aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/gemmlowp.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/gemmlowp.cl')
-rw-r--r--src/core/CL/cl_kernels/common/gemmlowp.cl2162
1 files changed, 2162 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/common/gemmlowp.cl b/src/core/CL/cl_kernels/common/gemmlowp.cl
new file mode 100644
index 0000000000..62c4cd31f5
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/gemmlowp.cl
@@ -0,0 +1,2162 @@
+/*
+ * Copyright (c) 2017-2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "gemm_helpers.h"
+#include "helpers_asymm.h"
+#include "repeat.h"
+#include "tile_helpers.h"
+
+#if defined(DATA_TYPE) && defined(ACC_DATA_TYPE)
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), (val));
+#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#define ARM_DOT(x, y, val) val += arm_dot((x), (y));
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ ARM_DOT((VEC_DATA_TYPE(DATA_TYPE, 4))(a, (VEC_DATA_TYPE(DATA_TYPE, 3))0), (VEC_DATA_TYPE(DATA_TYPE, 4))(b, (VEC_DATA_TYPE(DATA_TYPE, 3))0), c); \
+ })
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ ARM_DOT((VEC_DATA_TYPE(DATA_TYPE, 4))(a, (VEC_DATA_TYPE(DATA_TYPE, 2))0), (VEC_DATA_TYPE(DATA_TYPE, 4))(b, (VEC_DATA_TYPE(DATA_TYPE, 2))0), c); \
+ })
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT((VEC_DATA_TYPE(DATA_TYPE, 4))(a, (DATA_TYPE)0), (VEC_DATA_TYPE(DATA_TYPE, 4))(b, (DATA_TYPE)0), c); \
+ })
+#define ARM_DOT4(a, b, c) \
+ ({ \
+ ARM_DOT(a, b, c); \
+ })
+#define ARM_DOT8(a, b, c) \
+ ({ \
+ ARM_DOT4((a.lo), (b.lo), c); \
+ ARM_DOT4((a.hi), (b.hi), c); \
+ })
+#define ARM_DOT16(a, b, c) \
+ ({ \
+ ARM_DOT8((a.lo), (b.lo), c); \
+ ARM_DOT8((a.hi), (b.hi), c); \
+ })
+
+#else // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+/** Specialized macros to perform the dot product instruction between two vectors of size K0 [1,16] without using the dot8 instruction. */
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ c += (ACC_DATA_TYPE)a * b; \
+ })
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ c += (ACC_DATA_TYPE)a.s0 * b.s0; \
+ c += (ACC_DATA_TYPE)a.s1 * b.s1; \
+ })
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT2(a, b, c); \
+ c += (ACC_DATA_TYPE)a.s2 * b.s2; \
+ })
+#define ARM_DOT4(a, b, c) \
+ ({ \
+ ARM_DOT3(a, b, c); \
+ c += (ACC_DATA_TYPE)a.s3 * b.s3; \
+ })
+#define ARM_DOT8(a, b, c) \
+ ({ \
+ ARM_DOT4((a.lo), (b.lo), c); \
+ ARM_DOT4((a.hi), (b.hi), c); \
+ })
+#define ARM_DOT16(a, b, c) \
+ ({ \
+ ARM_DOT8((a.lo), (b.lo), c); \
+ ARM_DOT8((a.hi), (b.hi), c); \
+ })
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+/** Specialized macros to perform a broadcast dot product operation between one vector "a" and N0 vectors "b" of size K0 [1,16] */
+#define ARM_DOT_K0X1(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0(k0, (a), (b##0), (c)); \
+ })
+#define ARM_DOT_K0X2(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0(k0, (a), (b##0), (c.s0)); \
+ ARM_DOT_K0(k0, (a), (b##1), (c.s1)); \
+ })
+#define ARM_DOT_K0X3(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X2(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##2), (c.s2)); \
+ })
+#define ARM_DOT_K0X4(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X3(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##3), (c.s3)); \
+ })
+#define ARM_DOT_K0X8(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X4(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##4), (c.s4)); \
+ ARM_DOT_K0(k0, (a), (b##5), (c.s5)); \
+ ARM_DOT_K0(k0, (a), (b##6), (c.s6)); \
+ ARM_DOT_K0(k0, (a), (b##7), (c.s7)); \
+ })
+#define ARM_DOT_K0X16(k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0X8(k0, a, b, c); \
+ ARM_DOT_K0(k0, (a), (b##8), (c.s8)); \
+ ARM_DOT_K0(k0, (a), (b##9), (c.s9)); \
+ ARM_DOT_K0(k0, (a), (b##A), (c.sA)); \
+ ARM_DOT_K0(k0, (a), (b##B), (c.sB)); \
+ ARM_DOT_K0(k0, (a), (b##C), (c.sC)); \
+ ARM_DOT_K0(k0, (a), (b##D), (c.sD)); \
+ ARM_DOT_K0(k0, (a), (b##E), (c.sE)); \
+ ARM_DOT_K0(k0, (a), (b##F), (c.sF)); \
+ })
+
+/** Specialized macros to perform a partial matrix multiplication with dimensions M0,N0,K0 */
+#define ARM_MM_K0XN0X1(n0, k0, a, b, c) \
+ ({ \
+ ARM_DOT_K0XN0(n0, k0, (a##0), b, (c##0)); \
+ })
+#define ARM_MM_K0XN0X2(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X1(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##1), b, (c##1)); \
+ })
+#define ARM_MM_K0XN0X3(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X2(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##2), b, (c##2)); \
+ })
+#define ARM_MM_K0XN0X4(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X3(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##3), b, (c##3)); \
+ })
+#define ARM_MM_K0XN0X5(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X4(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##4), b, (c##4)); \
+ })
+#define ARM_MM_K0XN0X6(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X5(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##5), b, (c##5)); \
+ })
+#define ARM_MM_K0XN0X7(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X6(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##6), b, (c##6)); \
+ })
+#define ARM_MM_K0XN0X8(n0, k0, a, b, c) \
+ ({ \
+ ARM_MM_K0XN0X7(n0, k0, a, b, c); \
+ ARM_DOT_K0XN0(n0, k0, (a##7), b, (c##7)); \
+ })
+
+#define ARM_DOT_K0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b), (c)); \
+ })
+
+#define ARM_DOT_K0XN0(n0, k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT_K0X, n0) \
+ (k0, (a), b, (c)); \
+ })
+
+#define ARM_MM_K0XN0XM0(m0, n0, k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_MM_K0XN0X, m0) \
+ (n0, k0, a, b, c); \
+ })
+
+/** Specialized macros to perform a broadcast dot product operation between one vector "a" and N0 vectors "b" of size K0 [1,16] */
+#define ARM_MUL_N0X1(VECTOR_ACC_TYPE, a, b, c) \
+ ({ \
+ c += CONVERT(b##0, VECTOR_ACC_TYPE) * a; \
+ })
+#define ARM_MUL_N0X2(VECTOR_ACC_TYPE, a, b, c) \
+ ({ \
+ c += CONVERT(b##0, VECTOR_ACC_TYPE) * a.s##0; \
+ c += CONVERT(b##1, VECTOR_ACC_TYPE) * a.s##1; \
+ })
+#define ARM_MUL_N0X3(VECTOR_ACC_TYPE, a, b, c) \
+ ({ \
+ ARM_MUL_N0X2(VECTOR_ACC_TYPE, a, b, c); \
