aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/depthwise_convolution.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/depthwise_convolution.cl')
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution.cl1781
1 files changed, 0 insertions, 1781 deletions
diff --git a/src/core/CL/cl_kernels/depthwise_convolution.cl b/src/core/CL/cl_kernels/depthwise_convolution.cl
deleted file mode 100644
index 22a38e7094..0000000000
--- a/src/core/CL/cl_kernels/depthwise_convolution.cl
+++ /dev/null
@@ -1,1781 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-
-#include "activation_float_helpers.h"
-
-/** Get the pointer position at a certain offset in x and y direction.
- *
- * @param[in] ptr Pointer to the starting position of the buffer
- * @param[in] x Relative X position
- * @param[in] y Relative Y position
- * @param[in] stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] stride_y Stride of the source tensor in Y dimension (in bytes)
- *
- * @return a uchar
- */
-inline __global uchar *ptr_offset(__global uchar *ptr, const int x, const int y, const int stride_x, const int stride_y)
-{
- return ptr + x * stride_x + y * stride_y;
-}
-
-#if(DILATION_X == 1 && DILATION_Y == 1)
-
-#define CONVOLUTION1x3_2X1_STRIDE1(acc, src0, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
- })
-
-#define CONVOLUTION1x3_4X1_STRIDE1(acc, src0, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0.s2, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0.s3, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0.s4, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0.s3, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0.s4, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src0.s5, weights_row0.s2, acc.s3); \
- })
-
-#define CONVOLUTION1x3_2X1_STRIDE2(acc, src0, src1, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src1.s0, weights_row0.s2, acc.s1); \
- })
-
-#define CONVOLUTION1x3_4X1_STRIDE2(acc, src0, src1, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0.s4, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0.s4, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0.s5, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0.s6, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0.s6, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0.s7, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src1.s0, weights_row0.s2, acc.s3); \
- })
-
-#else /* DILATION_X==1 && DILATION_Y==1 */
-
-#define CONVOLUTION1x3_2X1_STRIDE1(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s1, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s1, weights_row0.s2, acc.s1); \
- })
-
-#define CONVOLUTION1x3_2X1_STRIDE2(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s2, weights_row0.s2, acc.s1); \
- })
-
-#define CONVOLUTION1x3_4X1_STRIDE1(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s1, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s1, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0_left.s2, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0_mid.s2, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0_right.s2, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0_left.s3, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0_mid.s3, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src0_right.s3, weights_row0.s2, acc.s3); \
- })
-
-#define CONVOLUTION1x3_4X1_STRIDE2(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s2, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0_left.s4, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0_mid.s4, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0_right.s4, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0_left.s6, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0_mid.s6, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src0_right.s6, weights_row0.s2, acc.s3); \
- })
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-
-#if defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) && defined(IS_F32)
-#if defined(CONV_STRIDE_X)
-
-#if CONV_STRIDE_X == 1
-#define convolution1x3 convolution1x3_stride_1
-#elif CONV_STRIDE_X == 2
-#define convolution1x3 convolution1x3_stride_2
-#elif CONV_STRIDE_X == 3
-#define convolution1x3 convolution1x3_stride_3
-#else /* CONV_STRIDE_X */
-#error "Stride not supported"
-#endif /* CONV_STRIDE_X */
-
-/** Compute a 1D horizontal convolution of size 3 and stride 1 for floating point type.
- *
- * @param[in] left_pixel Pointer to the left pixel.
- * @param[in] left_coeff Weight of the left pixel
- * @param[in] middle_coeff Weight of the middle pixel
- * @param[in] right_coeff Weight of the right pixel
- *
- * @return a float2 containing 2 convoluted values.
- */
-inline float2 convolution1x3_stride_1(__global const uchar *left_pixel,
- const float left_coeff,
- const float middle_coeff,
- const float right_coeff)
-{
-#if(DILATION_X == 1 && DILATION_Y == 1)
- float4 temp = vload4(0, (__global float *)left_pixel);
-
- float2 left = CONVERT(temp.s01, float2);
- float2 middle = CONVERT(temp.s12, float2);
- float2 right = CONVERT(temp.s23, float2);
- return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
-#else /* DILATION_X==1 && DILATION_Y==1 */
- return vload2(0, (__global float *)left_pixel) * (float2)left_coeff
- + vload2(0, (__global float *)(left_pixel) + DILATION_X) * (float2)middle_coeff
- + vload2(0, (__global float *)(left_pixel) + 2 * DILATION_X) * (float2)right_coeff;
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-}
-
-/** Compute a 1D horizontal convolution of size 3 and stride 2 for floating point type.
- *
- * @param[in] left_pixel Pointer to the left pixel.
- * @param[in] left_coeff Weight of the left pixel
- * @param[in] middle_coeff Weight of the middle pixel
- * @param[in] right_coeff Weight of the right pixel
- *
- * @return a float2 containing 2 convoluted values.
- */
-inline float2 convolution1x3_stride_2(__global const uchar *left_pixel,
- const float left_coeff,
- const float middle_coeff,
- const float right_coeff)
-{
-#if(DILATION_X == 1 && DILATION_Y == 1)
- float4 temp0 = vload4(0, (__global float *)left_pixel);
- float temp1 = *((__global float *)(left_pixel + 4 * sizeof(float)));
-
- float2 left = CONVERT(temp0.s02, float2);
- float2 middle = CONVERT(temp0.s13, float2);
- float2 right = CONVERT((float2)(temp0.s2, temp1), float2);
-
- return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
-#else /* DILATION_X==1 && DILATION_Y==1 */
- __global float *left_pixel_float = (__global float *)left_pixel;
-
- return vload4(0, left_pixel_float).s02 * (float2)left_coeff
- + vload4(0, left_pixel_float + DILATION_X).s02 * (float2)middle_coeff
- + vload4(0, left_pixel_float + DILATION_X * 2).s02 * (float2)right_coeff;
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-}
-
-/** Compute a 1D horizontal convolution of size 3 and stride 3 for floating point type.
- *
- * @param[in] left_pixel Pointer to the left pixel.
- * @param[in] left_coeff Weight of the left pixel
- * @param[in] middle_coeff Weight of the middle pixel
- * @param[in] right_coeff Weight of the right pixel
- *
- * @return a float2 containing 2 convoluted values.
