aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/depthwise_convolution_quantized.cl')
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution_quantized.cl961
1 files changed, 0 insertions, 961 deletions
diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
deleted file mode 100644
index 000dce1590..0000000000
--- a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
+++ /dev/null
@@ -1,961 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "helpers_asymm.h"
-
-#ifndef VEC_SIZE
-#if defined(N0)
-#define VEC_SIZE N0
-#else /* defined(N0) */
-#define VEC_SIZE 8
-#endif /* defined(N0) */
-#endif /* VEC_SIZE */
-
-#if defined(ACTIVATION_TYPE) && defined(CONST_0)
-#include "activation_layer_quant.cl"
-#define ACTIVATION_FUNC(x) PERFORM_ACTIVATION_QUANT(ACTIVATION_TYPE, x)
-#else /* defined(ACTIVATION_TYPE) && defined(CONST_0) */
-#define ACTIVATION_FUNC(x) (x)
-#endif /* defined(ACTIVATION_TYPE) && defined(CONST_0) */
-
-#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
-#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
-#define VEC_SHORT VEC_DATA_TYPE(short, VEC_SIZE)
-
-#if defined(DATA_TYPE) && defined(WEIGHTS_TYPE)
-
-#define VEC_TYPE(size) VEC_DATA_TYPE(DATA_TYPE, size)
-
-#if defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
-
-#if defined(WEIGHTS_PROMOTED_TYPE)
-#define VEC_WEIGHTS_PROMOTED_TYPE(size) VEC_DATA_TYPE(WEIGHTS_PROMOTED_TYPE, size)
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), val);
-#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define ARM_DOT(x, y, val) val += arm_dot((x), (y));
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#if defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS)
-
-#if CONV_STRIDE_X > 3
-#error "Stride X not supported"
-#endif /* CONV_STRIDE_X > 3 */
-
-#if !defined(IS_DOT8)
-
-#if DILATION_X == 1
-
-#if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- int8 temp0 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value)), int8); \
- int2 temp1 = CONVERT(vload2(0, (__global DATA_TYPE *)(first_value + 8 * sizeof(DATA_TYPE))), int2); \
- \
- left = CONVERT(temp0.s01234567, int8); \
- middle = CONVERT((int8)(temp0.s1234, temp0.s567, temp1.s0), int8); \
- right = CONVERT((int8)(temp0.s2345, temp0.s67, temp1.s01), int8); \
- })
-#elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
- int temp1 = CONVERT(*((__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int); \
- \
- left = CONVERT(temp0.s02468ace, int8); \
- middle = CONVERT(temp0.s13579bdf, int8); \
- right = CONVERT((int8)(temp0.s2468, temp0.sace, temp1), int8); \
- })
-#else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
- int8 temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int8); \
- \
- left = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
- middle = CONVERT((int8)(temp0.s147a, temp0.sd, temp1.s036), int8); \
- right = CONVERT((int8)(temp0.s258b, temp0.se, temp1.s147), int8); \
- })
-#endif /* CONV_STRIDE_X */
-
-#else /* DILATION_X == 1 */
-
-#if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- left = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value)), int8); \
- middle = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int8); \
- right = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int8); \
- })
-#elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
- left = CONVERT(temp0.s02468ace, int8); \
- \
- temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int16); \
- middle = CONVERT(temp0.s02468ace, int8); \
- \
- temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int16); \
- right = CONVERT(temp0.s02468ace, int8); \
- })
-#else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
- int8 temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int8); \
- left = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
- \
- temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int16); \
- temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))), int8); \
- middle = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
- \
- temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int16); \
- temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + (16 + 2 * DILATION_X) * sizeof(DATA_TYPE))), int8); \
- right = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
- })
-
-#endif /* CONV_STRIDE_X */
-#endif /* DILATION_X==1 */
-
-/** This function computes the depthwise convolution quantized.
