lhs_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
- * @param[in] rhs_ptr Pointer to the RHS matrix. Supported data type: same as @p lhs_ptr
- * @param[in] rhs_stride_x Stride of the RHS matrix in X dimension (in bytes)
- * @param[in] rhs_step_x rhs_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] rhs_stride_y Stride of the RHS matrix in Y dimension (in bytes)
- * @param[in] rhs_step_y rhs_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS matrix
- * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
- * @param[in] rhs_stride_z Stride of the RHS matrix in Z dimension (in bytes)
- * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
- IMAGE_DECLARATION(rhs),
-#if defined(BETA)
- IMAGE_DECLARATION(bias),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint lhs_stride_z,
- uint rhs_stride_z,
-#if defined(BETA)
- uint bias_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint lhs_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Block size
-#define RHS_BLOCK_SIZE ((K0) * (N0))
-
- // RHS offset and step X
-#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
-
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
-#if defined(DUMMY_WORK_ITEMS)
- if((x * N0 >= N) || (y * M0 >= M))
- {
- return;
- }
-#endif // defined(DUMMY_WORK_ITEMS)
-
- // Compute LHS matrix address
- uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
-
- // Compute RHS matrix address
- uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- rhs_offset += z * rhs_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
- REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply lhs_stride_z by DEPTH_GEMM3D
- lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- lhs_offset += z * lhs_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Initialize the accumulators
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
-
- int i = 0;
- for(; i <= (K - K0); i += K0)
- {
- // Supported cases (M0, K0):
- // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
- // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
- // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
- // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
- // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
- // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
- // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
- // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
- // Load values from LHS matrix
- LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
-
- // Load values from RHS matrix
- LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zero);
-
- RHS_VFMA_M0xN0(0, a, b0, c);
- RHS_VFMA_M0xN0(1, a, b1, c);
-#if K0 > 2
- RHS_VFMA_M0xN0(2, a, b2, c);
-#endif // K0 > 2
-#if K0 > 3
- RHS_VFMA_M0xN0(3, a, b3, c);
-#endif // K0 > 3
-#if K0 > 4
- RHS_VFMA_M0xN0(4, a, b4, c);
- RHS_VFMA_M0xN0(5, a, b5, c);
- RHS_VFMA_M0xN0(6, a, b6, c);
- RHS_VFMA_M0xN0(7, a, b7, c);
-#endif // K0 > 4
-#if K0 > 8
- RHS_VFMA_M0xN0(8, a, b8, c);
- RHS_VFMA_M0xN0(9, a, b9, c);
- RHS_VFMA_M0xN0(A, a, bA, c);
- RHS_VFMA_M0xN0(B, a, bB, c);
- RHS_VFMA_M0xN0(C, a, bC, c);
- RHS_VFMA_M0xN0(D, a, bD, c);
- RHS_VFMA_M0xN0(E, a, bE, c);
- RHS_VFMA_M0xN0(F, a, bF, c);
-#endif // K0 > 8
-
- lhs_offset += K0 * sizeof(DATA_TYPE);
- rhs_offset += K0 * rhs_stride_y;
- }
-
- // Left-over accumulations
- for(; i < K; ++i)
- {
- // Load values from LHS matrix
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0));
-#if M0 > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1));
-#endif // M0 > 1
-#if M0 > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2));
-#endif // M0 > 2
-#if M0 > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3));
-#endif // M0 > 3
-#if M0 > 4
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4));
-#endif // M0 > 4
-#if M0 > 5
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5));
-#endif // M0 > 5
-#if M0 > 6
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6));
-#endif // M0 > 6
-#if M0 > 7
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7));
-#endif // M0 > 7
-
- VEC_DATA_TYPE(DATA_TYPE, N0)
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * rhs_stride_y));
- RHS_VFMA_M0xN0(0, a, b, c);
-
- lhs_offset += sizeof(DATA_TYPE);
- rhs_offset += rhs_stride_y;
- }
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
-
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
-#if defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(M0, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
- 2) * bias_stride_z;
-
- LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(M0, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
- STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
-
-#undef RHS_BLOCK_SIZE
-#undef RHS_OFFSET_X
-#undef RHS_STEP_X
-}
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
-
-#if defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
-/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
- __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global float *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- float4 c0 = 0.0f;
- float4 c1 = 0.0f;
- float4 c2 = 0.0f;
- float4 c3 = 0.0f;
-
- for(; src_addr_b <= (src_end_addr_b - (int)(8 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- c0 += (float4)a0.s0 * b0;
- c1 += (float4)a0.s1 * b0;
- c2 += (float4)a0.s2 * b0;
- c3 += (float4)a0.s3 * b0;
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
- b0 = vload4(0, src_addr_b + 4 * MULT_TRANSPOSE1XW_WIDTH);
-
- c0 += (float4)a0.s0 * b0;
- c1 += (float4)a0.s1 * b0;
- c2 += (float4)a0.s2 * b0;
- c3 += (float4)a0.s3 * b0;
- }
-
- for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- c0 += (float4)a0.s0 * b0;
- c1 += (float4)a0.s1 * b0;
- c2 += (float4)a0.s2 * b0;