- */
-inline float2 convolution1x3_stride_3(__global const uchar *left_pixel,
- const float left_coeff,
- const float middle_coeff,
- const float right_coeff)
-{
-#if(DILATION_X == 1 && DILATION_Y == 1)
- float4 temp0 = vload4(0, (__global float *)left_pixel);
- float2 temp1 = vload2(0, (__global float *)(left_pixel + 4 * sizeof(float)));
-
- float2 left = CONVERT(temp0.s03, float2);
- float2 middle = CONVERT((float2)(temp0.s1, temp1.s0), float2);
- float2 right = CONVERT((float2)(temp0.s2, temp1.s1), float2);
-
- return left * (float2)left_coeff + middle * (float2)middle_coeff + right * (float2)right_coeff;
-#else /* DILATION_X==1 && DILATION_Y==1 */
- __global float *left_pixel_float = (__global float *)left_pixel;
-
- return (float2)(*left_pixel_float, *(left_pixel_float + 3)) * (float2)left_coeff
- + (float2)(*(left_pixel_float + DILATION_X), *(left_pixel_float + DILATION_X + 3)) * (float2)middle_coeff
- + (float2)(*(left_pixel_float + DILATION_X * 2), *(left_pixel_float + DILATION_X * 2 + 3)) * (float2)right_coeff;
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-}
-
-/** Apply a 3x3 convolution matrix to a single channel F32 input image and return the result.
- *
- * Convolution matrix layout:
- *
- * [ mat0, mat1, mat2 ]\n
- * [ mat3, mat4, mat5 ]\n
- * [ mat6, mat7, mat8 ]\n
- *
- * @param[in] src A pointer to source Image structure
- * @param[in] mat0 Coefficient from the convolution matrix
- * @param[in] mat1 Coefficient from the convolution matrix
- * @param[in] mat2 Coefficient from the convolution matrix
- * @param[in] mat3 Coefficient from the convolution matrix
- * @param[in] mat4 Coefficient from the convolution matrix
- * @param[in] mat5 Coefficient from the convolution matrix
- * @param[in] mat6 Coefficient from the convolution matrix
- * @param[in] mat0 Coefficient from the convolution matrix
- * @param[in] mat7 Coefficient from the convolution matrix
- * @param[in] mat8 Coefficient from the convolution matrix
- *
- * @return a float2 containing 2 convoluted values.
- */
-inline float2 convolution3x3(
- __global const uchar *src,
- unsigned int src_stride_y,
- const float mat0, const float mat1, const float mat2,
- const float mat3, const float mat4, const float mat5,
- const float mat6, const float mat7, const float mat8)
-{
- float2 pixels;
-
- pixels = convolution1x3((src + 0 * DILATION_Y * src_stride_y), mat0, mat1, mat2);
- pixels += convolution1x3((src + 1 * DILATION_Y * src_stride_y), mat3, mat4, mat5);
- pixels += convolution1x3((src + 2 * DILATION_Y * src_stride_y), mat6, mat7, mat8);
-
- return pixels;
-}
-
-/** This OpenCL kernel computes the depthwise convolution 3x3
- *
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: F32
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F32
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F16/F32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
-
- float2 pixels = 0.0f;
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
-
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
-
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) *
- (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
-
- // Load the weights
- float3 weights_values0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
- float3 weights_values1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
- float3 weights_values2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
-
- pixels = convolution3x3(src_addr, src_stride_y,
- weights_values0.s0, weights_values0.s1, weights_values0.s2,
- weights_values1.s0, weights_values1.s1, weights_values1.s2,
- weights_values2.s0, weights_values2.s1, weights_values2.s2);
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- float bias = *((__global float *)(vector_offset(&biases, channel)));
-
- pixels += (float2)bias;
-#endif //defined(HAS_BIAS)
-
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels, A_VAL, B_VAL), 0, (__global float *)dst.ptr);
-}
-#endif //defined(CONV_STRIDE_X)
-
-#if(DILATION_X > 1 || DILATION_Y > 1)
-
-/** Perform 3x3 convolution for stride_x=1 and stride_y=1 when DILATION_X>1 or DILATION_Y>1 for F32
- *
- * @param[in] src_addr Pointer to the starting position of where to perform the convolution
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] y_offset Offset from the source tensor from which to start convolution
- * @param[in] weights_addr Pointer from where to get weights
- * @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
- */
-inline float2 convolution_3x3_dilation_stridex1_stridey1_f32(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
-{
- // Load the weights
- float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
- float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
- float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
-
- float2 pixels0 = 0.0f;
-
- float2 src00_left = vload2(0, (__global float *)ptr_offset(src_addr, 0, y_offset, stride_x_bytes, stride_y_bytes)); // Row0
- float2 src00_mid = vload2(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
- float2 src00_right = vload2(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
-
- float2 src10_left = vload2(0, (__global float *)ptr_offset(src_addr, 0, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes)); // Row1
- float2 src10_mid = vload2(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
- float2 src10_right = vload2(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
-
- float2 src20_left = vload2(0, (__global float *)ptr_offset(src_addr, 0, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes)); // Row2
- float2 src20_mid = vload2(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- float2 src20_right = vload2(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
-
- CONVOLUTION1x3_2X1_STRIDE1(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE1(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE1(pixels0, src20_left, src20_mid, src20_right, weights_row2);
-
- return pixels0;
-}
-
-/** Perform 3x3 convolution for stride_x=2 and stride_y=2 when DILATION_X>1 or DILATION_Y>1 for F32
- *
- * @param[in] src_addr Pointer to the starting position of where to perform the convolution
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] y_offset Offset from the source tensor from which to start convolution
- * @param[in] weights_addr Pointer from where to get weights
- * @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
- */
-inline float2 convolution_3x3_dilation_stridex2_stridey2_f32(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
-{
- // Load the weights
- float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
- float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
- float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
-
- float2 pixels0 = 0.0f;
-
- float3 src00_left = vload3(0, (__global float *)ptr_offset(src_addr, 0, y_offset, stride_x_bytes, stride_y_bytes)); // Row0
- float3 src00_mid = vload3(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
- float3 src00_right = vload3(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
-
- float3 src10_left = vload3(0, (__global float *)ptr_offset(src_addr, 0, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes)); // Row1
- float3 src10_mid = vload3(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
- float3 src10_right = vload3(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
-
- float3 src20_left = vload3(0, (__global float *)ptr_offset(src_addr, 0, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes)); // Row2
- float3 src20_mid = vload3(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- float3 src20_right = vload3(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
-
- CONVOLUTION1x3_2X1_STRIDE2(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE2(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE2(pixels0, src20_left, src20_mid, src20_right, weights_row2);
-
- return pixels0;
-}
-
-#endif /* (DILATION_X > 1 || DILATION_Y > 1) */
-
-/** This OpenCL kernel is optimized for Bifrost architectures and computes the depthwise convolution 3x3 when both
- * stride_x and stride_y are equal to 1
- *
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note If activation function is enabled, the data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float.