+ c += CONVERT(b##2, VECTOR_ACC_TYPE) * a.s##2; \
+ })
+#define ARM_MUL_N0X4(VECTOR_ACC_TYPE, a, b, c) \
+ ({ \
+ ARM_MUL_N0X3(VECTOR_ACC_TYPE, a, b, c); \
+ c += CONVERT(b##3, VECTOR_ACC_TYPE) * a.s##3; \
+ })
+#define ARM_MUL_N0X8(VECTOR_ACC_TYPE, a, b, c) \
+ ({ \
+ ARM_MUL_N0X4(VECTOR_ACC_TYPE, a, b, c); \
+ c += CONVERT(b##4, VECTOR_ACC_TYPE) * a.s##4; \
+ c += CONVERT(b##5, VECTOR_ACC_TYPE) * a.s##5; \
+ c += CONVERT(b##6, VECTOR_ACC_TYPE) * a.s##6; \
+ c += CONVERT(b##7, VECTOR_ACC_TYPE) * a.s##7; \
+ })
+#define ARM_MUL_N0X16(VECTOR_ACC_TYPE, a, b, c) \
+ ({ \
+ ARM_MUL_N0X8(VECTOR_ACC_TYPE, a, b, c); \
+ c += CONVERT(b##8, VECTOR_ACC_TYPE) * a.s##8; \
+ c += CONVERT(b##9, VECTOR_ACC_TYPE) * a.s##9; \
+ c += CONVERT(b##A, VECTOR_ACC_TYPE) * a.s##A; \
+ c += CONVERT(b##B, VECTOR_ACC_TYPE) * a.s##B; \
+ c += CONVERT(b##C, VECTOR_ACC_TYPE) * a.s##C; \
+ c += CONVERT(b##D, VECTOR_ACC_TYPE) * a.s##D; \
+ c += CONVERT(b##E, VECTOR_ACC_TYPE) * a.s##E; \
+ c += CONVERT(b##F, VECTOR_ACC_TYPE) * a.s##F; \
+ })
+/** Specialized macros to perform a a partial matrix multiplication with dimensions M0,N0,K0 */
+#define ARM_MM_NATIVE_N0XK0X1(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##0), b, (c##0)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X2(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X1(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##1), b, (c##1)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X3(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X2(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##2), b, (c##2)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X4(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X3(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##3), b, (c##3)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X5(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X4(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##4), b, (c##4)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X6(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X5(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##5), b, (c##5)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X7(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X6(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##6), b, (c##6)); \
+ })
+#define ARM_MM_NATIVE_N0XK0X8(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ ARM_MM_NATIVE_N0XK0X7(VECTOR_ACC_TYPE, k0, a, b, c); \
+ ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, (a##7), b, (c##7)); \
+ })
+#define ARM_MUL_N0XK0(VECTOR_ACC_TYPE, k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_MUL_N0X, k0) \
+ (VECTOR_ACC_TYPE, (a), b, (c)); \
+ })
+#define ARM_MM_NATIVE_N0XK0XM0(VECTOR_ACC_TYPE, m0, k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_MM_NATIVE_N0XK0X, m0) \
+ (VECTOR_ACC_TYPE, k0, a, b, c); \
+ })
+
+#if defined(GEMMLOWP_MM_RESHAPED_LHS_NT_RHS_T)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices with QASYMM/QASYMM_SIGNED data type.
+ * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
+ * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ *
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
+ * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
+ * @note The GEMM's dimensions M and N must be passed at compile time using -DM and -DN (i.e. -DM=52 and -DN=90).
+ * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
+ * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (i.e. -DV0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 2, 3, 4, 8, 16
+ * - K0 = 2, 3, 4, 8, 16
+ * - V0 >= 1
+ * - H0 >= 1
+ *
+ * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
+ *
+ * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: QASYMM8/QASYMM_SIGNED
+ * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
+ * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemmlowp_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+ IMAGE_DECLARATION(dst),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global DATA_TYPE *lhs_addr = (__global DATA_TYPE *)(lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z));
+
+ // Compute RHS matrix address
+ __global DATA_TYPE *rhs_addr = (__global DATA_TYPE *)(rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X + (x / (uint)H0) * rhs_stride_y);
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zrhs, 0);
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(ACC_DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(ACC_DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
+
+ for(int i = 0; i < k; i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X, zlhs);
+
+ // Load values from RHS matrix
+ LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X, zrhs);
+
+ // Partial matrix multiplication M0,N0,K0
+ ARM_MM_K0XN0XM0(M0, N0, K0, a, b, c);
+
+ // Update address
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP);
+ rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(int)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Convert and store output block
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+ // Store output block
+ REPEAT_VAR_INIT_CONVERT_SAT(M0, VEC_DATA_TYPE(int, N0), c, c_lp);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, int, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#endif // defined(GEMMLOWP_MM_RESHAPED_LHS_NT_RHS_T)
+
+#if defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T_FUSED_OUTPUT_STAGE_FIXEDPOINT) || defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T)
+#if defined(RESULT_OFFSET) && defined(RESULT_MULTIPLIER) && defined(RESULT_SHIFT)
+#define FUSED_OUTPUT_STAGE_FIXED_POINT
+#endif // defined(RESULT_OFFSET) && defined(RESULT_MULTIPLIER) && defined(RESULT_SHIFT)
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices with fused output stage using fixed-point arithmetic.
+ * The LHS matrix is NOT reshaped
+ * The RHS matrix is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
+ *
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
+ * @note The number of columns of LHS matrix must be passed at compile time using -DK (i.e. -DK=64)
+ * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (i.e. -DN0=8, -DK0=4).