- c3 += (float4)a0.s3 * b0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, float, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
-
- LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x4 block
- vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-/** This OpenCL kernel is optimized for Bifrost and tt computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
- __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- float4 c0 = 0.0f;
- float4 c1 = 0.0f;
- float4 c2 = 0.0f;
- float4 c3 = 0.0f;
-
-#define COLS_MTX_B (COLS_B / (4 * MULT_TRANSPOSE1XW_WIDTH))
-
- int i = 0;
- for(; i <= (int)(COLS_MTX_B - 4); i += 4)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
- }
-
- for(; i < (int)(COLS_MTX_B); ++i)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, float, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
-
- LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x4 block
- vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-// Undefine local defines
-#undef COLS_MTX_B
-
-#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global half *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- half8 c0 = 0.0f;
- half8 c1 = 0.0f;
- half8 c2 = 0.0f;
- half8 c3 = 0.0f;
-
- for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- c0 += (half8)a0.s0 * b0;
- c1 += (half8)a0.s1 * b0;
- c2 += (half8)a0.s2 * b0;
- c3 += (half8)a0.s3 * b0;
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
- b0 = vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH);
-
- c0 += (half8)a0.s0 * b0;
- c1 += (half8)a0.s1 * b0;
- c2 += (half8)a0.s2 * b0;
- c3 += (half8)a0.s3 * b0;
- }
-
- for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- c0 += (half8)a0.s0 * b0;
- c1 += (half8)a0.s1 * b0;
- c2 += (half8)a0.s2 * b0;
- c3 += (half8)a0.s3 * b0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, half, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
-
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x8 block
- vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1) while accumulating the result in a 32 floating point variable.
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global half *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- float8 c0 = 0.0f;
- float8 c1 = 0.0f;
- float8 c2 = 0.0f;
- float8 c3 = 0.0f;
-
- for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = convert_float4(vload4(0, src_addr_a));
- float8 b0 = convert_float8(vload8(0, src_addr_b));
-
- c0 += (float8)a0.s0 * b0;
- c1 += (float8)a0.s1 * b0;
- c2 += (float8)a0.s2 * b0;
- c3 += (float8)a0.s3 * b0;
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = convert_float4(vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT));
- b0 = convert_float8(vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH));
-
- c0 += (float8)a0.s0 * b0;
- c1 += (float8)a0.s1 * b0;
- c2 += (float8)a0.s2 * b0;
- c3 += (float8)a0.s3 * b0;
- }
-
- for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = convert_float4(vload4(0, src_addr_a));
- float8 b0 = convert_float8(vload8(0, src_addr_b));
-
- c0 += (float8)a0.s0 * b0;
- c1 += (float8)a0.s1 * b0;
- c2 += (float8)a0.s2 * b0;
- c3 += (float8)a0.s3 * b0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, float, c, ALPHA);
-#endif // defined(ALPHA)
-
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias_f0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
- float8 bias_f1 = convert_float8(bias1);
- float8 bias_f2 = convert_float8(bias2);
- float8 bias_f3 = convert_float8(bias3);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias_f);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- half8 c_h0 = convert_half8(c0);
- half8 c_h1 = convert_half8(c1);
- half8 c_h2 = convert_half8(c2);
- half8 c_h3 = convert_half8(c3);
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, c_h, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x8 block
- vstore8(c_h0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore8(c_h1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore8(c_h2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore8(c_h3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-/** This OpenCL kernel optimized for Bifrost architectures computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global half *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- half8 c0 = 0.0f;
- half8 c1 = 0.0f;
- half8 c2 = 0.0f;
- half8 c3 = 0.0f;
-
-#define COLS_MTX_B (COLS_B / (8 * MULT_TRANSPOSE1XW_WIDTH))
-
- int i = 0;
- for(; i <= (int)(COLS_MTX_B - 4); i += 4)
- {
-#if MULT_INTERLEAVE4X4_HEIGHT == 1
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half8 a0 = vload8(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix B (transposed)
- b0 = vload8(0, src_addr_b);
-
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s4, b0, c0);
- c1 = fma((half8)a0.s5, b0, c1);
- c2 = fma((half8)a0.s6, b0, c2);
- c3 = fma((half8)a0.s7, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload8(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix B (transposed)
- b0 = vload8(0, src_addr_b);
-
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s4, b0, c0);
- c1 = fma((half8)a0.s5, b0, c1);
- c2 = fma((half8)a0.s6, b0, c2);
- c3 = fma((half8)a0.s7, b0, c3);
-#else // MULT_INTERLEAVE4X4_HEIGHT == 1
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
- }
-
- for(; i < (int)(COLS_MTX_B); ++i)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, half, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x8 block
- vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-// Undefine local defines
-#undef COLS_MTX_B
-
-#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-
-#endif // defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
-
-#if defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
-#if defined(DATA_TYPE)
-#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped.
