aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/reduction_operation.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/reduction_operation.cl')
-rw-r--r--src/core/CL/cl_kernels/common/reduction_operation.cl471
1 files changed, 471 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/common/reduction_operation.cl b/src/core/CL/cl_kernels/common/reduction_operation.cl
new file mode 100644
index 0000000000..99369be19a
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/reduction_operation.cl
@@ -0,0 +1,471 @@
+/*
+ * Copyright (c) 2016-2021, 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "helpers_asymm.h"
+
+#if defined(FLOAT_DATA_TYPE)
+#define ISGREATER(x, y) (SELECT_VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE))(isgreater(x, y))
+#define ISLESS(x, y) (SELECT_VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE))(isless(x, y))
+#define ISGREATER_SCALAR(x, y) (SELECT_DATA_TYPE(DATA_TYPE_PROMOTED))(isgreater(x, y))
+#define ISLESS_SCALAR(x, y) (SELECT_DATA_TYPE(DATA_TYPE_PROMOTED))(isless(x, y))
+#else // !FLOAT_DATA_TYPE
+#if defined(WIDTH)
+#define ISGREATER(x, y) (x > y) ? 1 : 0
+#define ISLESS(x, y) (x < y) ? 1 : 0
+#define ISGREATER_SCALAR ISGREATER
+#define ISLESS_SCALAR ISLESS
+#else // !defined(WIDTH)
+#define ISGREATER(x, y) select((VEC_DATA_TYPE(int, VEC_SIZE))0, (VEC_DATA_TYPE(int, VEC_SIZE)) - 1, x > y)
+#define ISLESS(x, y) select((VEC_DATA_TYPE(int, VEC_SIZE))0, (VEC_DATA_TYPE(int, VEC_SIZE)) - 1, x < y)
+#endif // defined(WIDTH)
+#endif // defined(FLOAT_DATA_TYPE)
+
+#if defined(WIDTH)
+#if defined(OPERATION)
+
+#define sum(in0, in1, size) (in0 + SUM_REDUCE(in1, size))
+#define square_sum(in0, in1, size) (in0 + SUM_REDUCE((in1 * in1), size))
+#define product(in0, in1, size) (in0 * PROD_REDUCE(in1, size))
+#define min_(in0, in1, size) (min(in0, MIN_REDUCE(in1, size)))
+#define max_(in0, in1, size) (max(in0, MAX_REDUCE(in1, size)))
+
+/** This kernel performs parallel reduction given an operation on x-axis.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The operation we want to perform must be passed at compile time using -DOPERATION e.g. -DOPERATION=square_sum
+ * @note The mean flag must be passed at compile time using -DMEAN if we want to compute the mean value
+ * @note The product flag must be passed at compile time using -DPROD if we want to compute the product, otherwise sum will be used
+ * @note The width size must be passed at compile time using -DWIDTH e.g. -DWIDTH=128 if we want to compute the mean value
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr Pointer to the destination tensor. Supported data types: same as @p input
+ * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void reduction_operation_x(
+ TENSOR3D_DECLARATION(input),
+ TENSOR3D_DECLARATION(output))
+{
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + y * input_stride_y + z * input_stride_z;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + y * output_stride_y + z * output_stride_z;
+
+#if !defined(MIN) && !defined(MAX)
+#if defined(PROD)
+ DATA_TYPE res = (DATA_TYPE)1;
+#else // defined(PROD)
+ DATA_TYPE res = (DATA_TYPE)0;
+#endif // defined(PROD)
+#else // #if !defined(MIN) && !defined(MAX)
+ DATA_TYPE res = *((__global DATA_TYPE *)input_addr);
+#endif // #if defined(MIN) || defined(MAX)
+ int x = 0;
+
+ for(; x <= (WIDTH - VEC_SIZE); x += VEC_SIZE)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ vals = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + x * sizeof(DATA_TYPE)));
+ res = OPERATION(res, vals, VEC_SIZE);
+ }
+
+#if(WIDTH % VEC_SIZE)
+ _Pragma("unroll") for(; x < WIDTH; ++x)
+ {
+ DATA_TYPE val = *((__global DATA_TYPE *)(input_addr + x * sizeof(DATA_TYPE)));
+ res = OPERATION(res, val, 1);
+ }
+#endif // (WIDTH % VEC_SIZE)
+
+#if defined(MEAN)
+ res /= WIDTH;
+#endif // defined(MEAN)
+ *((__global DATA_TYPE *)output_addr) = res;
+}
+#endif // defined(OPERATION)
+/** This kernel performs reduction on x-axis. (Non parallel)
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The width size must be passed at compile time using -DWIDTH e.g. -DWIDTH=128
+ * @note The product flag must be passed at compile time using -DPROD if we want to compute the product, otherwise sum will be used
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: S32/F16/F32 and QASYMM8/QASYMM8_SIGNED for operation MEAN
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void reduction_operation_non_parallel_x(
+ VECTOR_DECLARATION(input),
+ VECTOR_DECLARATION(output))
+{
+ Vector input = CONVERT_TO_VECTOR_STRUCT(input);
+ Vector output = CONVERT_TO_VECTOR_STRUCT(output);
+
+ DATA_TYPE_PROMOTED res = CONVERT(*((__global DATA_TYPE *)vector_offset(&input, 0)), DATA_TYPE_PROMOTED);
+