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: F32
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F32
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_stridex1_stridey1_f32(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
-
- float2 pixels0 = 0.0f;
- float2 pixels1 = 0.0f;
- float2 pixels2 = 0.0f;
- float2 pixels3 = 0.0f;
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) *
- (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
-
-#if(DILATION_X == 1 && DILATION_Y == 1)
- // Load the weights
- float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
- float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
- float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
-
- // Note: Since each work-item computes 4x2 elements, we need to load 6 rows from the input tensor
- float4 src00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); // Row0
- float4 src10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); // Row1
- float4 src20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); // Row2
- float4 src30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); // Row3
- float4 src40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
- float4 src50 = vload4(0, (__global float *)(src_addr + 5 * src_stride_y)); // Row5
-
- CONVOLUTION1x3_2X1_STRIDE1(pixels0, src00, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE1(pixels0, src10, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE1(pixels0, src20, weights_row2);
- CONVOLUTION1x3_2X1_STRIDE1(pixels1, src10, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE1(pixels1, src20, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE1(pixels1, src30, weights_row2);
- CONVOLUTION1x3_2X1_STRIDE1(pixels2, src20, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE1(pixels2, src30, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE1(pixels2, src40, weights_row2);
- CONVOLUTION1x3_2X1_STRIDE1(pixels3, src30, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE1(pixels3, src40, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE1(pixels3, src50, weights_row2);
-
-#else /* DILATION_X==1 && DILATION_Y==1 */
-
- //3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 1st row
- pixels1 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 1, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 2nd row
- pixels2 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 3rd row
- pixels3 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 3, weights_addr, weights_stride_y);
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-
-#ifdef HAS_BIAS
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- float bias = *((__global float *)(vector_offset(&biases, channel)));
-
- pixels0 += (float2)bias;
- pixels1 += (float2)bias;
- pixels2 += (float2)bias;
- pixels3 += (float2)bias;
-#endif /* defined(HAS_BIAS) */
-
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels0, A_VAL, B_VAL), 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels1, A_VAL, B_VAL), 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels2, A_VAL, B_VAL), 0, (__global float *)(dst.ptr + 2 * dst_stride_y));
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels3, A_VAL, B_VAL), 0, (__global float *)(dst.ptr + 3 * dst_stride_y));
-}
-
-/** This OpenCL kernel is optimized for Bifrost architectures and computes the depthwise convolution 3x3 when both
- * stride_x and stride_y are equal to 2
- *
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note If activation function is enabled, the data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float.
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: F32
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F32
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_stridex2_stridey2_f32(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
-
- float2 pixels0 = 0.0f;
- float2 pixels1 = 0.0f;
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) *
- (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
-
-#if(DILATION_X == 1 && DILATION_Y == 1)
-
- // Load the weights
- float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
- float3 weights_row1 = vload3(0, (__global float *)(weights_addr + 1 * weights_stride_y));
- float3 weights_row2 = vload3(0, (__global float *)(weights_addr + 2 * weights_stride_y));
-
- // Note: Since each work-item computes 4x2 elements, we need to load 5 rows from the input tensor
- float4 src00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); // Row0
- float2 src01 = vload2(2, (__global float *)(src_addr + 0 * src_stride_y)); // Row0
- float4 src10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); // Row1
- float2 src11 = vload2(2, (__global float *)(src_addr + 1 * src_stride_y)); // Row1
- float4 src20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); // Row2
- float2 src21 = vload2(2, (__global float *)(src_addr + 2 * src_stride_y)); // Row2
- float4 src30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); // Row3
- float2 src31 = vload2(2, (__global float *)(src_addr + 3 * src_stride_y)); // Row3
- float4 src40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
- float2 src41 = vload2(2, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
-
- CONVOLUTION1x3_2X1_STRIDE2(pixels0, src00, src01, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE2(pixels0, src10, src11, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE2(pixels0, src20, src21, weights_row2);
- CONVOLUTION1x3_2X1_STRIDE2(pixels1, src20, src21, weights_row0);
- CONVOLUTION1x3_2X1_STRIDE2(pixels1, src30, src31, weights_row1);
- CONVOLUTION1x3_2X1_STRIDE2(pixels1, src40, src41, weights_row2);
-
-#else /* DILATION_X==1 && DILATION_Y==1 */
-
- //3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex2_stridey2_f32(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 2nd row
- pixels1 = convolution_3x3_dilation_stridex2_stridey2_f32(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-
-#ifdef HAS_BIAS
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- float bias = *((__global float *)(vector_offset(&biases, channel)));
-
- pixels0 += (float2)bias;
- pixels1 += (float2)bias;
-#endif /* defined(HAS_BIAS) */
-
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels0, A_VAL, B_VAL), 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
- vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels1, A_VAL, B_VAL), 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
-}
-
-#endif // defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) && defined(IS_F32)
-
-#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) && defined(IS_F16)
-#if defined(CONV_STRIDE_X)
-#if CONV_STRIDE_X == 1
-#define convolution1x3_f16 convolution1x3_stride_1_f16
-#elif CONV_STRIDE_X == 2
-#define convolution1x3_f16 convolution1x3_stride_2_f16
-#elif CONV_STRIDE_X == 3
-#define convolution1x3_f16 convolution1x3_stride_3_f16
-#else /* CONV_STRIDE_X */
-#error "Stride not supported"
-#endif /* CONV_STRIDE_X */
-
-#if(DILATION_X > 1 || DILATION_Y > 1)
-
-/** Perform 3x3 convolution for stride_x=1 and stride_y=1 when DILATION_X>1 or DILATION_Y>1 for f16
- *
