aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/arg_min_max.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/arg_min_max.cl')
-rw-r--r--src/core/CL/cl_kernels/common/arg_min_max.cl388
1 files changed, 388 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/common/arg_min_max.cl b/src/core/CL/cl_kernels/common/arg_min_max.cl
new file mode 100644
index 0000000000..413fcf5333
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/arg_min_max.cl
@@ -0,0 +1,388 @@
+/*
+ * Copyright (c) 2019-2021, 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "tile_helpers.h"
+
+#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE_OUTPUT)
+
+#define VEC_TYPE_IN VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+#define VEC_TYPE_OUT VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
+#define VEC_SELECT_IN SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+#define VEC_SIGNED_INT_IN SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+
+#if defined(FLOAT_DATA_TYPE)
+#define ISGREATER(x, y) (VEC_SELECT_IN) isgreater(x, y)
+#define ISLESS(x, y) (VEC_SELECT_IN) isless(x, y)
+#else // !FLOAT_DATA_TYPE
+#if defined(WIDTH)
+#define ISGREATER(x, y) (x > y) ? 1 : 0
+#define ISLESS(x, y) (x < y) ? 1 : 0
+#else // !defined(WIDTH)
+#define ISGREATER(x, y) select((VEC_SIGNED_INT_IN)0, (VEC_SIGNED_INT_IN)-1, (VEC_SIGNED_INT_IN)(x > y))
+#define ISLESS(x, y) select((VEC_SIGNED_INT_IN)0, (VEC_SIGNED_INT_IN)-1, (VEC_SIGNED_INT_IN)(x < y))
+#endif // defined(WIDTH)
+#endif // defined(FLOAT_DATA_TYPE)
+
+#if defined(ARG_MAX)
+#define CONDITION_TO_USE(x, y) ISGREATER(x, y)
+#elif defined(ARG_MIN)
+#define CONDITION_TO_USE(x, y) ISLESS(x, y)
+#else // !(defined(ARG_MAX) || defined(ARG_MIN))
+#error "Unsupported reduction operation!"
+#endif // defined(ARG_MAX)
+
+#if defined(WIDTH)
+
+#if defined(ARG_MAX)
+#define VECTOR_PREDICATE_EQ(x, y) ((x) >= (y))
+#define VECTOR_PREDICATE(x, y) ((x) > (y))
+#define SCALAR_SELECT_OP(x, y) ((x) > (y)) ? (x) : (y);
+#elif defined(ARG_MIN)
+#define VECTOR_PREDICATE_EQ(x, y) ((x) <= (y))
+#define VECTOR_PREDICATE(x, y) ((x) < (y))
+#define SCALAR_SELECT_OP(x, y) ((x) < (y)) ? (x) : (y);
+#else // !(defined(ARG_MAX) || defined(ARG_MIN))
+#error "Unsupported reduction operation!"
+#endif // defined(ARG_MAX)
+
+inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_2(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 2) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) res)
+{
+ if( VECTOR_PREDICATE_EQ(in.s0,in.s1) )
+ {
+ *min_max_val = in.s0;
+ *min_max_idx = res.s0;
+ }
+ else
+ {
+ *min_max_val = in.s1;
+ *min_max_idx = res.s1;
+ }
+}
+
+inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_4(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 4) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 4) res)
+{
+ VEC_DATA_TYPE(COND_DATA_TYPE, 2)
+ idx_sel = VECTOR_PREDICATE_EQ(in.s01, in.s23);
+ in.s01 = select(in.s23, in.s01, idx_sel);
+ res.s01 = select(res.s23, res.s01, CONVERT(idx_sel, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) ));
+ idx_sel.s0 = VECTOR_PREDICATE(in.s0, in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), COND_DATA_TYPE));
+ res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, DATA_TYPE_OUTPUT));
+ *min_max_val = SCALAR_SELECT_OP(in.s0, in.s1);
+ *min_max_idx = res.s0;
+}
+
+inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_8(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 8) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 8) res)
+{
+ VEC_DATA_TYPE(COND_DATA_TYPE, 4)
+ idx_sel = VECTOR_PREDICATE_EQ(in.s0123, in.s4567);
+ in.s0123 = select(in.s4567, in.s0123, idx_sel);
+ res.s0123 = select(res.s4567, res.s0123, CONVERT(idx_sel, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 4) ));
+ idx_sel.s01 = (VECTOR_PREDICATE(in.s01, in.s23)) || (in.s01 == in.s23 && CONVERT(((res.s01 < res.s23)), VEC_DATA_TYPE(COND_DATA_TYPE, 2)));
+ in.s01 = select(in.s23, in.s01, idx_sel.s01);
+ res.s01 = select(res.s23, res.s01, CONVERT(idx_sel.s01, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) ));
+ idx_sel.s0 = VECTOR_PREDICATE(in.s0, in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), COND_DATA_TYPE));