+ // Convert input into F32 in order to perform quantized multiplication
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ float res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, 1);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+ for(unsigned int x = 1; x < WIDTH; ++x)
+ {
+ DATA_TYPE_PROMOTED in = CONVERT(*((__global DATA_TYPE *)vector_offset(&input, x)), DATA_TYPE_PROMOTED);
+#if defined(MIN)
+ res = select(res, in, ISLESS_SCALAR(in, res));
+#elif defined(MAX)
+ res = select(res, in, ISGREATER_SCALAR(in, res));
+#elif defined(PROD)
+#if defined(OFFSET) && defined(SCALE)
+ res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, 1);
+#else // !(defined(OFFSET) && defined(SCALE))
+ res *= in;
+#endif // defined(OFFSET) && defined(SCALE)
+#else // defined(SUM))
+ res += in;
+#endif // defined(MAX) || defined(MIN) || defined(PROD)
+ }
+
+ // Store result
+#if defined(MEAN)
+ res /= WIDTH;
+#endif // defined(MEAN)
+
+ // Subtract the offsets in case of quantized SUM
+#if defined(SUM) && defined(OFFSET) && defined(SCALE)
+ res -= (WIDTH - 1) * OFFSET;
+#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
+
+ // Re-quantize
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, 1);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+ *((__global DATA_TYPE *)output.ptr) = CONVERT_SAT(res, DATA_TYPE);
+}
+#endif // defined(WIDTH)
+
+#if defined(HEIGHT)
+/** This kernel performs reduction on y-axis.
+ *
+ * @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void reduction_operation_y(
+ __global uchar *input_ptr,
+ uint input_stride_y,
+ uint input_stride_z,
+ uint input_offset_first_element_in_bytes,
+
+ __global uchar *output_ptr,
+ uint output_stride_z,
+ uint output_offset_first_element_in_bytes)
+{
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int z = get_global_id(1);
+
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + z * input_stride_z;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + z * output_stride_z;
+
+ VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
+ res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
+
+ // Convert input into F32 in order to perform quantized multiplication
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ VEC_DATA_TYPE(float, VEC_SIZE)
+ res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+#if defined(SUM_SQUARE)
+ res *= res;
+#endif // defined(SUM_SQUARE)
+
+ for(unsigned int y = 1; y < HEIGHT; ++y)
+ {
+ VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
+ in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + y * input_stride_y)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
+#if defined(MIN)
+ res = select(res, in, ISLESS(in, res));
+#elif defined(MAX)
+ res = select(res, in, ISGREATER(in, res));
+#else // !(defined(MAX) || defined(MIN))
+#if defined(SUM_SQUARE)
+ in *= in;
+#endif // defined(SUM_SQUARE)
+#if defined(PROD)
+
+#if defined(OFFSET) && defined(SCALE)
+ res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#else // !(defined(OFFSET) && defined(SCALE))
+ res *= in;
+#endif // defined(OFFSET) && defined(SCALE)
+
+#else // !defined(PROD)
+ res += in;
+#endif // defined(PROD)
+#endif // defined(MAX) || defined(MIN)
+ }
+
+#if defined(MEAN)
+ res /= HEIGHT;
+#endif // defined(MEAN)
+
+ // Subtract the offsets in case of quantized SUM
+#if defined(SUM) && defined(OFFSET) && defined(SCALE)
+ res -= (HEIGHT - 1) * OFFSET;
+#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
+
+ // Re-quantize
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+ // Store result
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
+ STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
+}
+#endif // defined(HEIGHT)
+
+#if defined(DEPTH)
+/** This kernel performs reduction on z-axis.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
+ * @param[in] output_stride_w Stride of the output tensor in W dimension (in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void reduction_operation_z(
+ __global uchar *input_ptr,
+ uint input_stride_y,
+ uint input_stride_z,
+ uint input_stride_w,
+ uint input_offset_first_element_in_bytes,
+
+ __global uchar *output_ptr,
+ uint output_stride_y,
+ uint output_stride_w,
+ uint output_offset_first_element_in_bytes)
+{
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int y = get_global_id(1);
+ int w = get_global_id(2);
+
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * input_stride_y + w * input_stride_w;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * output_stride_y + w * output_stride_w;
+
+ VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
+ res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
+
+ // Convert input into F32 in order to perform quantized multiplication
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ VEC_DATA_TYPE(float, VEC_SIZE)