+ * @note The number of M0 rows to process must be passed at compile time using -DM0 (i.e. -DM0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 2, 3, 4, 8, 16
+ * - K0 = 2, 3, 4, 8, 16
+ * - H0 >= 1
+ *
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
+ *
+ * @note The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULTIPLIER and -DRESULT_SHIFT
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note In case of per-channel quantization of matrix B, -DPER_CHANNEL_QUANTIZATION must be passed at compile time.
+ *
+ * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: QASYMM8/QASYMM8_SIGNED
+ * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: S32
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: S32
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: S32
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[in] result_multipliers_ptr (Optional) Pointer to the output multipliers vector for per-channel quantization. Supported data types: S32
+ * @param[in] result_multipliers_stride_x (Optional) Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] result_multipliers_step_x (Optional) output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] result_multipliers_offset_first_element_in_bytes (Optional) The offset of the first element in the output multipliers vector
+ * @param[in] result_shifts_ptr (Optional) Pointer to the output shifts vector for per-channel quantization. Supported data types: S32
+ * @param[in] result_shifts_stride_x (Optional) Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] result_shifts_step_x (Optional) output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] result_shifts_offset_first_element_in_bytes (Optional) The offset of the first element in the output shifts vector
+ */
+#if defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T_FUSED_OUTPUT_STAGE_FIXEDPOINT)
+__kernel void gemmlowp_mm_reshaped_only_rhs_t_fused_output_stage_fixedpoint
+#elif defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T) // defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T_FUSED_OUTPUT_STAGE_FIXEDPOINT)
+__kernel void gemmlowp_mm_reshaped_only_rhs_t
+#endif // defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T)
+(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+ IMAGE_DECLARATION(dst),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS)
+#if defined(PER_CHANNEL_QUANTIZATION)
+ ,
+ VECTOR_DECLARATION(result_multipliers),
+ VECTOR_DECLARATION(result_shifts)
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+)
+{
+ // @note: replace with (DIMENSION + PAD) once we pass the relevant info at compile time
+#define FULL_LHS_HEIGHT (lhs_stride_z / lhs_stride_y)
+#define FULL_DST_HEIGHT (dst_stride_z / dst_stride_y)
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X (K0 * H0)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0 * N0)
+#define RHS_STEP_X (K0)
+#endif // defined(RHS_INTERLEAVE)
+#define RHS_STEP_LOOP (N0 * K0 * H0)
+
+ uint x = GET_SPATIAL_IDX(0, 1, 1);
+ uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0);
+ uint z = GET_SPATIAL_IDX(2, 1, 1);
+ int xo = (x * N0);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((xo >= N) || (y >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_y = y + z * FULL_LHS_HEIGHT;
+
+ // Compute RHS matrix address
+ uint rhs_offset_x = (x % H0) * RHS_OFFSET_X;
+ uint rhs_offset_y = (x / H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_offset_y += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_offset_y += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ TILE(ACC_DATA_TYPE, M0, N0, c);
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ c[i].v = 0;
+ })
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ TILE(DATA_TYPE, M0, K0, a);
+ TILE(DATA_TYPE, N0, K0, b);
+
+ // Load values from LHS matrix
+ T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, i, lhs_y, 1, lhs_stride_y, a);
+
+ // // Load values from RHS matrix
+ LOOP_UNROLLING(int, _i, 0, 1, N0,
+ {
+ b[_i].v = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset_first_element_in_bytes + rhs_offset_x + rhs_offset_y + _i * RHS_STEP_X));
+ })
+
+ // Partial matrix multiplication M0,N0,K0
+ T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, K0, NT, T, a, b, c);
+
+ rhs_offset_x += RHS_STEP_LOOP;
+ }
+
+#if((K % K0) != 0)
+
+ // Left-over accumulations
+ for(; i < K; ++i)
+ {
+ TILE(DATA_TYPE, M0, 1, a);
+ TILE(DATA_TYPE, N0, 1, b);
+
+ // Load values from LHS matrix
+ T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, i, lhs_y, 1, lhs_stride_y, a);
+
+ LOOP_UNROLLING(int, _i, 0, 1, N0,
+ {
+ b[_i].v = *(__global DATA_TYPE *)(rhs_ptr + rhs_offset_first_element_in_bytes + rhs_offset_x + rhs_offset_y + _i * RHS_STEP_X);
+ })
+
+ T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, 1, NT, T, a, b, c);
+
+ rhs_offset_x += 1;
+ }
+#endif // ((K % K0) != 0)
+
+#if defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
+
+ TILE(int, M0, N0, c_int);
+ TILE(int, M0, N0, offset_s32);
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ offset_s32[i].v = (VEC_DATA_TYPE(int, N0))K_OFFSET;
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ c_int[i].v = CONVERT_SAT(c[i].v, VEC_DATA_TYPE(int, N0));
+ })
+
+#if defined(A_OFFSET)
+
+#if defined(SUM_COL_HAS_BATCHES)
+ int sum_col_y = z;
+#else // defined(SUM_COL_HAS_BATCHES)
+ int sum_col_y = 0;
+#endif // defined(SUM_COL_HAS_BATCHES)
+ TILE(int, 1, N0, a_offset_s32);
+
+ T_LOAD(int, 1, N0, BUFFER, sum_col, xo, sum_col_y, 1, sum_col_stride_y, a_offset_s32);
+
+ a_offset_s32[0].v *= A_OFFSET;
+
+ T_ELTWISE_BROADCAST_ADD_X(int, M0, N0, offset_s32, a_offset_s32, offset_s32);
+#endif // defined(A_OFFSET)
+
+#if defined(B_OFFSET)
+ // Compute the offset contribution due to B_OFFSET
+ // Note: The sum_row tensor is generated through CLGEMMLowpMatrixAReductionKernel which
+ // does not introduce paddings. For this reason is safe to access the tensor in this manner
+ // without considering that the coordinate "y" could come from an input 3D tensor
+ TILE(int, M0, N0, b_offset_s32);
+
+ T_LOAD(int, M0, 1, BUFFER, sum_row, y + z * (sum_row_stride_y / sizeof(int)), 0, 1, sum_row_stride_x, b_offset_s32);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ offset_s32[i].v += b_offset_s32[i].v *B_OFFSET;
+ })
+
+#endif // defined(B_OFFSET)
+
+#if defined(ADD_BIAS)
+
+ TILE(int, 1, N0, bias);
+
+ T_LOAD(int, 1, N0, BUFFER, biases, xo, 0, 1, 0, bias);
+
+ T_ELTWISE_BROADCAST_ADD_X(int, M0, N0, offset_s32, bias, offset_s32);
+#endif // defined(ADD_BIAS)
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ c_int[i].v += offset_s32[i].v;
+ })
+
+ TILE(DATA_TYPE, M0, N0, c_lp);
+
+ // Multiply by result_mult_int and shift
+#if defined(PER_CHANNEL_QUANTIZATION)
+ TILE(int, 1, N0, res_mul);
+ TILE(int, 1, N0, res_shift);
+
+ T_LOAD(int, 1, N0, BUFFER, result_multipliers, xo, 0, 0, 0, res_mul);
+ T_LOAD(int, 1, N0, BUFFER, result_shifts, xo, 0, 0, 0, res_shift);
+
+ T_QUANTIZE8(int, DATA_TYPE, PER_CHANNEL, M0, N0, RESULT_OFFSET, RESULT_SHIFT, RESULT_MULTIPLIER, c_int, res_mul, res_shift, c_lp);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+ T_QUANTIZE8(int, DATA_TYPE, PER_TENSOR, M0, N0, RESULT_OFFSET, RESULT_SHIFT, RESULT_MULTIPLIER, c_int, 0, 0, c_lp);