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-
-__kernel void dwc_3x3_native_quantized8_nchw(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z;
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
- Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_multipliers);
- Vector output_shifts = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_shifts);
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- int bias_value = *((__global int *)(vector_offset(&biases, channel)));
-#endif //defined(HAS_BIAS)
-
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- src_addr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
- w0 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 0 * weights_stride_y));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
- w1 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 1 * weights_stride_y));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
- w2 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * weights_stride_y));
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, channel));
- const int output_shift = *((__global int *)vector_offset(&output_shifts, channel));
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
- int8 values0 = 0;
- int8 sum0 = 0;
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- int8 values1 = 0;
- int8 sum1 = 0;
-#endif /* CONV_STRIDE_Y &&DILATION_Y==1 */
-
- // Row0
- int8 left, middle, right;
- GET_VALUES(src_addr + 0 * src_stride_y, left, middle, right);
- values0 += left * (int8)(w0.s0);
- values0 += middle * (int8)(w0.s1);
- values0 += right * (int8)(w0.s2);
-
-#if WEIGHTS_OFFSET != 0
- sum0 += left + middle + right;
-#endif /* WEIGHTS_OFFSET != 0 */
-
- // Row1
- GET_VALUES(src_addr + DILATION_Y * src_stride_y, left, middle, right);
- values0 += left * (int8)(w1.s0);
- values0 += middle * (int8)(w1.s1);
- values0 += right * (int8)(w1.s2);
-
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += left * (int8)(w0.s0);
- values1 += middle * (int8)(w0.s1);
- values1 += right * (int8)(w0.s2);
-#endif /* CONV_STRIDE_Y && DILATION_Y== 1 */
-
-#if WEIGHTS_OFFSET != 0
- int8 tmp = left + middle + right;
- sum0 += tmp;
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- sum1 += tmp;
-#endif /* CONV_STRIDE_Y &&DILATION_Y== 1 */
-#endif /* WEIGHTS_OFFSET != 0 */
-
- // Row2
- GET_VALUES(src_addr + 2 * DILATION_Y * src_stride_y, left, middle, right);
- values0 += left * (int8)(w2.s0);
- values0 += middle * (int8)(w2.s1);
- values0 += right * (int8)(w2.s2);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += left * (int8)(w1.s0);
- values1 += middle * (int8)(w1.s1);
- values1 += right * (int8)(w1.s2);
-#endif /* CONV_STRIDE_Y &&DILATION_Y == 1 */
-
-#if WEIGHTS_OFFSET != 0
- tmp = left + middle + right;
- sum0 += tmp;
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- sum1 += tmp;
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- // Row3
- GET_VALUES(src_addr + 3 * src_stride_y, left, middle, right);
- values1 += left * (int8)(w2.s0);
- values1 += middle * (int8)(w2.s1);
- values1 += right * (int8)(w2.s2);
-
-#if WEIGHTS_OFFSET != 0
- sum1 += left + middle + right;
-#endif /* WEIGHTS_OFFSET != 0 */
-#endif /* CONV_STRIDE_Y && DILATION_Y == 1 */
-
-#if defined(HAS_BIAS)
- values0 += (int8)(bias_value);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += (int8)(bias_value);
-#endif /* CONV_STRIDE_Y & &DILATION_Y == 1 */
-#endif //defined(HAS_BIAS)
-
-#if WEIGHTS_OFFSET != 0
- values0 += sum0 * (int8)(WEIGHTS_OFFSET);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += sum1 * (int8)(WEIGHTS_OFFSET);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- VEC_WEIGHTS_PROMOTED_TYPE(3)
- tmp_we = CONVERT(w0, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w1, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w2, VEC_WEIGHTS_PROMOTED_TYPE(3));
-
- WEIGHTS_PROMOTED_TYPE sum_weights = tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
- values0 += sum_weights * (int8)(INPUT_OFFSET);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += sum_weights * (int8)(INPUT_OFFSET);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
-#endif /* INPUT_OFFSET != 0 */
-
-#if K_OFFSET != 0