+ res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+#if defined(SUM_SQUARE)
+ res *= res;
+#endif // defined(SUM_SQUARE)
+
+ for(unsigned int z = 1; z < DEPTH; ++z)
+ {
+ VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
+ in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + z * input_stride_z)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
+
+#if defined(MIN)
+ res = select(res, in, ISLESS(in, res));
+#elif defined(MAX)
+ res = select(res, in, ISGREATER(in, res));
+#else // !(defined(MAX) || defined(MIN))
+#if defined(SUM_SQUARE)
+ in *= in;
+#endif // defined(SUM_SQUARE)
+#if defined(PROD)
+
+#if defined(OFFSET) && defined(SCALE)
+ res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#else // !(defined(OFFSET) && defined(SCALE))
+ res *= in;
+#endif // defined(OFFSET) && defined(SCALE)
+
+#else // !defined(PROD)
+ res += in;
+#endif // defined(PROD)
+#endif // defined(MAX) || defined(MIN)
+ }
+
+#if defined(MEAN)
+ res /= DEPTH;
+#endif // defined(MEAN)
+
+ // Subtract the offsets in case of quantized SUM
+#if defined(SUM) && defined(OFFSET) && defined(SCALE)
+ res -= (DEPTH - 1) * OFFSET;
+#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
+
+ // Re-quantize
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+ // Store result
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
+
+ STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
+}
+#endif /* defined(DEPTH) */
+
+#if defined(BATCH) && defined(DEPTH)
+/** This kernel performs reduction on w-axis.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The batch size must be passed at compile time using -DBATCH e.g. -DBATCH=128
+ * @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] input_stride_v Stride of the source tensor in V dimension (in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
+ * @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
+ * @param[in] output_stride_v Stride of the output tensor in V dimension (in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void reduction_operation_w(
+ __global uchar *input_ptr,
+ uint input_stride_y,
+ uint input_stride_z,
+ uint input_stride_w,
+ uint input_stride_v,
+ uint input_offset_first_element_in_bytes,
+
+ __global uchar *output_ptr,
+ uint output_stride_y,
+ uint output_stride_z,
+ uint output_stride_v,
+ uint output_offset_first_element_in_bytes)
+{
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int y = get_global_id(1);
+
+ int gid_2 = get_global_id(2);
+ int z = get_global_id(2) % DEPTH;
+ int v = get_global_id(2) / DEPTH;
+
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * input_stride_y + z * input_stride_z + v * input_stride_v;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) + y * output_stride_y + z * output_stride_z + v * output_stride_v;
+
+ VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
+ res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
+
+ // Convert input into F32 in order to perform quantized multiplication
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ VEC_DATA_TYPE(float, VEC_SIZE)
+ res_f = DEQUANTIZE(res, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+#if defined(SUM_SQUARE)
+ res *= res;
+#endif // defined(SUM_SQUARE)
+
+ for(unsigned int w = 1; w < BATCH; ++w)
+ {
+ VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE)
+ in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + w * input_stride_w)), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, VEC_SIZE));
+
+#if defined(MIN)
+ res = select(res, in, ISLESS(in, res));
+#elif defined(MAX)
+ res = select(res, in, ISGREATER(in, res));
+#else // !(defined(MAX) || defined(MIN))
+#if defined(SUM_SQUARE)
+ in *= in;
+#endif // defined(SUM_SQUARE)
+#if defined(PROD)
+
+#if defined(OFFSET) && defined(SCALE)
+ res_f *= DEQUANTIZE(in, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#else // !(defined(OFFSET) && defined(SCALE))
+ res *= in;
+#endif // defined(OFFSET) && defined(SCALE)
+
+#else // !defined(PROD)
+ res += in;
+#endif //defined(PROD)
+#endif // defined(MAX) || defined(MIN)
+ }
+
+#if defined(MEAN)
+ res /= BATCH;
+#endif // defined(MEAN)
+
+ // Subtract the offsets in case of quantized SUM
+#if defined(SUM) && defined(OFFSET) && defined(SCALE)
+ res -= (BATCH - 1) * OFFSET;
+#endif // defined(OFFSET) && defined(OFFSET) && defined(SCALE)
+
+ // Re-quantize
+#if defined(PROD) && defined(OFFSET) && defined(SCALE)
+ res = QUANTIZE(res_f, OFFSET, SCALE, DATA_TYPE_PROMOTED, VEC_SIZE);
+#endif // defined(PROD) && defined(OFFSET) && defined(SCALE)
+
+ // Store result
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
+ STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
+}
+#endif /* defined(BATCH) && defined(DEPTH) */