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+#if defined(MIN_BOUND)
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ c_lp[i].v = max(c_lp[i].v, (VEC_DATA_TYPE(DATA_TYPE, N0))MIN_BOUND);
+ })
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ c_lp[i].v = min(c_lp[i].v, (VEC_DATA_TYPE(DATA_TYPE, N0))MAX_BOUND);
+ })
+#endif // defined(MAX_BOUND)
+
+#else // defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
+ TILE(int, M0, N0, c_lp);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ c_lp[i].v = CONVERT_SAT(c[i].v, VEC_DATA_TYPE(int, N0));
+ })
+#endif // defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
+
+ TILE(uint, M0, 1, dst_indirect_y);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ dst_indirect_y[i].v = (uint)min((int)((y + i) % HEIGHT_GEMM3D), (int)HEIGHT_GEMM3D - 1);
+ dst_indirect_y[i].v += (uint)min((int)((y + i) / HEIGHT_GEMM3D), (int)DEPTH_GEMM3D - 1) * FULL_DST_HEIGHT;
+ dst_indirect_y[i].v += z *FULL_DST_HEIGHT *DEPTH_GEMM3D;
+#else // (REINTERPRET_OUTPUT_AS_3D)
+ dst_indirect_y[i].v = (uint)min((int)y + i, (int)M - 1) + z *FULL_DST_HEIGHT;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+ })
+
+ const bool cond_x = (xo > (N - N0)) & (PARTIAL_STORE_N0 != 0);
+
+#if defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
+ T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, xo, dst_stride_y, cond_x, c_lp, dst_indirect_y);
+#else // defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
+ T_STORE_INDIRECT_WIDTH_SELECT(int, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, xo, dst_stride_y, cond_x, c_lp, dst_indirect_y);
+#endif // defined(FUSED_OUTPUT_STAGE_FIXED_POINT)
+
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
+}
+#endif // defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T_FUSED_OUTPUT_STAGE_FIXEDPOINT) || defined(GEMMLOWP_MM_RESHAPED_ONLY_RHS_T)
+
+#if defined(GEMMLOWP_MM_NATIVE)
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
+ * The LHS matrix is NOT reshaped
+ * The RHS matrix is NOT reshaped
+ *
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The accumulator data type must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
+ * @note The number of columns of LHS matrix must be passed at compile time using -DK (i.e. -DK=64)
+ * @note The number of M0 rows to process must be passed at compile time using -DM0 (i.e. -DM0=2)
+ * @note The number of N0 columns to process must be passed at compile time using -DN0 (i.e. -DN0=2)
+ * @note The number of K0 partial accumulations must be passed at compile time using -DK0 (i.e., -DK0=2)
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 2, 3, 4, 8, 16
+ * - K0 = 2, 3, 4, 8, 16
+ *
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
+ *
+ * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: QASYMM8
+ * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemmlowp_mm_native(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+ IMAGE_DECLARATION(dst),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+
+ // Compute RHS matrix address
+ uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE);
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_offset += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0);
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zrhs, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(ACC_DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(ACC_DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
+
+ int i = 0;
+
+ for(; i <= (K - K0); i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+ // Load values from RHS matrix
+ LOAD_BLOCK(K0, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zrhs);
+
+ // Partial matrix multiplication M0,N0,K0
+#if(GPU_ARCH == GPU_ARCH_MIDGARD)
+ ARM_MM_NATIVE_N0XK0XM0(VEC_DATA_TYPE(ACC_DATA_TYPE, N0), M0, K0, a, b, c);
+#else // GPU_ARCH == GPU_ARCH_MIDGARD
+ // Transpose the values from RHS matrix
+ TRANSPOSE_K0XN0(K0, N0, b_t, b, DATA_TYPE);
+
+ ARM_MM_K0XN0XM0(M0, N0, K0, a, b_t, c);
+#endif // GPU_ARCH == GPU_ARCH_MIDGARD
+
+ // Update the offset
+ lhs_offset += K0;
+ rhs_offset += K0 * rhs_stride_y;
+ }
+
+ // Left-over for loop
+ for(; i < K; ++i)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+ // Load values from RHS matrix
+ LOAD_BLOCK(1, N0, DATA_TYPE, b, rhs_ptr, rhs_offset, rhs_stride_y, zrhs);
+
+ // Partial matrix multiplication M0,N0,1
+#if(GPU_ARCH == GPU_ARCH_MIDGARD)
+ ARM_MM_NATIVE_N0XK0XM0(VEC_DATA_TYPE(ACC_DATA_TYPE, N0), M0, 1, a, b, c);
+#else // GPU_ARCH == GPU_ARCH_MIDGARD
+ // Transpose the values from RHS matrix
+ TRANSPOSE_K0XN0(1, N0, b_t, b, DATA_TYPE);
+
+ ARM_MM_K0XN0XM0(M0, N0, 1, a, b_t, c);
+#endif // GPU_ARCH == GPU_ARCH_MIDGARD
+
+ // Update the offset
+ lhs_offset += 1;
+ rhs_offset += rhs_stride_y;
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(int)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+ const bool cond_y = y == 0;
+ const bool cond_x = ((x + 1) * N0 >= N);
+
+ // Convert and store output block
+ REPEAT_VAR_INIT_CONVERT(M0, VEC_DATA_TYPE(int, N0), c, res); // resN = CONVERT(cN, VEC_DATA_TYPE(int, N0));
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, int, res, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+}
+#endif // defined(GEMMLOWP_MM_NATIVE)
+
+#if defined(GEMMLOWP_MATRIX_A_REDUCTION)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
+ * It is also possible to multiply each reduced row by a scalar value, if SCALAR is passed at compile time.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The data type for the accumulation must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
+ * @note In case of scaling the scalar value must be passed at compile time using -DSCALAR (e.g. -DSCALAR=3)
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8/QASYMM8_SIGNED/QSYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_a_reduction(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
+ sum_row_32 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))0;
+ ACC_DATA_TYPE sum_row = 0;
+
+ __global const DATA_TYPE *matrix_a = (__global const DATA_TYPE *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
+
+ int i = 0;
+
+ // This for loop performs 16 accumulations
+ for(; i <= ((int)COLS_A - 16); i += 16)
+ {
+ const VEC_DATA_TYPE(DATA_TYPE, 16) a0 = vload16(0, matrix_a + i);
+
+ sum_row_32 += CONVERT(a0.s0123, VEC_DATA_TYPE(ACC_DATA_TYPE, 4)) + CONVERT(a0.s4567, VEC_DATA_TYPE(ACC_DATA_TYPE, 4)) + CONVERT(a0.s89AB, VEC_DATA_TYPE(ACC_DATA_TYPE, 4)) + CONVERT(a0.sCDEF,
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 4));
+ }
+
+ // This for loop performs the leftover accumulations
+ for(; i < COLS_A; ++i)
+ {
+ sum_row += (ACC_DATA_TYPE)matrix_a[i];
+ }
+
+ sum_row += sum_row_32.s0 + sum_row_32.s1 + sum_row_32.s2 + sum_row_32.s3;
+
+#if defined(SCALAR)
+ sum_row *= (int)SCALAR;
+#endif // defined(SCALAR)
+ *((__global int *)dst.ptr) = (int)sum_row;
+}
+#endif // defined(GEMMLOWP_MATRIX_A_REDUCTION)
+
+#if defined(GEMMLOWP_MATRIX_A_REDUCTION_DOT8)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A using the arm dot product instruction.
