aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl')
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl1399
1 files changed, 1399 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
new file mode 100644
index 0000000000..09ddcde043
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
@@ -0,0 +1,1399 @@
+/*
+ * Copyright (c) 2021-2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_post_ops_act_eltwise_op_act.h"
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped_only_rhs kernel */
+#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
+#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+
+#define CONCAT(a, b) a##b
+
+#define ARM_DOT1(a, b, c) \
+ ({ \
+ c = fma(a, b, c); \
+ })
+#define ARM_DOT2(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ })
+#define ARM_DOT3(a, b, c) \
+ ({ \
+ ARM_DOT2(a, b, c); \
+ c = fma((a.s2), (b.s2), c); \
+ })
+#define ARM_DOT4(a, b, c) \
+ ({ \
+ ARM_DOT3(a, b, c); \
+ c = fma((a.s3), (b.s3), c); \
+ })
+#define ARM_DOT8(a, b, c) \
+ ({ \
+ ARM_DOT4((a.lo), (b.lo), c); \
+ ARM_DOT4((a.hi), (b.hi), c); \
+ })
+#define ARM_DOT16(a, b, c) \
+ ({ \
+ ARM_DOT8((a.lo), (b.lo), c); \
+ ARM_DOT8((a.hi), (b.hi), c); \
+ })
+
+#if N0 == 2
+#define ARM_DOT_K0XN0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##0), (c.s0)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##1), (c.s1)); \
+ })
+#elif N0 == 3 // N0 == 3
+#define ARM_DOT_K0XN0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##0), (c.s0)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##1), (c.s1)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##2), (c.s2)); \
+ })
+#elif N0 == 4 // N0 == 4
+#define ARM_DOT_K0XN0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##0), (c.s0)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##1), (c.s1)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##2), (c.s2)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##3), (c.s3)); \
+ })
+#elif N0 == 8 // N0 == 8
+#define ARM_DOT_K0XN0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##0), (c.s0)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##1), (c.s1)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##2), (c.s2)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##3), (c.s3)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##4), (c.s4)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##5), (c.s5)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##6), (c.s6)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##7), (c.s7)); \
+ })
+#elif N0 == 16 // N0 == 16
+#define ARM_DOT_K0XN0(k0, a, b, c) \
+ ({ \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##0), (c.s0)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##1), (c.s1)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##2), (c.s2)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##3), (c.s3)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##4), (c.s4)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##5), (c.s5)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##6), (c.s6)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##7), (c.s7)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##8), (c.s8)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##9), (c.s9)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##A), (c.sA)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##B), (c.sB)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##C), (c.sC)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##D), (c.sD)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##E), (c.sE)); \
+ CONCAT(ARM_DOT, k0) \
+ ((a), (b##F), (c.sF)); \
+ })
+#else // N0 not supported
+#error "N0 value not supported"
+#endif // N0 conditions
+
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_t, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ ,
+ const int M,
+ const int N,
+ const int K)
+{
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ const bool cond_y = y == 0;
+ const bool cond_x = ((x + 1) * N0 >= N);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+
+ // Compute RHS reshaped matrix address
+ uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_offset += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0;
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ // Supported cases (M0, K0):
+ // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
+ // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
+ // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
+ // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
+ // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
+ // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
+ // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
+ // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+ // Load values from RHS reshaped matrix
+ LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
+
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(K0, a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(K0, a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(K0, a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(K0, a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(K0, a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(K0, a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(K0, a7, b, c7);
+#endif // M0 > 7
+
+ lhs_offset += K0 * sizeof(DATA_TYPE);
+ rhs_offset += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ }
+
+ // Left-over accumulations
+ for(; i < K; ++i)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+ // Load values from RHS reshaped matrix
+ LOAD_BLOCK(N0, 1, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero);
+
+ // Accumulate
+ ARM_DOT_K0XN0(1, a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(1, a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(1, a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(1, a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(1, a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(1, a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(1, a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(1, a7, b, c7);
+#endif // M0 > 7
+
+ lhs_offset += sizeof(DATA_TYPE);
+ rhs_offset += sizeof(DATA_TYPE);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT)
+
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_t_texture, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
+ */
+__kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ ,
+ const int M,
+ const int N,
+ const int K)
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
+
+ const uint LEFTOVER_K = K % K0;
+
+ // Block size
+#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X (PIXEL_UNIT * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X PIXEL_UNIT
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ const bool cond_y = y == 0;
+ const bool cond_x = ((x + 1) * N0 >= N);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = get_global_id(2);
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+ // Load values from RHS matrix stored in a cl_image
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(K0, a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(K0, a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(K0, a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(K0, a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(K0, a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(K0, a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(K0, a7, b, c7);
+#endif // M0 > 7
+
+ lhs_offset += K0 * sizeof(DATA_TYPE);
+ x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
+ }
+
+ if(LEFTOVER_K != 0)
+ {
+ // Note: We cannot read out-of-bound elements from the RHS matrix because
+ // the RHS width is always multiple of K0. This is not be true for the LHS matrix
+
+ union UNION_VEC_TYPE
+ {
+ DATA_TYPE s[K0];
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ v;
+ };
+
+ union UNION_VEC_TYPE a0 = {.v = 0 };
+#if M0 > 1
+ union UNION_VEC_TYPE a1 = {.v = 0 };
+#endif // M0 > 1
+#if M0 > 2
+ union UNION_VEC_TYPE a2 = {.v = 0 };
+#endif // M0 > 2
+#if M0 > 3
+ union UNION_VEC_TYPE a3 = {.v = 0 };
+#endif // M0 > 3
+#if M0 > 4
+ union UNION_VEC_TYPE a4 = {.v = 0 };
+#endif // M0 > 4
+#if M0 > 5
+ union UNION_VEC_TYPE a5 = {.v = 0 };
+#endif // M0 > 5
+#if M0 > 6
+ union UNION_VEC_TYPE a6 = {.v = 0 };
+#endif // M0 > 6
+#if M0 > 7