- *
- * @note This OpenCL kernel works with floating point data types (F16/F32)
- * @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
- * @note The number of matrix A columns and the optional alpha's value need to be passed at compile time using -DCOLS_A and -DALPHA
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(DATA_TYPE);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(DATA_TYPE));
-
- VECTOR_TYPE acc0 = 0.0f;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- VECTOR_TYPE acc1 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- VECTOR_TYPE acc2 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- VECTOR_TYPE acc3 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(DATA_TYPE)); src_addr += (int2)(2 * sizeof(DATA_TYPE), 2 * src1_stride_y))
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 2, DATA_TYPE, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
- VECTOR_TYPE b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
-
- // Accumulate
- acc0 += b0 * (VECTOR_TYPE)a0.s0;
- acc0 += b1 * (VECTOR_TYPE)a0.s1;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * (VECTOR_TYPE)a1.s0;
- acc1 += b1 * (VECTOR_TYPE)a1.s1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * (VECTOR_TYPE)a2.s0;
- acc2 += b1 * (VECTOR_TYPE)a2.s1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * (VECTOR_TYPE)a3.s0;
- acc3 += b1 * (VECTOR_TYPE)a3.s1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(DATA_TYPE), src1_stride_y))
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
-
- // Accumulate
- acc0 += b0 * (VECTOR_TYPE)a0;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * (VECTOR_TYPE)a1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * (VECTOR_TYPE)a2;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * (VECTOR_TYPE)a3;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, DATA_TYPE, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)NUM_ELEMS_PROCESSED_PER_THREAD_X * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)NUM_ELEMS_PROCESSED_PER_THREAD_X * sizeof(DATA_TYPE)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, DATA_TYPE, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
- STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, acc, dst_addr, dst_stride_y, zout.s);
-}
-#endif // defined(DATA_TYPE)
-
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
- *
- * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for matrix B
- src_addr.s1 += idx * sizeof(float);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Initialize accumulators
- float4 acc0 = 0.0f;
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float4 acc1 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float4 acc2 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float4 acc3 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // A and B src indices get incremented at the same time.