+ * It is also possible to multiply each reduced row by a scalar value, if SCALAR is passed at compile time.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The data type for the accumulation must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
+ * @note In case of scaling the scalar value must be passed at compile time using -DSCALAR (e.g. -DSCALAR=3)
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8/QASYMM8_SIGNED/QSYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_a_reduction_dot8(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ ACC_DATA_TYPE sum_row = 0;
+
+ __global const DATA_TYPE *matrix_a = (__global const DATA_TYPE *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
+
+ int i = 0;
+
+ // This for loop performs 16 accumulations
+ for(; i <= ((int)COLS_A - 32); i += 32)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, 16)
+ a0 = vload16(0, matrix_a + i);
+
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.s0123, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.s4567, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.s89AB, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.sCDEF, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+
+ a0 = vload16(1, matrix_a + i);
+
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.s0123, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.s4567, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.s89AB, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ DOT_PRODUCT4_INTEGER8(DATA_TYPE, DATA_TYPE, DATA_TYPE, a0.sCDEF, (VEC_DATA_TYPE(DATA_TYPE, 4))(1), sum_row);
+ }
+
+ // This for loop performs the leftover accumulations
+ for(; i < COLS_A; ++i)
+ {
+ sum_row += (ACC_DATA_TYPE)matrix_a[i];
+ }
+
+#if defined(SCALAR)
+ sum_row *= (int)SCALAR;
+#endif // defined(SCALAR)
+ *((__global int *)dst.ptr) = (int)sum_row;
+}
+#endif // defined(GEMMLOWP_MATRIX_A_REDUCTION_DOT8)
+
+#if defined(GEMMLOWP_MATRIX_B_REDUCTION)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B.
+ * It is also possible to multiply each reduced column by a scalar value, if SCALAR is passed at compile time.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix B columns and rows needs to be passed at compile time using -DCOLS_B and -DROWS_B
+ * @note The input data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=uchar)
+ * @note The data type for the accumulation must be passed at compile time using -DACC_DATA_TYPE (i.e. -DACC_DATA_TYPE=uint)
+ * @note In case of scaling the scalar value must be passed at compile time using -DSCALAR (i.e. -DSCALAR=3)
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8/QASYMM8_SIGNED/QSYMM8/QSYMM8_PER_CHANNEL
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ const uint y = get_global_id(1);
+
+ __global const DATA_TYPE *matrix_b = (__global const DATA_TYPE *)(src_ptr + src_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + y * src_step_y + y * src_stride_z);
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs * sizeof(int) + y * dst_stride_y;
+
+ VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
+ sum_col_32 = (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))0;
+
+ int i = 0;
+ // This for loop performs 4 accumulations
+ for(; i <= ((int)ROWS_B - 4); i += 4)
+ {
+ const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ b0 = VLOAD(VEC_SIZE)(0, matrix_b + 0 * src_stride_y);
+ const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ b1 = VLOAD(VEC_SIZE)(0, matrix_b + 1 * src_stride_y);
+ const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ b2 = VLOAD(VEC_SIZE)(0, matrix_b + 2 * src_stride_y);
+ const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ b3 = VLOAD(VEC_SIZE)(0, matrix_b + 3 * src_stride_y);
+
+ sum_col_32 += CONVERT(b0, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)) + CONVERT(b1, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)) + CONVERT(b2, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)) + CONVERT(b3,
+ VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+
+ matrix_b += 4 * src_stride_y;
+ }
+
+ // This for loop perfoms the leftover accumulations
+ for(; i < (int)ROWS_B; ++i)
+ {
+ const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ b0 = VLOAD(VEC_SIZE)(0, matrix_b);
+
+ sum_col_32 += CONVERT(b0, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+
+ matrix_b += src_stride_y;
+ }
+
+#if defined(SCALAR)
+ sum_col_32 *= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))SCALAR;
+#endif // defined(SCALAR)
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ res0 = CONVERT(sum_col_32, VEC_DATA_TYPE(int, VEC_SIZE));
+
+ STORE_VECTOR_SELECT(res, int, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_MATRIX_B_REDUCTION)
+
+#endif // defined(DATA_TYPE) && defined(ACC_DATA_TYPE)
+
+#if defined(K_OFFSET) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER)
+
+#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
+
+/* Helper function used to calculate the offset contribution after matrix multiplication.
+ *
+ * This kernel takes a final int32 accumulator value (the output of matrix multiplication),
+ * and calculates the offset contribution of matrix A and matrix B.