- * @param[in] src_addr Pointer to the starting position of where to perform the convolution
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] y_offset Offset from the source tensor from which to start convolution
- * @param[in] weights_addr Pointer from where to get weights
- * @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
- */
-inline half4 convolution_3x3_dilation_stridex1_stridey1_f16(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
-{
- // Load the weights
- half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
- half3 weights_row1 = vload3(0, (__global half *)(weights_addr + 1 * weights_stride_y));
- half3 weights_row2 = vload3(0, (__global half *)(weights_addr + 2 * weights_stride_y));
-
- half4 pixels0 = 0.0f;
-
- half4 src00_left = vload4(0, (__global half *)ptr_offset(src_addr, 0, y_offset, stride_x_bytes, stride_y_bytes)); // Row0
- half4 src00_mid = vload4(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
- half4 src00_right = vload4(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
-
- half4 src10_left = vload4(0, (__global half *)ptr_offset(src_addr, 0, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes)); // Row1
- half4 src10_mid = vload4(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
- half4 src10_right = vload4(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
-
- half4 src20_left = vload4(0, (__global half *)ptr_offset(src_addr, 0, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes)); // Row2
- half4 src20_mid = vload4(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- half4 src20_right = vload4(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
-
- CONVOLUTION1x3_4X1_STRIDE1(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE1(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE1(pixels0, src20_left, src20_mid, src20_right, weights_row2);
-
- return pixels0;
-}
-
-/** Perform 3x3 convolution for stride_x=2 and stride_y=2 when DILATION_X>1 or DILATION_Y>1 for F16
- *
- * @param[in] src_addr Pointer to the starting position of where to perform the convolution
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] y_offset Offset from the source tensor from which to start convolution
- * @param[in] weights_addr Pointer from where to get weights
- * @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
- */
-inline half4 convolution_3x3_dilation_stridex2_stridey2_f16(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
-{
- // Load the weights
- half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
- half3 weights_row1 = vload3(0, (__global half *)(weights_addr + 1 * weights_stride_y));
- half3 weights_row2 = vload3(0, (__global half *)(weights_addr + 2 * weights_stride_y));
-
- half4 pixels0 = 0.0f;
-
- half8 src00_left = vload8(0, (__global half *)ptr_offset(src_addr, 0, y_offset, stride_x_bytes, stride_y_bytes)); // Row0
- half8 src00_mid = vload8(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
- half8 src00_right = vload8(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset, stride_x_bytes, stride_y_bytes));
-
- half8 src10_left = vload8(0, (__global half *)ptr_offset(src_addr, 0, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes)); // Row1
- half8 src10_mid = vload8(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
- half8 src10_right = vload8(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y, stride_x_bytes, stride_y_bytes));
-
- half8 src20_left = vload8(0, (__global half *)ptr_offset(src_addr, 0, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes)); // Row2
- half8 src20_mid = vload8(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- half8 src20_right = vload8(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
-
- CONVOLUTION1x3_4X1_STRIDE2(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE2(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE2(pixels0, src20_left, src20_mid, src20_right, weights_row2);
-
- return pixels0;
-}
-
-#endif // (DILATION_X > 1 && DILATION_Y > 1)
-
-/** Compute a 1D horizontal convolution of size 3 and stride 1 for 16bit floating point type.
- *
- * @param[in] left_pixel Pointer to the left pixel.
- * @param[in] left_coeff Weight of the left pixel
- * @param[in] middle_coeff Weight of the middle pixel
- * @param[in] right_coeff Weight of the right pixel
- *
- * @return a half4 containing 4 convoluted values.
- */
-inline half4 convolution1x3_stride_1_f16(__global const uchar *left_pixel,
- const half left_coeff,
- const half middle_coeff,
- const half right_coeff)
-{
-#if(DILATION_X == 1 && DILATION_Y == 1)
-
- half8 temp = vload8(0, (__global half *)left_pixel);
-
- half4 left = CONVERT(temp.s0123, half4);
- half4 middle = CONVERT(temp.s1234, half4);
- half4 right = CONVERT(temp.s2345, half4);
-
- return left * (half4)left_coeff + middle * (half4)middle_coeff + right * (half4)right_coeff;
-#else /* DILATION_X==1 && DILATION_Y==1 */
- return vload4(0, (__global half *)left_pixel) * (half4)left_coeff
- + vload4(0, (__global half *)(left_pixel) + DILATION_X) * (half4)middle_coeff
- + vload4(0, (__global half *)(left_pixel) + 2 * DILATION_X) * (half4)right_coeff;
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-}
-
-/** Compute a 1D horizontal convolution of size 3 and stride 2 for 16bit floating point type.
- *
- * @param[in] left_pixel Pointer to the left pixel.
- * @param[in] left_coeff Weight of the left pixel
- * @param[in] middle_coeff Weight of the middle pixel
- * @param[in] right_coeff Weight of the right pixel
- *
- * @return a half4 containing 4 convoluted values.
- */
-inline half4 convolution1x3_stride_2_f16(__global const uchar *left_pixel,
- const half left_coeff,
- const half middle_coeff,
- const half right_coeff)
-{
-#if(DILATION_X == 1 && DILATION_Y == 1)
-
- half8 temp0 = vload8(0, (__global half *)left_pixel);
- half temp1 = *((__global half *)(left_pixel + 8 * sizeof(half)));
-
- half4 left = CONVERT(temp0.s0246, half4);
- half4 middle = CONVERT(temp0.s1357, half4);
- half4 right = CONVERT((half4)(temp0.s246, temp1), half4);
-
- return left * (half4)left_coeff + middle * (half4)middle_coeff + right * (half4)right_coeff;
-#else /* DILATION_X==1 && DILATION_Y==1 */
-
- __global half *left_pixel_float = (__global half *)left_pixel;
-
- return (half4)(*left_pixel_float, *(left_pixel_float + 2), *(left_pixel_float + 4), *(left_pixel_float + 6)) * (half4)left_coeff
- + (half4)(*(left_pixel_float + DILATION_X), *(left_pixel_float + DILATION_X + 2), *(left_pixel_float + DILATION_X + 4), *(left_pixel_float + DILATION_X + 6)) * (half4)middle_coeff
- + (half4)(*(left_pixel_float + DILATION_X * 2), *(left_pixel_float + DILATION_X * 2 + 2), *(left_pixel_float + DILATION_X * 2 + 4), *(left_pixel_float + DILATION_X * 2 + 6)) * (half4)right_coeff;
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-}
-
-/** Compute a 1D horizontal convolution of size 3 and stride 3 for 16bit floating point type.
- *
- * @param[in] left_pixel Pointer to the left pixel.
- * @param[in] left_coeff Weight of the left pixel
- * @param[in] middle_coeff Weight of the middle pixel
- * @param[in] right_coeff Weight of the right pixel
- *
- * @return a half4 containing 4 convoluted values.