- values0 += (int8)(K_OFFSET);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += (int8)(K_OFFSET);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
-#endif /* K_OFFSET != 0 */
-
-#if defined(REAL_MULTIPLIER)
-
- values0 = CONVERT(round(CONVERT(values0, float8) * (float8)REAL_MULTIPLIER), int8);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
- int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
- values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#else // OUTPUT_SHIFT < 0
- values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#endif // OUTPUT_OFFSET < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- values0 += (int8)OUTPUT_OFFSET;
- VEC_TYPE(8)
- res0 = CONVERT_SAT(values0, VEC_TYPE(8));
-
- vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
-#if defined(REAL_MULTIPLIER)
-
- values1 = CONVERT(round(CONVERT(values1, float8) * (float8)REAL_MULTIPLIER), int8);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
- int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
- values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#else // OUTPUT_SHIFT < 0
- values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#endif // OUTPUT_OFFSET < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- values1 += (int8)OUTPUT_OFFSET;
- VEC_TYPE(8)
- res1 = CONVERT_SAT(values1, VEC_TYPE(8));
-
- vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
-}
-
-#else // !defined(IS_DOT8)
-
-#if DILATION_X == 1
-#if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- VEC_TYPE(8) \
- temp0 = vload8(0, (__global DATA_TYPE *)(first_value)); \
- VEC_TYPE(2) \
- temp1 = vload2(0, (__global DATA_TYPE *)(first_value + 8 * sizeof(DATA_TYPE))); \
- \
- left = temp0.s01234567; \
- middle = (VEC_TYPE(8))(temp0.s1234, temp0.s567, temp1.s0); \
- right = (VEC_TYPE(8))(temp0.s2345, temp0.s67, temp1.s01); \
- })
-#elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- VEC_TYPE(16) \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
- DATA_TYPE temp1 = *((__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
- \
- left = temp0.s02468ace; \
- middle = temp0.s13579bdf; \
- right = (VEC_TYPE(8))(temp0.s2468, temp0.sace, temp1); \
- })
-#else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- VEC_TYPE(16) \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
- VEC_TYPE(8) \
- temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
- \
- left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
- middle = (VEC_TYPE(8))(temp0.s147a, temp0.sd, temp1.s036); \
- right = (VEC_TYPE(8))(temp0.s258b, temp0.se, temp1.s147); \
- })
-#endif /* CONV_STRIDE_X */
-#else /*DILATION_X==1*/
-
-#if CONV_STRIDE_X == 1
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- left = vload8(0, (__global DATA_TYPE *)(first_value)); \
- middle = vload8(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
- right = vload8(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
- })
-#elif CONV_STRIDE_X == 2
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- VEC_TYPE(16) \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
- left = temp0.s02468ace; \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
- middle = temp0.s02468ace; \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
- right = temp0.s02468ace; \
- })
-#else /* CONV_STRIDE_X */
-#define GET_VALUES(first_value, left, middle, right) \
- ({ \
- VEC_TYPE(16) \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
- VEC_TYPE(8) \
- temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
- left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
- \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
- temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))); \
- middle = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
- \
- temp0 = vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
- temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + 2 * DILATION_X) * sizeof(DATA_TYPE))); \
- right = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
- })
-
-#endif /* CONV_STRIDE_X */
-#endif /*DILATION_X==1*/
-/** This function computes the depthwise convolution quantized using dot product when the data layout is NCHW.