+ union UNION_VEC_TYPE a7 = {.v = 0 };
+#endif // M0 > 7
+
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+
+ // Load from RHS matrix
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+
+ // Load from LHS matrix
+ for(int k = 0; k < LEFTOVER_K; ++k)
+ {
+ a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
+#if M0 > 1
+ a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
+#endif // M0 > 1
+#if M0 > 2
+ a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
+#endif // M0 > 2
+#if M0 > 3
+ a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
+#endif // M0 > 3
+#if M0 > 4
+ a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
+#endif // M0 > 4
+#if M0 > 5
+ a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
+#endif // M0 > 5
+#if M0 > 6
+ a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
+#endif // M0 > 6
+#if M0 > 7
+ a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
+#endif // M0 > 7
+
+ lhs_offset += sizeof(DATA_TYPE);
+ }
+
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0.v, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(K0, a1.v, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(K0, a2.v, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(K0, a3.v, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(K0, a4.v, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(K0, a5.v, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(K0, a6.v, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(K0, a7.v, b, c7);
+#endif // M0 > 7
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef PIXEL_UNIT
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
+
+#define VFMA(a, b, c) \
+ ({ \
+ c = fma(a, b, c); \
+ })
+
+#if M0 == 1
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ })
+#elif M0 == 2 // M0 == 2
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ })
+#elif M0 == 3 // M0 == 3
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ })
+#elif M0 == 4 // M0 == 4
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ })
+#elif M0 == 5 // M0 == 5
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ })
+#elif M0 == 6 // M0 == 6
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+ })
+#elif M0 == 7 // M0 == 7
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
+ })
+#elif M0 == 8 // M0 == 8
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
+ })
+#else // M0 not supported
+#error "M0 not supported"
+#endif // M0 not supported
+
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_nt, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
+ */
+__kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ ,
+ const int M,
+ const int N,
+ const int K)
+{
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (N0)
+#define RHS_STEP_X ((N0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (N0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ const bool cond_y = y == 0;
+ const bool cond_x = ((x + 1) * N0 >= N);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+
+ // Compute RHS reshaped matrix address
+ uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_offset += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zin0=0,zin1=0,zin2=0,... zin7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); //uint zero0=0,zero1=0,zero2=0,... zero7=0;
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0;
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ // Supported cases (M0, K0):
+ // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
+ // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
+ // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
+ // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
+ // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
+ // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
+ // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
+ // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(0, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 1 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(1, a, b0, c);
+#if K0 > 2
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 2 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(2, a, b0, c);
+#endif // K0 > 2
+#if K0 > 3
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 3 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(3, a, b0, c);
+#endif // K0 > 3
+#if K0 > 4
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 4 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(4, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 5 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(5, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 6 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(6, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 7 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(7, a, b0, c);
+#endif // K0 > 4
+#if K0 > 8
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 8 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(8, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 9 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(9, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 10 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(A, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 11 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(B, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 12 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(C, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 13 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(D, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 14 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(E, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 15 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(F, a, b0, c);
+#endif // K0 > 8
+
+ lhs_offset += K0 * sizeof(DATA_TYPE);
+ rhs_offset += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE);
+ }
+
+ // Left-over accumulations
+ for(; i < K; ++i)
+ {
+ // Load values from LHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
+#endif // M0 > 7
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(0, a, b0, c);
+
+ lhs_offset += sizeof(DATA_TYPE);
+ rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
+}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT)
+
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_nt_texture, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
+ */
+__kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ ,
+ const int M,
+ const int N,
+ const int K)
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (PIXEL_UNIT)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ const bool cond_y = y == 0;
+ const bool cond_x = ((x + 1) * N0 >= N);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (z % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0);
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(0, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(1, a, b0, c);
+#if K0 > 2
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(2, a, b0, c);
+#endif // K0 > 2
+#if K0 > 3
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(3, a, b0, c);
+#endif // K0 > 3
+#if K0 > 4
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(4, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(5, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(6, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(7, a, b0, c);
+#endif // K0 > 4
+#if K0 > 8
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(8, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(9, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(A, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(B, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(C, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(D, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(E, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(F, a, b0, c);
+#endif // K0 > 8
+
+ lhs_offset += K0 * sizeof(DATA_TYPE);
+ x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP;
+ }
+
+ // Left-over accumulations
+ for(; i < K; ++i)
+ {
+ // Load values from LHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
+#endif // M0 > 7
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
+
+ VFMA_M0xN0(0, a, b0, c);
+
+ lhs_offset += sizeof(DATA_TYPE);
+ x_rhs += RHS_STEP_X;
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT)
+#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)