- int i = 0;
- for(; i <= ((int)COLS_A - 4); i += 4)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A and matrix B
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, float, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A and matrix B
- float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float4 a1 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float4 a2 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float4 a3 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s0, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s0, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s0, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s0, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s0, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s0, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s0, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s0, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s0, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s0, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s0, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s0, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s0, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s0, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix A and matrix B
- b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s1, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s1, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s1, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s1, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s1, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s1, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s1, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s1, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s1, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s1, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s1, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s1, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s1, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s1, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s1, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s1, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix A and matrix B
- b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s2, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s2, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s2, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s2, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s2, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s2, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s2, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s2, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s2, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s2, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s2, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s2, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s2, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s2, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s2, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s2, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix A and matrix B
- b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s3, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s3, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s3, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s3, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s3, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s3, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s3, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s3, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s3, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s3, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s3, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s3, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s3, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s3, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s3, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s3, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += 4 * sizeof(float);
- }
-
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0, b0.s0, acc0.s0);
- acc0.s1 = fma(a0, b0.s1, acc0.s1);
- acc0.s2 = fma(a0, b0.s2, acc0.s2);
- acc0.s3 = fma(a0, b0.s3, acc0.s3);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1.s0 = fma(a1, b0.s0, acc1.s0);
- acc1.s1 = fma(a1, b0.s1, acc1.s1);
- acc1.s2 = fma(a1, b0.s2, acc1.s2);
- acc1.s3 = fma(a1, b0.s3, acc1.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2.s0 = fma(a2, b0.s0, acc2.s0);
- acc2.s1 = fma(a2, b0.s1, acc2.s1);
- acc2.s2 = fma(a2, b0.s2, acc2.s2);
- acc2.s3 = fma(a2, b0.s3, acc2.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3.s0 = fma(a3, b0.s0, acc3.s0);
- acc3.s1 = fma(a3, b0.s1, acc3.s1);
- acc3.s2 = fma(a3, b0.s2, acc3.s2);
- acc3.s3 = fma(a3, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += sizeof(float);
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
-
- LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, float, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- vstore4(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore4(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore4(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore4(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
- *
- * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
- * This OpenCL kernel is optimized for Bifrost when the number of matrix B columns is less or equal to 1000.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=2.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha if alpha!=1.0f.
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Requires 2 NUM_ELEMS_PROCESSED_PER_THREAD_X, C vect2, A vect4, B (2 vload2) // to fix for NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(float);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Initialize accumulators
- float2 acc0 = 0.0f;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float2 acc1 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float2 acc2 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float2 acc3 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // A and B src indices get incremented at the same time.
- int i = 0;
- for(; i <= ((int)COLS_A - 8); i += 8)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + zin.s0));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b1 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b2 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b3 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b4 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b5 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b6 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b7 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