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-
-__kernel void dwc_3x3_native_quantized8_dot8_nchw(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z;
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
- Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_multipliers);
- Vector output_shifts = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_shifts);
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- const int bias_value = *((__global int *)(vector_offset(&biases, channel)));
-#endif //defined(HAS_BIAS)
-
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- src_addr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
-
- VEC_TYPE(3)
- w0 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 0 * weights_stride_y));
- VEC_TYPE(3)
- w1 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 1 * weights_stride_y));
- VEC_TYPE(3)
- w2 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * weights_stride_y));
-
- const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, 0));
- const int output_shift = *((__global int *)vector_offset(&output_shifts, 0));
-
- VEC_TYPE(8)
- left0, middle0, right0;
- VEC_TYPE(8)
- left1, middle1, right1;
- VEC_TYPE(8)
- left2, middle2, right2;
-
- int8 values0 = 0;
- int8 sum0 = 0;
-
- GET_VALUES(src_addr + 0 * src_stride_y, left0, middle0, right0);
- GET_VALUES(src_addr + DILATION_Y * src_stride_y, left1, middle1, right1);
- GET_VALUES(src_addr + 2 * DILATION_Y * src_stride_y, left2, middle2, right2);
-
-#if WEIGHTS_OFFSET != 0
- sum0 += convert_int8(left0) + convert_int8(middle0) + convert_int8(right0);
- sum0 += convert_int8(left1) + convert_int8(middle1) + convert_int8(right1);
- sum0 += convert_int8(left2) + convert_int8(middle2) + convert_int8(right2);
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- // If conv_stride_y is equals to 1, we compute two output rows
-
- VEC_TYPE(8)
- left3, middle3, right3;
- int8 values1 = 0;
- int8 sum1 = 0;
-
- GET_VALUES(src_addr + 3 * src_stride_y, left3, middle3, right3);
-
-#if WEIGHTS_OFFSET != 0
- sum1 += convert_int8(left1) + convert_int8(middle1) + convert_int8(right1);
- sum1 += convert_int8(left2) + convert_int8(middle2) + convert_int8(right2);
- sum1 += convert_int8(left3) + convert_int8(middle3) + convert_int8(right3);
-#endif /* WEIGHTS_OFFSET != 0 */
-#endif // CONV_STRIDE_Y == 1 && DILATION_Y==1
-
- ARM_DOT((VEC_TYPE(4))(left0.s0, middle0.s0, right0.s0, left1.s0), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s0);
- ARM_DOT((VEC_TYPE(4))(middle1.s0, right1.s0, left2.s0, middle2.s0), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s0);
- values0.s0 += right2.s0 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s1, middle0.s1, right0.s1, left1.s1), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s1);
- ARM_DOT((VEC_TYPE(4))(middle1.s1, right1.s1, left2.s1, middle2.s1), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s1);
- values0.s1 += right2.s1 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s2, middle0.s2, right0.s2, left1.s2), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s2);
- ARM_DOT((VEC_TYPE(4))(middle1.s2, right1.s2, left2.s2, middle2.s2), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s2);
- values0.s2 += right2.s2 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s3, middle0.s3, right0.s3, left1.s3), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s3);
- ARM_DOT((VEC_TYPE(4))(middle1.s3, right1.s3, left2.s3, middle2.s3), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s3);
- values0.s3 += right2.s3 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s4, middle0.s4, right0.s4, left1.s4), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s4);
- ARM_DOT((VEC_TYPE(4))(middle1.s4, right1.s4, left2.s4, middle2.s4), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s4);
- values0.s4 += right2.s4 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s5, middle0.s5, right0.s5, left1.s5), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s5);
- ARM_DOT((VEC_TYPE(4))(middle1.s5, right1.s5, left2.s5, middle2.s5), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s5);