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] x max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0)
+ * @param[in] y get_global_id(1)
+ * @param[in] z get_global_id(2)
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ */
+inline VEC_INT offset_contribution(
+ int x,
+ int y,
+ int z
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS)
+)
+{
+ VEC_INT a_offset_s32 = (VEC_INT)0;
+ VEC_INT b_offset_s32 = (VEC_INT)0;
+
+ int batch_id = z;
+#if defined(DEPTH_INPUT3D)
+ batch_id /= (int)DEPTH_INPUT3D;
+#endif // defined(DEPTH_INPUT3D)
+
+#if defined(A_OFFSET)
+ // Compute the offset contribution due to A_OFFSET
+ __global uchar *sum_col_addr = sum_col_ptr + sum_col_offset_first_element_in_bytes + x * sizeof(int);
+
+ // Compute the offset contribution due to A_OFFSET
+#if defined(SUM_COL_HAS_BATCHES)
+ a_offset_s32 = VLOAD(VEC_SIZE)(0, (__global int *)(sum_col_addr + batch_id * sum_col_stride_y));
+#else // defined(SUM_COL_HAS_BATCHES)
+ a_offset_s32 = VLOAD(VEC_SIZE)(0, (__global int *)sum_col_addr);
+#endif // defined(SUM_COL_HAS_BATCHES)
+
+ a_offset_s32 *= (VEC_INT)A_OFFSET;
+#endif // defined(A_OFFSET)
+
+#if defined(B_OFFSET)
+ // Compute the offset contribution due to A_OFFSET
+ __global uchar *sum_row_addr = sum_row_ptr + sum_row_offset_first_element_in_bytes + y * sizeof(int);
+
+ // Compute the offset contribution due to B_OFFSET
+#if defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 = (VEC_INT) * (((__global int *)(sum_row_addr + batch_id * sum_row_stride_y)) + (z % (int)DEPTH_INPUT3D) * (int)HEIGHT_INPUT3D);
+#else // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 = (VEC_INT) * (((__global int *)(sum_row_addr + batch_id * sum_row_stride_y)));
+#endif // defined(HEIGHT_INPUT3D) && defined(DEPTH_INPUT3D)
+ b_offset_s32 *= (VEC_INT)B_OFFSET;
+#endif // defined(B_OFFSET)
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ VEC_INT biases_values = VLOAD(VEC_SIZE)(0, (__global int *)bias_addr);
+ b_offset_s32 += (VEC_INT)biases_values;
+#endif // defined(ADD_BIAS)
+
+ return (VEC_INT)K_OFFSET + a_offset_s32 + b_offset_s32;
+}
+
+#if defined(GEMMLOWP_OFFSET_CONTRIBUTION)
+/* OpenCL kernel used to add the offset contribution after matrix multiplication. The computation is performed in-place
+ *
+ * This kernel takes a final int32 accumulator value (the output of matrix multiplication),
+ * and adds to it the offset contribution of matrix A and matrix B in-place.
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * The final result is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ */
+__kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(ADD_BIAS))
+ )
+{
+ const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
+
+ // Compute offset contribution
+ VEC_INT offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
+
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+
+ VEC_INT in_s32_0 = VLOAD(VEC_SIZE)(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32_0 += offset_term_s32;
+
+ // Store the result with the offset contribution
+ STORE_VECTOR_SELECT(in_s32_, int, mm_result_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OFFSET_CONTRIBUTION)
+
+#if defined(GEMMLOWP_OFFSET_CONTRIBUTION_QUANTIZE_DOWN)
+/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel and it quantizes down to uint8.
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel), adds to it the offset contribution of matrix A and matrix B and quantizes to uint8 through the output stage.
+ *
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * The result before the output stage is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * This result is quantized down to uint8/int8 using the output stage. The output stage computes the following operations:
+ *
+ * -# Add offset terms to final result
+ * -# Multiply each entry of result by result_mult_int
+ * -# Add bias to final result (if -DADD_BIAS is passed at compile time)
+ * -# Shift the int32 accumulator by result_shift
+ * -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
+ * -# Clamp the resulting int32 values:
+ * - to the [0..255] range and cast to QASYMM8.
+ * - to the [-128..127] range and cast to QASYMM8_SIGNED.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8/QASYMM8_SIGNED
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] result_multipliers_ptr (Optional) Pointer to the output multipliers vector for per-channel quantization. Supported data types: S32
+ * @param[in] result_multipliers_stride_x (Optional) Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] result_multipliers_step_x (Optional) output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] result_multipliers_offset_first_element_in_bytes (Optional) The offset of the first element in the output multipliers vector
+ * @param[in] result_shifts_ptr (Optional) Pointer to the output shifts vector for per-channel quantization. Supported data types: S32
+ * @param[in] result_shifts_stride_x (Optional) Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] result_shifts_step_x (Optional) output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] result_shifts_offset_first_element_in_bytes (Optional) The offset of the first element in the output shifts vector
+ */
+__kernel void gemmlowp_offset_contribution_quantize_down(TENSOR3D_DECLARATION(mm_result)
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ ,
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst)
+#if defined(PER_CHANNEL_QUANTIZATION)
+ ,
+ VECTOR_DECLARATION(result_multipliers),
+ VECTOR_DECLARATION(result_shifts)
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+ )
+{
+ const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ // Compute offset contribution
+ VEC_INT offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
+
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+
+ VEC_INT in_s32 = VLOAD(VEC_SIZE)(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // -------------- OUTPUT STAGE
+
+ // Add the offset terms to GEMM's result
+ in_s32 += (VEC_INT)RESULT_OFFSET;
+
+ // Multiply by result_mult_int and shift
+#if defined(PER_CHANNEL_QUANTIZATION)
+ __global uchar *result_multipliers_addr = result_multipliers_ptr + result_multipliers_offset_first_element_in_bytes + x * sizeof(int);
+ __global uchar *result_shifts_addr = result_shifts_ptr + result_shifts_offset_first_element_in_bytes + x * sizeof(int);
+ VEC_INT result_multipliers_values = VLOAD(VEC_SIZE)(0, (__global int *)result_multipliers_addr);
+ VEC_INT result_shifts_values = VLOAD(VEC_SIZE)(0, (__global int *)result_shifts_addr);
+
+ in_s32 *= result_multipliers_values;
+ in_s32 >>= result_shifts_values;
+#else // defined(PER_CHANNEL_QUANTIZATION)
+ in_s32 *= RESULT_MULTIPLIER;
+
+ in_s32 >>= RESULT_SHIFT;
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+ VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(in_s32, VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE));
+
+#if defined(MIN_BOUND)
+ res0 = max(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res0 = min(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ STORE_VECTOR_SELECT(res, OUTPUT_DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OFFSET_CONTRIBUTION_QUANTIZE_DOWN)
+
+#if defined(GEMMLOWP_OFFSET_CONTRIBUTION_QUANTIZE_DOWN_FIXEDPOINT)
+/* OpenCL kernel used to add the offset contribution after matrix multiplication and it quantizes down to uint8.