- */
-inline half4 convolution1x3_stride_3_f16(__global const uchar *left_pixel,
- const half left_coeff,
- const half middle_coeff,
- const half right_coeff)
-{
-#if(DILATION_X == 1 && DILATION_Y == 1)
-
- half16 temp0 = vload16(0, (__global half *)left_pixel);
-
- half4 left = CONVERT(temp0.s0369, half4);
- half4 middle = CONVERT(temp0.s147A, half4);
- half4 right = CONVERT(temp0.s258B, half4);
-
- return left * (half4)left_coeff + middle * (half4)middle_coeff + right * (half4)right_coeff;
-#else /* DILATION_X==1 && DILATION_Y==1 */
-
- __global half *left_pixel_float = (__global half *)left_pixel;
-
- return (half4)(*left_pixel_float, *(left_pixel_float + 3), *(left_pixel_float + 6), *(left_pixel_float + 9)) * (half4)left_coeff
- + (half4)(*(left_pixel_float + DILATION_X), *(left_pixel_float + DILATION_X + 3), *(left_pixel_float + DILATION_X + 6), *(left_pixel_float + DILATION_X + 9)) * (half4)middle_coeff
- + (half4)(*(left_pixel_float + DILATION_X * 2), *(left_pixel_float + DILATION_X * 2 + 3), *(left_pixel_float + DILATION_X * 2 + 6), *(left_pixel_float + DILATION_X * 2 + 9)) * (half4)right_coeff;
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-}
-
-/** Apply a 3x3 convolution matrix to a single channel F16 input image and return the result.
- *
- * Convolution matrix layout:
- *
- * [ mat0, mat1, mat2 ]\n
- * [ mat3, mat4, mat5 ]\n
- * [ mat6, mat7, mat8 ]\n
- *
- * @param[in] src A pointer to source Image structure
- * @param[in] mat0 Coefficient from the convolution matrix
- * @param[in] mat1 Coefficient from the convolution matrix
- * @param[in] mat2 Coefficient from the convolution matrix
- * @param[in] mat3 Coefficient from the convolution matrix
- * @param[in] mat4 Coefficient from the convolution matrix
- * @param[in] mat5 Coefficient from the convolution matrix
- * @param[in] mat6 Coefficient from the convolution matrix
- * @param[in] mat0 Coefficient from the convolution matrix
- * @param[in] mat7 Coefficient from the convolution matrix
- * @param[in] mat8 Coefficient from the convolution matrix
- *
- * @return a half4 containing 4 convoluted values.
- */
-inline half4 convolution3x3_f16(
- __global uchar *src, uint src_stride_y,
- const half mat0, const half mat1, const half mat2,
- const half mat3, const half mat4, const half mat5,
- const half mat6, const half mat7, const half mat8)
-{
- half4 pixels;
-
- pixels = convolution1x3_f16(src, mat0, mat1, mat2);
- pixels += convolution1x3_f16(src + DILATION_Y * src_stride_y, mat3, mat4, mat5);
- pixels += convolution1x3_f16(src + DILATION_Y * 2 * src_stride_y, mat6, mat7, mat8);
-
- return pixels;
-}
-
-#if defined(DEPTH_MULTIPLIER)
-
-/** This OpenCL kernel computes the depthwise convolution 3x3
- *
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note If activation function is enabled, the data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types: half.
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: F16
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_f16(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-#endif //defined(HAS_BIAS)
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) *
- (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
-
- uchar3 offset = (uchar3)(0, 1, 2) * (uchar3)weights_stride_y;
- half3 weights_values0 = vload3(0, (__global half *)(weights_addr + offset.s0));
- half3 weights_values1 = vload3(0, (__global half *)(weights_addr + offset.s1));
- half3 weights_values2 = vload3(0, (__global half *)(weights_addr + offset.s2));
-
- half4 pixels = convolution3x3_f16(src_addr, src_stride_y, weights_values0.s0, weights_values0.s1, weights_values0.s2,
- weights_values1.s0, weights_values1.s1, weights_values1.s2,
- weights_values2.s0, weights_values2.s1, weights_values2.s2);
-#if defined(HAS_BIAS)
- pixels += (half4)(*((__global half *)(biases.ptr + channel * biases_stride_x)));
-#endif //defined(HAS_BIAS)
-
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels, A_VAL, B_VAL), 0, (__global half *)dst.ptr);
-}
-#endif // defined(DEPTH_MULTIPLIER)
-#endif // defined(CONV_STRIDE_X)
-
-/** This OpenCL kernel is optimized for Bifrost architectures and computes the 16bit floating point depthwise convolution 3x3
- * when both stride_x and stride_y are equal to 1
- *
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note If activation function is enabled, the data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types: half.
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_stridex1_stridey1_f16(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
-
-#ifdef HAS_BIAS
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- half bias = *((__global half *)(vector_offset(&biases, channel)));
-#endif /* defined(HAS_BIAS) */
-
- half4 pixels0 = 0.0f;
- half4 pixels1 = 0.0f;
- half4 pixels2 = 0.0f;
- half4 pixels3 = 0.0f;
-
- // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) *
- (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
-
-#if(DILATION_X == 1 && DILATION_Y == 1)
- // Load the weights
- half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
- half3 weights_row1 = vload3(0, (__global half *)(weights_addr + 1 * weights_stride_y));
- half3 weights_row2 = vload3(0, (__global half *)(weights_addr + 2 * weights_stride_y));
-
- // Note: Since each work-item computes 4x4 elements, we need to load 6 rows from the input tensor
- half8 src00 = vload8(0, (__global half *)(src_addr + 0 * src_stride_y)); // Row0
- half8 src10 = vload8(0, (__global half *)(src_addr + 1 * src_stride_y)); // Row1
- half8 src20 = vload8(0, (__global half *)(src_addr + 2 * src_stride_y)); // Row2
- half8 src30 = vload8(0, (__global half *)(src_addr + 3 * src_stride_y)); // Row3
- half8 src40 = vload8(0, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
- half8 src50 = vload8(0, (__global half *)(src_addr + 5 * src_stride_y)); // Row5
-
- CONVOLUTION1x3_4X1_STRIDE1(pixels0, src00, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE1(pixels0, src10, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE1(pixels0, src20, weights_row2);
- CONVOLUTION1x3_4X1_STRIDE1(pixels1, src10, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE1(pixels1, src20, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE1(pixels1, src30, weights_row2);
- CONVOLUTION1x3_4X1_STRIDE1(pixels2, src20, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE1(pixels2, src30, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE1(pixels2, src40, weights_row2);
- CONVOLUTION1x3_4X1_STRIDE1(pixels3, src30, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE1(pixels3, src40, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE1(pixels3, src50, weights_row2);
-
-#else /* DILATION_X==1 && DILATION_Y==1 */
-
- //3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 1st row
- pixels1 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 1, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 2nd row
- pixels2 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 3rd row
- pixels3 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 3, weights_addr, weights_stride_y);
-
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-
-#ifdef HAS_BIAS
- pixels0 += (half4)bias;
- pixels1 += (half4)bias;
- pixels2 += (half4)bias;
- pixels3 += (half4)bias;
-#endif /* defined(HAS_BIAS) */
-
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels0, A_VAL, B_VAL), 0, (__global half *)(dst.ptr + 0 * dst_stride_y));
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels1, A_VAL, B_VAL), 0, (__global half *)(dst.ptr + 1 * dst_stride_y));
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels2, A_VAL, B_VAL), 0, (__global half *)(dst.ptr + 2 * dst_stride_y));
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels3, A_VAL, B_VAL), 0, (__global half *)(dst.ptr + 3 * dst_stride_y));
-}
-
-/** This OpenCL kernel is optimized for Bifrost architectures and computes 16bit floating point the depthwise convolution 3x3
- * when both stride_x and stride_y are equal to 2
- *
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note If activation function is enabled, the data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types: half.