- values0.s5 += right2.s5 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s6, middle0.s6, right0.s6, left1.s6), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s6);
- ARM_DOT((VEC_TYPE(4))(middle1.s6, right1.s6, left2.s6, middle2.s6), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s6);
- values0.s6 += right2.s6 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left0.s7, middle0.s7, right0.s7, left1.s7), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s7);
- ARM_DOT((VEC_TYPE(4))(middle1.s7, right1.s7, left2.s7, middle2.s7), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s7);
- values0.s7 += right2.s7 * w2.s2;
-
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- ARM_DOT((VEC_TYPE(4))(left1.s0, middle1.s0, right1.s0, left2.s0), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s0);
- ARM_DOT((VEC_TYPE(4))(middle2.s0, right2.s0, left3.s0, middle3.s0), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s0);
- values1.s0 += right3.s0 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s1, middle1.s1, right1.s1, left2.s1), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s1);
- ARM_DOT((VEC_TYPE(4))(middle2.s1, right2.s1, left3.s1, middle3.s1), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s1);
- values1.s1 += right3.s1 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s2, middle1.s2, right1.s2, left2.s2), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s2);
- ARM_DOT((VEC_TYPE(4))(middle2.s2, right2.s2, left3.s2, middle3.s2), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s2);
- values1.s2 += right3.s2 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s3, middle1.s3, right1.s3, left2.s3), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s3);
- ARM_DOT((VEC_TYPE(4))(middle2.s3, right2.s3, left3.s3, middle3.s3), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s3);
- values1.s3 += right3.s3 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s4, middle1.s4, right1.s4, left2.s4), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s4);
- ARM_DOT((VEC_TYPE(4))(middle2.s4, right2.s4, left3.s4, middle3.s4), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s4);
- values1.s4 += right3.s4 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s5, middle1.s5, right1.s5, left2.s5), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s5);
- ARM_DOT((VEC_TYPE(4))(middle2.s5, right2.s5, left3.s5, middle3.s5), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s5);
- values1.s5 += right3.s5 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s6, middle1.s6, right1.s6, left2.s6), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s6);
- ARM_DOT((VEC_TYPE(4))(middle2.s6, right2.s6, left3.s6, middle3.s6), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s6);
- values1.s6 += right3.s6 * w2.s2;
-
- ARM_DOT((VEC_TYPE(4))(left1.s7, middle1.s7, right1.s7, left2.s7), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s7);
- ARM_DOT((VEC_TYPE(4))(middle2.s7, right2.s7, left3.s7, middle3.s7), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s7);
- values1.s7 += right3.s7 * w2.s2;
-#endif // CONV_STRIDE_Y == 1 && DILATION_Y==1
-
-#if defined(HAS_BIAS)
- values0 += (int8)(bias_value);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += (int8)(bias_value);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
-#endif //defined(HAS_BIAS)
-
-#if WEIGHTS_OFFSET != 0
- values0 += sum0 * (int8)(WEIGHTS_OFFSET);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += sum1 * (int8)(WEIGHTS_OFFSET);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- WEIGHTS_PROMOTED_TYPE sum_weights = 0;
- VEC_WEIGHTS_PROMOTED_TYPE(3)
- tmp_we = CONVERT(w0, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w1, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w2, VEC_WEIGHTS_PROMOTED_TYPE(3));
- sum_weights += tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
- values0 += sum_weights * (int8)(INPUT_OFFSET);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += sum_weights * (int8)(INPUT_OFFSET);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
-#endif /* INPUT_OFFSET != 0 */
-
-#if K_OFFSET != 0
- values0 += (int8)(K_OFFSET);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
- values1 += (int8)(K_OFFSET);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