- acc0.s0 = fma(a0.s1, b1.s0, acc0.s0);
- acc0.s0 = fma(a0.s2, b2.s0, acc0.s0);
- acc0.s0 = fma(a0.s3, b3.s0, acc0.s0);
- acc0.s0 = fma(a0.s4, b4.s0, acc0.s0);
- acc0.s0 = fma(a0.s5, b5.s0, acc0.s0);
- acc0.s0 = fma(a0.s6, b6.s0, acc0.s0);
- acc0.s0 = fma(a0.s7, b7.s0, acc0.s0);
-
- acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
- acc0.s1 = fma(a0.s1, b1.s1, acc0.s1);
- acc0.s1 = fma(a0.s2, b2.s1, acc0.s1);
- acc0.s1 = fma(a0.s3, b3.s1, acc0.s1);
- acc0.s1 = fma(a0.s4, b4.s1, acc0.s1);
- acc0.s1 = fma(a0.s5, b5.s1, acc0.s1);
- acc0.s1 = fma(a0.s6, b6.s1, acc0.s1);
- acc0.s1 = fma(a0.s7, b7.s1, acc0.s1);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc1.s0 = fma(a0.s0, b0.s0, acc1.s0);
- acc1.s0 = fma(a0.s1, b1.s0, acc1.s0);
- acc1.s0 = fma(a0.s2, b2.s0, acc1.s0);
- acc1.s0 = fma(a0.s3, b3.s0, acc1.s0);
- acc1.s0 = fma(a0.s4, b4.s0, acc1.s0);
- acc1.s0 = fma(a0.s5, b5.s0, acc1.s0);
- acc1.s0 = fma(a0.s6, b6.s0, acc1.s0);
- acc1.s0 = fma(a0.s7, b7.s0, acc1.s0);
-
- acc1.s1 = fma(a0.s0, b0.s1, acc1.s1);
- acc1.s1 = fma(a0.s1, b1.s1, acc1.s1);
- acc1.s1 = fma(a0.s2, b2.s1, acc1.s1);
- acc1.s1 = fma(a0.s3, b3.s1, acc1.s1);
- acc1.s1 = fma(a0.s4, b4.s1, acc1.s1);
- acc1.s1 = fma(a0.s5, b5.s1, acc1.s1);
- acc1.s1 = fma(a0.s6, b6.s1, acc1.s1);
- acc1.s1 = fma(a0.s7, b7.s1, acc1.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc2.s0 = fma(a0.s0, b0.s0, acc2.s0);
- acc2.s0 = fma(a0.s1, b1.s0, acc2.s0);
- acc2.s0 = fma(a0.s2, b2.s0, acc2.s0);
- acc2.s0 = fma(a0.s3, b3.s0, acc2.s0);
- acc2.s0 = fma(a0.s4, b4.s0, acc2.s0);
- acc2.s0 = fma(a0.s5, b5.s0, acc2.s0);
- acc2.s0 = fma(a0.s6, b6.s0, acc2.s0);
- acc2.s0 = fma(a0.s7, b7.s0, acc2.s0);
-
- acc2.s1 = fma(a0.s0, b0.s1, acc2.s1);
- acc2.s1 = fma(a0.s1, b1.s1, acc2.s1);
- acc2.s1 = fma(a0.s2, b2.s1, acc2.s1);
- acc2.s1 = fma(a0.s3, b3.s1, acc2.s1);
- acc2.s1 = fma(a0.s4, b4.s1, acc2.s1);
- acc2.s1 = fma(a0.s5, b5.s1, acc2.s1);
- acc2.s1 = fma(a0.s6, b6.s1, acc2.s1);
- acc2.s1 = fma(a0.s7, b7.s1, acc2.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc3.s0 = fma(a0.s0, b0.s0, acc3.s0);
- acc3.s0 = fma(a0.s1, b1.s0, acc3.s0);
- acc3.s0 = fma(a0.s2, b2.s0, acc3.s0);
- acc3.s0 = fma(a0.s3, b3.s0, acc3.s0);
- acc3.s0 = fma(a0.s4, b4.s0, acc3.s0);
- acc3.s0 = fma(a0.s5, b5.s0, acc3.s0);
- acc3.s0 = fma(a0.s6, b6.s0, acc3.s0);
- acc3.s0 = fma(a0.s7, b7.s0, acc3.s0);
-
- acc3.s1 = fma(a0.s0, b0.s1, acc3.s1);
- acc3.s1 = fma(a0.s1, b1.s1, acc3.s1);
- acc3.s1 = fma(a0.s2, b2.s1, acc3.s1);
- acc3.s1 = fma(a0.s3, b3.s1, acc3.s1);
- acc3.s1 = fma(a0.s4, b4.s1, acc3.s1);
- acc3.s1 = fma(a0.s5, b5.s1, acc3.s1);
- acc3.s1 = fma(a0.s6, b6.s1, acc3.s1);
- acc3.s1 = fma(a0.s7, b7.s1, acc3.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += sizeof(float) * 8;
- }
- // float size increment
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0, b0.s0, acc0.s0);
- acc0.s1 = fma(a0, b0.s1, acc0.s1);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1.s0 = fma(a1, b0.s0, acc1.s0);
- acc1.s1 = fma(a1, b0.s1, acc1.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2.s0 = fma(a2, b0.s0, acc2.s0);
- acc2.s1 = fma(a2, b0.s1, acc2.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3.s0 = fma(a3, b0.s0, acc3.s0);
- acc3.s1 = fma(a3, b0.s1, acc3.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += sizeof(float);
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float));
-
- LOAD_BLOCK(1, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, float, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- vstore2(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore2(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore2(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore2(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-
-#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
- *
- * @note This OpenCL kernel works with the 16-bit floating point data type (half) and accumulating the result in a 32 floating point variable.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(half);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- float8 acc0 = 0.0h;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float8 acc1 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float8 acc2 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float8 acc3 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- int i = 0;
- for(; i <= ((int)COLS_A - 4); i += 4)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
-
- // Accumulate
- acc0 = fma(b0, (float8)a0.s0, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s0, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s0, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s0, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (float8)a0.s1, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s1, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s1, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s1, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (float8)a0.s2, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s2, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s2, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s2, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (float8)a0.s3, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s3, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s3, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s3, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += 4 * sizeof(half);
- }
-
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
-
- src_addr += (int2)(sizeof(half), src1_stride_y);
-
- // Accumulate
- acc0 = fma(b0, (float8)a0, acc0); // b0 * (half8)a0;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1, acc1); // b0 * (half8)a1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2, acc2); // b0 * (half8)a2;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3, acc3); // b0 * (half8)a3;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
-#endif // defined(ALPHA)
-
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias_f0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float8 bias_f1 = convert_float8(bias1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float8 bias_f2 = convert_float8(bias2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float8 bias_f3 = convert_float8(bias3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias_f);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- half8 acc_h0 = convert_half8(acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half8 acc_h1 = convert_half8(acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half8 acc_h2 = convert_half8(acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half8 acc_h3 = convert_half8(acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, half, acc_h, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, acc_h, dst_addr, dst_stride_y, zout.s);