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the biases vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_stridex2_stridey2_f16(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif //defined(HAS_BIAS)
-)
-{
- Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
- Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
-
- // Extract channel and linearized batch indices
- const int channel = get_global_id(2) % DST_CHANNELS;
- const int batch = get_global_id(2) / DST_CHANNELS;
-
-#ifdef HAS_BIAS
- Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
-
- half bias = *((__global half *)(vector_offset(&biases, channel)));
-#endif /* defined(HAS_BIAS) */
-
- half4 pixels0 = 0.0f;
- half4 pixels1 = 0.0f;
-
- // Load relevant input and weights data ( Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
- __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
- __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z - batch * (DST_CHANNELS / DEPTH_MULTIPLIER) *
- (DEPTH_MULTIPLIER - 1) * src_step_z - (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
-
-#if(DILATION_X == 1 && DILATION_Y == 1)
-
- // Load the weights
- half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
- half3 weights_row1 = vload3(0, (__global half *)(weights_addr + 1 * weights_stride_y));
- half3 weights_row2 = vload3(0, (__global half *)(weights_addr + 2 * weights_stride_y));
-
- // Note: Since each work-item computes 2x4 elements, we need to load 5 rows from the input tensor
- half8 src00 = vload8(0, (__global half *)(src_addr + 0 * src_stride_y)); // Row0
- half2 src01 = vload2(4, (__global half *)(src_addr + 0 * src_stride_y)); // Row0
- half8 src10 = vload8(0, (__global half *)(src_addr + 1 * src_stride_y)); // Row1
- half2 src11 = vload2(4, (__global half *)(src_addr + 1 * src_stride_y)); // Row1
- half8 src20 = vload8(0, (__global half *)(src_addr + 2 * src_stride_y)); // Row2
- half2 src21 = vload2(4, (__global half *)(src_addr + 2 * src_stride_y)); // Row2
- half8 src30 = vload8(0, (__global half *)(src_addr + 3 * src_stride_y)); // Row3
- half2 src31 = vload2(4, (__global half *)(src_addr + 3 * src_stride_y)); // Row3
- half8 src40 = vload8(0, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
- half2 src41 = vload2(4, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
-
- CONVOLUTION1x3_4X1_STRIDE2(pixels0, src00, src01, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE2(pixels0, src10, src11, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE2(pixels0, src20, src21, weights_row2);
- CONVOLUTION1x3_4X1_STRIDE2(pixels1, src20, src21, weights_row0);
- CONVOLUTION1x3_4X1_STRIDE2(pixels1, src30, src31, weights_row1);
- CONVOLUTION1x3_4X1_STRIDE2(pixels1, src40, src41, weights_row2);
-
-#else /* DILATION_X==1 && DILATION_Y==1 */
- //3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex2_stridey2_f16(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
- //3x3 Convolution of elements starting in 2nd row
- pixels1 = convolution_3x3_dilation_stridex2_stridey2_f16(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
-#endif /* DILATION_X==1 && DILATION_Y==1 */
-
-#ifdef HAS_BIAS
- pixels0 += (half4)bias;
- pixels1 += (half4)bias;
-#endif /* defined(HAS_BIAS) */
-
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels0, A_VAL, B_VAL), 0, (__global half *)(dst.ptr + 0 * dst_stride_y));
- vstore4(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, pixels1, A_VAL, B_VAL), 0, (__global half *)(dst.ptr + 1 * dst_stride_y));
-}
-#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) && defined(IS_F16)
-
-#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DATA_TYPE) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(VEC_SIZE_LEFTOVER)
-/** This function computes the depthwise convolution for NHWC data layout. This kernel assumes that the weights tensor is NOT reshaped
- *
- * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
- * @note The number of elements processed must be passed at compile time using -DN0 (e.g. -DN0=2)
- * @note The depth multiplier must be passed at compile time using -DDEPTH_MULTIPLIER (e.g. -DDEPTH_MULTIPLIER=1)
- * @note The first dimension of the input tensor must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM1=112)
- * @note The second dimension of the input tensor must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM2=80)
- * @note The kernel width must be passed at compile time using -DKERNEL_WIDTH (e.g. -DKERNEL_WIDTH=5)
- * @note The kernel height must be passed at compile time using -DKERNEL_HEIGHT (e.g. -DKERNEL_HEIGHT=5)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
- * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
- * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
- * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F16/F32
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as src_ptr
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void dwc_MxN_native_fp_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif // defined(HAS_BIAS)
-)
-{
- int x_offs = max((int)(get_global_id(0) * N0 - (N0 - VEC_SIZE_LEFTOVER) % N0), 0) * sizeof(DATA_TYPE);
-
- int x = get_global_id(0); // channels
- int y = get_global_id(1); // spatial coordinate x
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *s_addr = src_ptr + src_offset_first_element_in_bytes + x_offs;
-
- __global uchar *d_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs * (int)DEPTH_MULTIPLIER + y * dst_stride_y + z * dst_stride_z;
-
- __global uchar *w_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offs * (int)DEPTH_MULTIPLIER;
-
-#if defined(HAS_BIAS)
- __global uchar *b_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offs * (int)DEPTH_MULTIPLIER;
-#endif // defined(HAS_BIAS)
-
-#if defined(DST_DEPTH)
- s_addr += b * src_stride_w;
- d_addr += b * dst_stride_w;
-#endif // defined(DST_DEPTH)
-
- for(int d = 0; d < (int)DEPTH_MULTIPLIER; ++d)
- {
- // Each work-item computes N0x1x1 elements
- VEC_DATA_TYPE(DATA_TYPE, N0)
- res0 = 0;
-
- int x_coord = y * CONV_STRIDE_X - (int)CONV_PAD_LEFT;
- int y_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP;
-
- for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
- {
- if(y_coord >= 0 && y_coord < SRC_DIM2)
- {
- int x_coord_tmp = x_coord;
-
- for(int xk = 0; xk < KERNEL_WIDTH; ++xk)
- {
- if(x_coord_tmp >= 0 && x_coord_tmp < SRC_DIM1)
- {
- int s_offset = x_coord_tmp * (int)src_stride_y + y_coord * (int)src_stride_z;