-#endif /* K_OFFSET != 0 */
-
-#if defined(REAL_MULTIPLIER)
-
- values0 = CONVERT(round(CONVERT(values0, float8) * (float8)REAL_MULTIPLIER), int8);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
- int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
- values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#else // OUTPUT_SHIFT < 0
- values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#endif // OUTPUT_OFFSET < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- values0 += (int8)OUTPUT_OFFSET;
- VEC_TYPE(8)
- res0 = CONVERT_SAT(values0, VEC_TYPE(8));
-
- vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
-#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
-
-#if defined(REAL_MULTIPLIER)
-
- values1 = CONVERT(round(CONVERT(values1, float8) * (float8)REAL_MULTIPLIER), int8);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
- int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
- values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#else // OUTPUT_SHIFT < 0
- values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
-#endif // OUTPUT_OFFSET < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- values1 += (int8)OUTPUT_OFFSET;
- VEC_TYPE(8)
- res1 = CONVERT_SAT(values1, VEC_TYPE(8));
-
- vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y);
-#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
-}
-
-#endif // !defined(IS_DOT8)
-
-#endif /* defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) */
-
-#if defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
-
-#define asymm_mult_by_quant_multiplier_less_than_one(x, y, z) ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, y, z, VEC_SIZE)
-
-#define MULTIPLY_ADD(x, y, acc) acc += CONVERT(CONVERT(x, VEC_WEIGHTS_PROMOTED_TYPE(VEC_SIZE)) * CONVERT(y, VEC_WEIGHTS_PROMOTED_TYPE(VEC_SIZE)), VEC_INT)
-
-#if WEIGHTS_OFFSET != 0
-#define MULTIPLY_ADD_ACCUMULATE(x, y, acc, sum) \
- ({ \
- sum += CONVERT(x, VEC_INT); \
- MULTIPLY_ADD(x, y, acc); \
- })
-#else /* WEIGHTS_OFFSET != 0 */
-#define MULTIPLY_ADD_ACCUMULATE(x, y, acc, sum) MULTIPLY_ADD(x, y, acc)
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-#define DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1) \
- ({ \
- ARM_DOT((VEC_TYPE(4))(val0, val1, val2, val3), w0.s0123, acc); \
- ARM_DOT((VEC_TYPE(4))(val4, val5, val6, val7), w0.s4567, acc); \
- acc += val8 * w1; \
- })
-
-#define DOT_PRODUCT_REDUCTION(sum, val0, val1, val2, val3, val4, val5, val6, val7, val8) \
- ({ \
- sum = val0; \
- ARM_DOT((VEC_TYPE(4))(val1, val2, val3, val4), (VEC_TYPE(4))1, sum); \
- ARM_DOT((VEC_TYPE(4))(val5, val6, val7, val8), (VEC_TYPE(4))1, sum); \
- })
-
-#define DOT_PRODUCT_REDUCTION_WEIGHTS(sum, w0, w1) \
- ({ \
- sum = w1; \
- ARM_DOT(w0.s0123, (VEC_TYPE(4))1, sum); \
- ARM_DOT(w0.s4567, (VEC_TYPE(4))1, sum); \
- })
-
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-
-#endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
-
-#endif // defined(WEIGHTS_PROMOTED_TYPE)
-
-#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
-
-#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_SHIFT) && defined(OUTPUT_MULTIPLIER) && defined(VEC_SIZE_LEFTOVER)
-/** This function computes the depthwise convolution for NHWC data layout.
- *
- * @note The number of elements processed must be passed at compile time using -DN0 (e.g. -DN0=2)
- * @note The depth multiplier must be passed at compile time using -DDEPTH_MULTIPLIER (e.g. -DDEPTH_MULTIPLIER=1)
- * @note The first dimension of the input tensor must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM1=112)
- * @note The second dimension of the input tensor must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM2=80)
- * @note The kernel width must be passed at compile time using -DKERNEL_WIDTH (e.g. -DKERNEL_WIDTH=5)
- * @note The kernel height must be passed at compile time using -DKERNEL_HEIGHT (e.g. -DKERNEL_HEIGHT=5)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
- * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
- * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
- * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void dwc_MxN_native_quantized8_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif // defined(HAS_BIAS)