+ *
+ * This kernel takes a final int32 accumulator value (the output of matrix multiplication), adds to it the offset contribution of matrix A and matrix B and quantizes to uint8 through the output stage.
+ *
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ * @note In case sum_col has batches, -DSUM_COL_HAS_BATCHES must be passed at compile time. Usually if gemmlowp is used to accelerate convolution layer, sum_col will not have batches
+ *
+ * The result before the output stage is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * This result is quantized down to uint8/int8 using the output stage. The output stage computes the following operations:
+ *
+ * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Round to nearest division by a power-of-two using result_shift
+ * -# Add offset to each result
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values:
+ * - to the [0..255] range and cast to QASYMM8.
+ * - to the [-128..127] range and cast to QASYMM8_SIGNED.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_step_x (Optional) sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_step_y (Optional) sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] sum_row_ptr (Optional) Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_stride_x (Optional) Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_step_x (Optional) sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_stride_y (Optional) Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_step_y (Optional) sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_offset_first_element_in_bytes (Optional) The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8/QASYMM8_SIGNED
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] result_multipliers_ptr (Optional) Pointer to the output multipliers vector for per-channel quantization. Supported data types: S32
+ * @param[in] result_multipliers_stride_x (Optional) Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] result_multipliers_step_x (Optional) output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] result_multipliers_offset_first_element_in_bytes (Optional) The offset of the first element in the output multipliers vector
+ * @param[in] result_shifts_ptr (Optional) Pointer to the output shifts vector for per-channel quantization. Supported data types: S32
+ * @param[in] result_shifts_stride_x (Optional) Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] result_shifts_step_x (Optional) output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] result_shifts_offset_first_element_in_bytes (Optional) The offset of the first element in the output shifts vector
+ */
+__kernel void gemmlowp_offset_contribution_quantize_down_fixedpoint(TENSOR3D_DECLARATION(mm_result)
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ ,
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst)
+#if defined(PER_CHANNEL_QUANTIZATION)
+ ,
+ VECTOR_DECLARATION(result_multipliers),
+ VECTOR_DECLARATION(result_shifts)
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+ )
+{
+ const int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ const int y = get_global_id(1);
+ const int z = get_global_id(2);
+
+ // Compute offset contribution
+ VEC_INT offset_term_s32 = offset_contribution(
+ x, y, z
+#if defined(A_OFFSET)
+ ,
+ sum_col_ptr,
+ sum_col_stride_x,
+ sum_col_step_x,
+ sum_col_stride_y,
+ sum_col_step_y,
+ sum_col_offset_first_element_in_bytes
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ sum_row_ptr,
+ sum_row_stride_x,
+ sum_row_step_x,
+ sum_row_stride_y,
+ sum_row_step_y,
+ sum_row_offset_first_element_in_bytes
+#endif // defined(B_OFFSET)
+#if defined(ADD_BIAS)
+ ,
+ biases_ptr,
+ biases_stride_x,
+ biases_step_x,
+ biases_offset_first_element_in_bytes
+#endif // defined(ADD_BIAS)
+ );
+
+ __global uchar *mm_result_addr = mm_result_ptr + mm_result_offset_first_element_in_bytes + x * sizeof(int) + y * mm_result_stride_y + z * mm_result_stride_z;
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ VEC_INT in_s32 = VLOAD(VEC_SIZE)(0, (__global int *)mm_result_addr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // -------------- OUTPUT STAGE
+
+ // Multiply by result_mult_int and shift
+#if defined(PER_CHANNEL_QUANTIZATION)
+ __global uchar *result_multipliers_addr = result_multipliers_ptr + result_multipliers_offset_first_element_in_bytes + x * sizeof(int);
+ __global uchar *result_shifts_addr = result_shifts_ptr + result_shifts_offset_first_element_in_bytes + x * sizeof(int);
+ VEC_INT result_multipliers_values = VLOAD(VEC_SIZE)(0, (__global int *)result_multipliers_addr);
+ VEC_INT result_shifts_values = VLOAD(VEC_SIZE)(0, (__global int *)result_shifts_addr);
+
+ VEC_INT in_s32_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(in_s32, result_multipliers_values, result_shifts_values, VEC_SIZE);
+ VEC_INT in_s32_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(in_s32, result_multipliers_values, result_shifts_values, VEC_SIZE);
+ in_s32 = select(in_s32_shift_lt0, in_s32_shift_gt0, result_shifts_values >= 0);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+
+#if RESULT_SHIFT < 0
+ in_s32 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(in_s32, RESULT_MULTIPLIER, RESULT_SHIFT, VEC_SIZE);
+#else // RESULT_SHIFT >= 0
+ in_s32 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(in_s32, RESULT_MULTIPLIER, RESULT_SHIFT, VEC_SIZE);
+#endif // RESULT_SHIFT < 0
+
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+ // Add the offset terms to GEMM's result
+ in_s32 += (VEC_INT)RESULT_OFFSET;
+
+ VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(in_s32, VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE));
+
+#if defined(MIN_BOUND)
+ res0 = max(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res0 = min(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ STORE_VECTOR_SELECT(res, OUTPUT_DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OFFSET_CONTRIBUTION_QUANTIZE_DOWN_FIXEDPOINT)
+
+#undef VEC_INT
+
+#endif // defined(K_OFFSET) && defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER)
+
+#if defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN)
+/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8/QASYMM8_SIGNED
+ *
+ * This kernel takes a final int32 accumulator value and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
+ * The following computations will be performed by the kernel:
+ *
+ * -# Add offset terms to final result
+ * -# Multiply each entry of result by result_mult_int
+ * -# Add bias to final result (if -DADD_BIAS is passed at compile time)
+ * -# Shift the int32 accumulator by result_shift
+ * -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
+ * -# Clamp the resulting int32 values:
+ * -# - to the [0..255] range and cast to QASYMM8.