- int w_offset = xk * weights_stride_y + yk * weights_stride_z;
-
- // Load input and weights values
- VEC_DATA_TYPE(DATA_TYPE, N0)
- i = VLOAD(N0)(0, (__global DATA_TYPE *)(s_addr + s_offset));
- VEC_DATA_TYPE(DATA_TYPE, N0)
- w = VLOAD(N0)(0, (__global DATA_TYPE *)(w_addr + w_offset));
-
-#if GPU_ARCH == GPU_ARCH_MIDGARD
- res0 += i * w;
-#else // GPU_ARCH == GPU_ARCH_MIDGARD
- res0 = fma(i, w, res0);
-#endif // GPU_ARCH == GPU_ARCH_MIDGARD
- }
- x_coord_tmp += DILATION_X;
- }
- }
- y_coord += DILATION_Y;
- }
-
-#if defined(HAS_BIAS)
- res0 += VLOAD(N0)(0, (__global DATA_TYPE *)(b_addr));
-#endif // defined(HAS_BIAS)
-
- res0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, N0, res0, A_VAL, B_VAL);
-
- STORE_VECTOR_SELECT(res, DATA_TYPE, d_addr, N0, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
-
- w_addr += sizeof(DATA_TYPE);
- d_addr += sizeof(DATA_TYPE);
-#if defined(HAS_BIAS)
- b_addr += sizeof(DATA_TYPE);
-#endif // defined(HAS_BIAS)
- }
-}
-#endif // defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defiend(N0) && defined(DATA_TYPE) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(VEC_SIZE_LEFTOVER)
-
-#if defined(VEC_SIZE) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) && defined(DATA_TYPE)
-
-#if DATA_TYPE != float || DATA_TYPE != half
-#error "Unsupported data type"
-#endif // DATA_TYPE != float || DATA_TYPE != half
-
-#define VEC_FLOAT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
-
-#define FILL_ZERO_OUT_OF_BOUND_3(data_type, vec_size, basename, cond) \
- ({ \
- basename##0 = select(basename##0, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_VEC_DATA_TYPE(data_type, vec_size))((cond).s0)); \
- basename##1 = select(basename##1, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_VEC_DATA_TYPE(data_type, vec_size))((cond).s1)); \
- basename##2 = select(basename##2, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_VEC_DATA_TYPE(data_type, vec_size))((cond).s2)); \
- })
-
-#define FILL_ZERO_OUT_OF_BOUND_4(data_type, vec_size, basename, cond) \
- ({ \
- FILL_ZERO_OUT_OF_BOUND_3(data_type, vec_size, basename, cond); \
- basename##3 = select(basename##3, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_VEC_DATA_TYPE(data_type, vec_size))((cond).s3)); \
- })
-
-#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
-
-/** This function computes the depthwise convolution for NHWC data layout when the stride along the width or height is not 1.
- *
- * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
- * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
- * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
- * @note The dilation_x and dilation_y must be passed at compile time using -DDILATION_X and -DDILATION_Y: e.g. -DDILATION_X=1, -DDILATION_Y=1
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1)
- * @note In case of biases, -DHAS_BIAS must to be passed at compile
- * @note If the output tensor has more than three dimensions, its third dimension must be passed at compile time using -DDST_DEPTH (e.g. -DDST_DEPTH=32)
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F16/F32
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] max_offset Max offset for the input tensor
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as src_ptr
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif /* defined(HAS_BIAS) */
-)
-{
- int x_offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - PARTIAL_STORE_N0) % VEC_SIZE), 0) * sizeof(DATA_TYPE);
- int y = get_global_id(1); // spatial coordinate x
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offset;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset;
-#endif /* defined(DST_DEPTH) */
-
- int3 src_coord_y = (int3)(y * CONV_STRIDE_X - CONV_PAD_LEFT) + (int3)(0, DILATION_X, 2 * DILATION_X);
- int3 src_coord_z = (int3)(z * CONV_STRIDE_Y - CONV_PAD_TOP) + (int3)(0, DILATION_Y, 2 * DILATION_Y);
-
- int3 src_offset_y = clamp(src_coord_y, (int3)0, (int3)(SRC_DIM_1 - 1));
- int3 src_offset_z = clamp(src_coord_z, (int3)0, (int3)(SRC_DIM_2 - 1));
-
- // Use these vectors to check whether the unclamped load would have been out of bounds
- src_coord_y = (src_offset_y != src_coord_y);
- src_coord_z = (src_offset_z != src_coord_z);
-
- src_offset_y *= (int3)src_stride_y;
- src_offset_z *= (int3)src_stride_z;
-
- // We compute VEC_SIZEx1x1 [C,W,H] elements
- VEC_FLOAT acc0 = 0;
-
- // Load weights
- VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 2 * weights_stride_z));
-
- // Load input values
- // z == 0
- VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s0));
- VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s1));
- VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s2));
-
- FILL_ZERO_OUT_OF_BOUND_3(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int3)src_coord_z.s0);
-
- acc0 = fma(values0, w0, acc0);
- acc0 = fma(values1, w1, acc0);
- acc0 = fma(values2, w2, acc0);
-
- // z == 1
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s0));
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s1));
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s2));
-
- FILL_ZERO_OUT_OF_BOUND_3(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int3)src_coord_z.s1);
-
- acc0 = fma(values0, w3, acc0);
- acc0 = fma(values1, w4, acc0);
- acc0 = fma(values2, w5, acc0);
-
- // z == 2
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s0));
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s1));
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s2));
-
- FILL_ZERO_OUT_OF_BOUND_3(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int3)src_coord_z.s2);
-
- acc0 = fma(values0, w6, acc0);
- acc0 = fma(values1, w7, acc0);
- acc0 = fma(values2, w8, acc0);
-
-#if defined(HAS_BIAS)
- __global uchar *biases_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offset;
- VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases_addr);
- acc0 += bias_values;
-#endif // defined(HAS_BIAS)
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + y * dst_step_y + z * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- acc0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc0, A_VAL, B_VAL);
- STORE_VECTOR_SELECT(acc, DATA_TYPE, dst_addr, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
-}
-#endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
-
-#if defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
-/** This function computes the depthwise convolution for NHWC data layout when the stride along the width and height is 1.