-}
-
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
- *
- * @note This OpenCL kernel works with the 16-bit floating point data type (half) and uses the fma units.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(half);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- half8 acc0 = 0.0h;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half8 acc1 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half8 acc2 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half8 acc3 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- int i = 0;
- for(; i <= ((int)COLS_A - 4); i += 4)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Accumulate
- acc0 = fma(b0, (half8)a0.s0, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s0, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s0, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s0, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (half8)a0.s1, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s1, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s1, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s1, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (half8)a0.s2, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s2, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s2, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s2, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (half8)a0.s3, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s3, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s3, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s3, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += 4 * sizeof(half);
- }
-
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
-
- src_addr += (int2)(sizeof(half), src1_stride_y);
-
- // Accumulate
- acc0 = fma(b0, (half8)a0, acc0); // b0 * (half8)a0;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1, acc1); // b0 * (half8)a1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2, acc2); // b0 * (half8)a2;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3, acc3); // b0 * (half8)a3;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, half, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, half, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, acc, dst_addr, dst_stride_y, zout.s);
-}
-#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-
-#endif // defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
-
-#if defined(BETA)
-/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
- *
- * @note The beta's value need to be passed at compile time using -DBETA
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_ma_f32(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Compute source and destination addresses
- Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
- Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
-
- // Load values from A x B
- float4 alpha_ab = vload4(0, (__global float *)dst.ptr);
-
- // Load values from Matrix C
- float4 c = vload4(0, (__global float *)src.ptr);
-
- // Computes alpha * axb + beta * c
- float4 out = alpha_ab + (float4)BETA * c;
-
- // Store final result in axb matrix
- vstore4(out, 0, (__global float *)dst.ptr);
-}
-
-#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
- *
- * @note The beta's value need to be passed at compile time using -DBETA
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_ma_f16(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Compute source and destination addresses
- Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
- Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
-
- // Load values from A x B
- half8 alpha_ab = vload8(0, (__global half *)dst.ptr);
-
- // Load values from Matrix C
- half8 c = vload8(0, (__global half *)src.ptr);
-
- // Computes alpha * axb + beta * c
- half8 out = alpha_ab + (half8)BETA * c;
-
- // Store final result in axb matrix
- vstore8(out, 0, (__global half *)dst.ptr);
-}
-#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-#endif // defined(BETA)
-
-#if defined(WIDTH_VECTOR_A)
-/** This OpenCL kernel computes the vector by matrix multiplication between each row of A (src0) and matrix B (src1) used for locally connected layer
- *
- * @note The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
- *
- * @note The input A and matrix B must not be reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_lc_vm_f32(IMAGE_DECLARATION(src0),
- TENSOR3D_DECLARATION(src1),
- IMAGE_DECLARATION(dst))
-{
- int idx = get_global_id(0) * 4;
- int idy = get_global_id(1);
-
- // Compute the address for the vector A and matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes + src0_stride_y * idy, src1_offset_first_element_in_bytes + src1_stride_z * idy));
- src_addr.s1 += idx * sizeof(float);
-
- int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
-
- float4 acc = 0.0f;
-
- for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
- {
- float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
- float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
-
- acc += b0 * (float4)a0.s0;
- acc += b1 * (float4)a0.s1;
- }
-
- for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
- {
- float a0 = *((__global float *)(src0_ptr + src_addr.s0));
- float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
-
- acc += b0 * (float4)a0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
-}
-#endif // defined(WIDTH_VECTOR_A)
-
-/** This kernel accumulates each row with the biases vector.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=short.
- * @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=16.
- *
- * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: U8/S8/U16/S16/F16/U32/S32/F32
- * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
- * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
- * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
- * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
- * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
-#if defined(DATA_TYPE) && defined(VECTOR_SIZE)
-__kernel void gemm_accumulate_biases(
- IMAGE_DECLARATION(accum),
- VECTOR_DECLARATION(biases))
-{
- Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-
- // Vector size, e.g. number of vector elements.
- VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
- accum_value = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)accum.ptr);
- VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
- biases_value = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
- accum_value = biases_value + accum_value;
- // Store result in the accumulate buffer
- VSTORE(VECTOR_SIZE)
- (accum_value, 0, (__global DATA_TYPE *)accum.ptr);
-}
-#endif // defined(DATA_TYPE) && defined(VECTOR_SIZE)