-)
-{
- int x_offs = max((int)(get_global_id(0) * N0 - (N0 - VEC_SIZE_LEFTOVER) % N0), 0);
- int y = get_global_id(1); // spatial coordinate x
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *s_addr = src_ptr + src_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE);
-
- __global uchar *d_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) * (int)DEPTH_MULTIPLIER + y * dst_stride_y + z * dst_stride_z;
-
- __global uchar *w_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offs * sizeof(WEIGHTS_TYPE) * (int)DEPTH_MULTIPLIER;
-
-#if defined(HAS_BIAS)
- __global uchar *b_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offs * sizeof(int) * (int)DEPTH_MULTIPLIER;
-#endif // defined(HAS_BIAS)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- __global uchar *out_mul_addr = output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes + x_offs * sizeof(int) * (int)DEPTH_MULTIPLIER;
- __global uchar *out_shift_addr = output_shifts_ptr + output_shifts_offset_first_element_in_bytes + x_offs * sizeof(int) * (int)DEPTH_MULTIPLIER;
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#if defined(DST_DEPTH)
- s_addr += b * src_stride_w;
- d_addr += b * dst_stride_w;
-#endif // defined(DST_DEPTH)
-
-#if DEPTH_MULTIPLIER > 1
- for(int d = 0; d < (int)DEPTH_MULTIPLIER; ++d)
- {
-#endif // DEPTH_MULTIPLIER > 1
- // Each work-item computes N0x1x1 elements
- VEC_INT res = 0;
-
- int x_coord = y * CONV_STRIDE_X - (int)CONV_PAD_LEFT;
- int y_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP;
-
- for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
- {
- if(y_coord >= 0 && y_coord < SRC_DIM2)
- {
- int x_coord_tmp = x_coord;
-
- for(int xk = 0; xk < KERNEL_WIDTH; ++xk)
- {
- if(x_coord_tmp >= 0 && x_coord_tmp < SRC_DIM1)
- {
- int s_offset = x_coord_tmp * (int)src_stride_y + y_coord * (int)src_stride_z;
- int w_offset = xk * weights_stride_y + yk * weights_stride_z;
-
- // Load input and weights values
- VEC_INT i = CONVERT(VLOAD(N0)(0, (__global DATA_TYPE *)(s_addr + s_offset)), VEC_INT);
- VEC_INT w = CONVERT(VLOAD(N0)(0, (__global WEIGHTS_TYPE *)(w_addr + w_offset)), VEC_INT);
-
- res += (i + (VEC_INT)INPUT_OFFSET) * (w + (VEC_INT)WEIGHTS_OFFSET);
- }
- x_coord_tmp += DILATION_X;
- }
- }
- y_coord += DILATION_Y;
- }
-
-#if defined(HAS_BIAS)
- VEC_INT bias = VLOAD(N0)(0, (__global int *)(b_addr));
- res += bias;
-#endif // defined(HAS_BIAS)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- VEC_INT output_multiplier = VLOAD(N0)(0, (__global int *)(out_mul_addr));
- VEC_INT output_shift = VLOAD(N0)(0, (__global int *)(out_shift_addr));
-
- VEC_INT res_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(res, output_multiplier, output_shift, N0);
- VEC_INT res_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(res, output_multiplier, output_shift, N0);
- res = select(res_shift_lt0, res_shift_gt0, (VEC_INT)(output_shift) >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- res = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(res, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, N0);
-#else // OUTPUT_SHIFT < 0
- res = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(res, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, N0);
-#endif // OUTPUT_OFFSET < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
- res += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res0 = CONVERT_SAT(res, VEC_TYPE(VEC_SIZE));
- res0 = ACTIVATION_FUNC(res0);
-
- STORE_VECTOR_SELECT(res, DATA_TYPE, d_addr, N0, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
-
-#if DEPTH_MULTIPLIER > 1
- w_addr += sizeof(WEIGHTS_TYPE);
- d_addr += sizeof(DATA_TYPE);
-#if defined(PER_CHANNEL_QUANTIZATION)
- out_mul_addr += sizeof(int);
- out_shift_addr += sizeof(int);
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-#if defined(HAS_BIAS)
- b_addr += sizeof(int);
-#endif // defined(HAS_BIAS)
- }
-#endif // DEPTH_MULTIPLIER > 1
-}
-#endif // defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defiend(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_SHIFT) && defined(OUTPUT_MULTIPLIER) && defined(VEC_SIZE_LEFTOVER)
-#endif // defined(DATA_TYPE) && defined(WEIGHTS_TYPE)