- *
- * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2)
- * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
- * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
- * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
- * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1)
- * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1)
- * @note The size of the output's second dimension must be passed at compile time using -DDST_DIM_1 (e.g. -DDST_DIM_1=64)
- * @note The size of the output's third dimension must be passed at compile time using -DDST_DIM_2 (e.g. -DDST_DIM_2=32)
- * @note In case of biases, -DHAS_BIAS must to be passed at compile
- * @note If the output tensor has more than three dimensions, its third dimension must be passed at compile time using -DDST_DEPTH (e.g. -DDST_DEPTH=32)
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: F16/F32
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
- * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] max_offset Max offset for the input tensor
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as src_ptr
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- */
-__kernel void depthwise_convolution_3x3_nhwc_stride1(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights)
-#if defined(HAS_BIAS)
- ,
- VECTOR_DECLARATION(biases)
-#endif /* defined(HAS_BIAS) */
-)
-{
- int x_offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - PARTIAL_STORE_N0) % VEC_SIZE), 0) * sizeof(DATA_TYPE);
- int y = get_global_id(1); // spatial coordinate x
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offset;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset;
-#endif /* defined(DST_DEPTH) */
-
- int4 src_coord_y = (int4)(y * NUM_ROWS_PROCESSED - CONV_PAD_LEFT) + V_OFFS4(int);
- int4 src_coord_z = (int4)(z * NUM_PLANES_PROCESSED - CONV_PAD_TOP) + V_OFFS4(int);
-
- int4 src_offset_y = clamp(src_coord_y, (int4)0, (int4)(SRC_DIM_1 - 1));
- int4 src_offset_z = clamp(src_coord_z, (int4)0, (int4)(SRC_DIM_2 - 1));
-
- // Use these vectors to check whether the unclamped load would have been out of bounds
- src_coord_y = (src_offset_y != src_coord_y);
- src_coord_z = (src_offset_z != src_coord_z);
-
- src_offset_y *= (int4)src_stride_y;
- src_offset_z *= (int4)src_stride_z;
-
- // We compute VEC_SIZEx2x2 [C,W,H] elements
- VEC_FLOAT acc0 = 0;
- VEC_FLOAT acc1 = 0;
- VEC_FLOAT acc2 = 0;
- VEC_FLOAT acc3 = 0;
-
- // Load weights
- VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 2 * weights_stride_z));
-
- // Load input values
- // z == 0
- VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s0));
- VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s1));
- VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s2));
- VEC_FLOAT values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s3));
-
- FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s0);
-
- acc0 = fma(values0, w0, acc0);
- acc0 = fma(values1, w1, acc0);
- acc0 = fma(values2, w2, acc0);
- acc1 = fma(values1, w0, acc1);
- acc1 = fma(values2, w1, acc1);
- acc1 = fma(values3, w2, acc1);
-
- // z == 1
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s0));
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s1));
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s2));
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s3));
-
- FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s1);
-
- acc0 = fma(values0, w3, acc0);
- acc0 = fma(values1, w4, acc0);
- acc0 = fma(values2, w5, acc0);
- acc1 = fma(values1, w3, acc1);
- acc1 = fma(values2, w4, acc1);
- acc1 = fma(values3, w5, acc1);
-
- acc2 = fma(values0, w0, acc2);
- acc2 = fma(values1, w1, acc2);
- acc2 = fma(values2, w2, acc2);
- acc3 = fma(values1, w0, acc3);
- acc3 = fma(values2, w1, acc3);
- acc3 = fma(values3, w2, acc3);
-
- // z == 2
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s0));
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s1));
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s2));
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s3));
-
- FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s2);
-
- acc0 = fma(values0, w6, acc0);
- acc0 = fma(values1, w7, acc0);
- acc0 = fma(values2, w8, acc0);
- acc1 = fma(values1, w6, acc1);
- acc1 = fma(values2, w7, acc1);
- acc1 = fma(values3, w8, acc1);
-
- acc2 = fma(values0, w3, acc2);
- acc2 = fma(values1, w4, acc2);
- acc2 = fma(values2, w5, acc2);
- acc3 = fma(values1, w3, acc3);
- acc3 = fma(values2, w4, acc3);
- acc3 = fma(values3, w5, acc3);
-
- // z == 3
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s0));
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s1));
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s2));
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s3));
-
- FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s3);
-
- acc2 = fma(values0, w6, acc2);
- acc2 = fma(values1, w7, acc2);
- acc2 = fma(values2, w8, acc2);
- acc3 = fma(values1, w6, acc3);
- acc3 = fma(values2, w7, acc3);
- acc3 = fma(values3, w8, acc3);
-
-#if defined(HAS_BIAS)
- __global uchar *biases_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offset;
-
- VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases_addr);
-
- acc0 += bias_values;
- acc1 += bias_values;
- acc2 += bias_values;
- acc3 += bias_values;
-#endif // defined(HAS_BIAS)
-
- int2 dst_offset_y = min((int2)(y * NUM_ROWS_PROCESSED) + V_OFFS2(int), (int2)(DST_DIM_1 - 1)) * (int2)dst_stride_y;
- int dst_coord_z = z * NUM_PLANES_PROCESSED;
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + dst_coord_z * dst_stride_z + b * dst_stride_w;
-#else // defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + dst_coord_z * dst_stride_z;
-#endif // defined(DST_DEPTH)
-
- /* Store vectors in reverse order along the Y. The Y offsets are calculated so that they are forced to be in bound.
- * If only the first address is in bound, the Y offset of the second address will be brought back and there will be 2 writes in the same location for the same thread.
- * Since the last vector to be written is always the valid one for that location, it overwrites the wrong values.
- */
- values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc1, A_VAL, B_VAL);
- STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_offset_y.s1, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
-
- values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc0, A_VAL, B_VAL);
- STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_offset_y.s0, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
-
-#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- if((dst_coord_z + 1) < DST_DIM_2)
-#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- {
- values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc3, A_VAL, B_VAL);
- STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_stride_z + dst_offset_y.s1, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
-
- values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc2, A_VAL, B_VAL);
- STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_stride_z + dst_offset_y.s0, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
- }
-}
-
-#endif // defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
-#endif // defined(VEC_SIZE) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) && defined(DATA_TYPE) \ No newline at end of file