+ * -# - to the [-128..127] range and cast to QASYMM8_SIGNED.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8/QASYMM8_SIGNED
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ input_values = VLOAD(VEC_SIZE)(0, (__global int *)src_addr);
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ biases_values = VLOAD(VEC_SIZE)(0, (__global int *)bias_addr);
+ input_values += biases_values;
+#endif // defined(ADD_BIAS)
+
+ // Add the offset terms to GEMM's result
+ input_values += (VEC_DATA_TYPE(int, VEC_SIZE))RESULT_OFFSET;
+
+ // Multiply by result_mult_int and shift
+ input_values *= RESULT_MULT_INT;
+
+#if RESULT_SHIFT < 0
+ input_values >>= -RESULT_SHIFT;
+#else // RESULT_SHIFT >= 0
+ input_values >>= RESULT_SHIFT;
+#endif // RESULT_SHIFT < 0
+
+ VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(input_values, VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE));
+
+#if defined(MIN_BOUND)
+ res0 = max(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res0 = min(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ STORE_VECTOR_SELECT(res, OUTPUT_DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN)
+
+#if defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN_FIXEDPOINT)
+/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8/QASYMM8_SIGNED
+ *
+ * This kernel takes a final int32 accumulator value (the output of matrix multiplication), and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
+ * The following computations will be performed by the kernel:
+ *
+ * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Round to nearest division by a power-of-two using result_shift
+ * -# Add offset to each result
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values:
+ * - to the [0..255] range and cast to QASYMM8.
+ * - to the [-128..127] range and cast to QASYMM8_SIGNED.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET_AFTER_SHIFT, -DRESULT_FIXEDPOINT_MULTIPLIER and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8/QASYMM8_SIGNED
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_output_stage_quantize_down_fixedpoint(TENSOR3D_DECLARATION(src),
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ input_values = VLOAD(VEC_SIZE)(0, (__global int *)src_addr);
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ biases_values = VLOAD(VEC_SIZE)(0, (__global int *)bias_addr);
+ input_values += biases_values;
+#endif // defined(ADD_BIAS)
+
+ // Multiply by result_mult_int and shift
+#if RESULT_SHIFT < 0
+ input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, VEC_SIZE);
+#else // RESULT_SHIFT >= 0
+ input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, VEC_SIZE);
+#endif // RESULT_SHIFT < 0
+
+ // Add the offset terms to GEMM's result
+ input_values += (VEC_DATA_TYPE(int, VEC_SIZE))RESULT_OFFSET_AFTER_SHIFT;
+
+ VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(input_values, VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE));
+
+#if defined(MIN_BOUND)
+ res0 = max(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res0 = min(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ STORE_VECTOR_SELECT(res, OUTPUT_DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN_FIXEDPOINT)
+
+#if defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN_FIXEDPOINT_QSYMM16)
+/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QSYMM16
+ *
+ * This kernel takes a final int32 accumulator value (the output of matrix multiplication), and processes it to obtain the final QSYMM16 value.
+ * The following computations will be performed by the kernel:
+ *
+ * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Round to nearest division by a power-of-two using result_shift
+ * -# Add offset to each result
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values to the [-32768..32767] range and cast to QSYMM16.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_FIXEDPOINT_MULTIPLIER and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] biases_ptr (Optional) Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QSYMM16
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_output_stage_quantize_down_fixedpoint_qsymm16(TENSOR3D_DECLARATION(src),
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(short) + y * dst_stride_y + z * dst_stride_z;
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ input_values = VLOAD(VEC_SIZE)(0, (__global int *)src_addr);
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ biases_values = VLOAD(VEC_SIZE)(0, (__global int *)bias_addr);
+ input_values += biases_values;
+#endif // defined(ADD_BIAS)
+
+ // Multiply by result_mult_int and shift
+#if RESULT_SHIFT < 0
+ input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, VEC_SIZE);
+#else // RESULT_SHIFT >= 0
+ input_values = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(input_values, RESULT_FIXEDPOINT_MULTIPLIER, RESULT_SHIFT, VEC_SIZE);
+#endif // RESULT_SHIFT < 0
+
+ VEC_DATA_TYPE(short, VEC_SIZE)
+ res0 = CONVERT_SAT(input_values, VEC_DATA_TYPE(short, VEC_SIZE));
+
+#if defined(MIN_BOUND)
+ res0 = max(res0, (VEC_DATA_TYPE(short, VEC_SIZE))MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res0 = min(res0, (VEC_DATA_TYPE(short, VEC_SIZE))MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ STORE_VECTOR_SELECT(res, short, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN_FIXEDPOINT_QSYMM16)
+
+#if defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN_FLOAT)
+/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8/QASYMM8_SIGNED
+ *
+ * This kernel takes a final int32 accumulator value (the output of matrix multiplication), and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
+ * The following computations will be performed by the kernel:
+ *
+ * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Requantize
+ * -# Add offset to each result
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values:
+ * - to the [0..255] range and cast to QASYMM8.
+ * - to the [-128..127] range and cast to QASYMM8_SIGNED.
+ *
+ * @attention The offset and scalar scale factor must be passed at compile time using -DRESULT_OFFSET, -DREAL_MULTIPLIER
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] dst_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_output_stage_quantize_down_float(TENSOR3D_DECLARATION(src),
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+#if defined(DST_HEIGHT)
+ TENSOR4D_DECLARATION(dst))
+#else // defined(DST_HEIGHT)
+ TENSOR3D_DECLARATION(dst))
+#endif // defined(DST_HEIGHT)
+{
+ // Compute source and destination addresses
+ int x = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(int) + y * src_stride_y + z * src_stride_z;
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x + y * dst_stride_y + z * dst_stride_z;
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ input_values = VLOAD(VEC_SIZE)(0, (__global int *)src_addr);
+
+#if defined(ADD_BIAS)
+ // Add bias
+ __global uchar *bias_addr = biases_ptr + biases_offset_first_element_in_bytes + x * sizeof(int);
+
+ VEC_DATA_TYPE(int, VEC_SIZE)
+ biases_values = VLOAD(VEC_SIZE)(0, (__global int *)bias_addr);
+ input_values += (VEC_DATA_TYPE(int, VEC_SIZE))biases_values;
+#endif // defined(ADD_BIAS)
+
+ // Convert to float
+ VEC_DATA_TYPE(float, VEC_SIZE)
+ input_values_f = CONVERT(input_values, VEC_DATA_TYPE(float, VEC_SIZE));
+ input_values_f = round(input_values_f * (float)REAL_MULTIPLIER + (float)OUTPUT_OFFSET);
+
+ VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE)
+ res0 = CONVERT_SAT(input_values_f, VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE));
+
+#if defined(MIN_BOUND)
+ res0 = max(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res0 = min(res0, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, VEC_SIZE))MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ STORE_VECTOR_SELECT(res, OUTPUT_DATA_TYPE, dst_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+}
+#endif // defined(GEMMLOWP_OUTPUT_STAGE_QUANTIZE_DOWN_FLOAT)