+ res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, DATA_TYPE_OUTPUT));
+ *min_max_val = SCALAR_SELECT_OP(in.s0, in.s1);
+ *min_max_idx = res.s0;
+}
+
+inline DATA_TYPE_OUTPUT vectorized_compute_arg_min_max_16(DATA_TYPE *min_max_val, DATA_TYPE_OUTPUT *min_max_idx, VEC_DATA_TYPE(DATA_TYPE, 16) in, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 16) res)
+{
+ VEC_DATA_TYPE(COND_DATA_TYPE, 8)
+ idx_sel = VECTOR_PREDICATE_EQ(in.s01234567, in.s89abcdef);
+ in.s01234567 = select(in.s89abcdef, in.s01234567, idx_sel);
+ res.s01234567 = select(res.s89abcdef, res.s01234567, CONVERT(idx_sel, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 8) ));
+ idx_sel.s0123 = VECTOR_PREDICATE(in.s0123, in.s4567) || (in.s0123 == in.s4567 && CONVERT(((res.s0123 < res.s4567)), VEC_DATA_TYPE(COND_DATA_TYPE, 4)));
+ in.s0123 = select(in.s4567, in.s0123, idx_sel.s0123);
+ res.s0123 = select(res.s4567, res.s0123, CONVERT(idx_sel.s0123, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 4) ));
+ idx_sel.s01 = (VECTOR_PREDICATE(in.s01, in.s23)) || (in.s01 == in.s23 && CONVERT(((res.s01 < res.s23)), VEC_DATA_TYPE(COND_DATA_TYPE, 2)));
+ in.s01 = select(in.s23, in.s01, idx_sel.s01);
+ res.s01 = select(res.s23, res.s01, CONVERT(idx_sel.s01, VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 2) ));
+ idx_sel.s0 = VECTOR_PREDICATE(in.s0, in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), COND_DATA_TYPE));
+ res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, DATA_TYPE_OUTPUT));
+ *min_max_val = SCALAR_SELECT_OP(in.s0, in.s1);
+ *min_max_idx = res.s0;
+}
+
+
+
+inline void scalar_compute_global_min_max(DATA_TYPE in_val, int idx, DATA_TYPE *out_min_max_val, DATA_TYPE_OUTPUT *out_idx)
+{
+#if defined(ARG_MAX)
+ if(in_val > *out_min_max_val)
+#else // defined(ARG_MAX)
+ if(in_val < *out_min_max_val)
+#endif // defined(ARG_MAX)
+ {
+ *out_min_max_val = in_val;
+ *out_idx = idx;
+ }
+}
+
+#if VEC_SIZE > 1
+#if VEC_SIZE == 16
+ #define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_16(min_max_val,min_max_idx,in,res)
+#elif VEC_SIZE == 8 // #if VEC_SIZE == 16
+ #define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_8(min_max_val,min_max_idx,in,res)
+#elif VEC_SIZE == 4 // # elif VEC_SIZE == 8
+ #define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_4(min_max_val,min_max_idx,in,res)
+#elif VEC_SIZE == 2 // elif VEC_SIZE == 4
+ #define VECTORIZED_OP(min_max_val,min_max_idx,in,res) vectorized_compute_arg_min_max_2(min_max_val,min_max_idx,in,res)
+#else // elif VEC_SIZE == 2
+ #error "Not supported"
+#endif // #if VEC_SIZE == 16
+
+inline VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE) init_idx_vector()
+{
+#if VEC_SIZE == 16
+ VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
+ vidx = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
+#elif VEC_SIZE == 8 // #if VEC_SIZE == 16
+ VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
+ vidx = { 0, 1, 2, 3, 4, 5, 6, 7 };
+#elif VEC_SIZE == 4 // elif VEC_SIZE == 8
+ VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
+ vidx = { 0, 1, 2, 3 };
+#elif VEC_SIZE == 2 // elif VEC_SIZE == 4
+ VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
+ vidx = { 0, 1 };
+#else // elif VEC_SIZE == 2
+#error "Not supported"
+#endif // #if VEC_SIZE == 16
+ return vidx;
+}
+#endif // VEC_SIZE > 1
+
+/** This kernel performs reduction on x-axis.
+ *
+ * @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note The data type of the output must be passed at compile time using -DDATA_TYPE_OUTPUT: e.g. -DDATA_TYPE_OUTPUT=uint
+ * @note The data type used for the comparing indexe must be passed at compile type using -DCOND_DATA_TYPE: e.g -DCOND_DATA_TYPE=uint
+ * @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
+ * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void arg_min_max_x(
+ IMAGE_DECLARATION(input),
+ IMAGE_DECLARATION(output))
+{
+ __global DATA_TYPE *input_addr = (__global DATA_TYPE *)(input_ptr + input_offset_first_element_in_bytes + get_global_id(1) * input_stride_y);
+ __global DATA_TYPE_OUTPUT *output_addr = (__global DATA_TYPE_OUTPUT *)(output_ptr + output_offset_first_element_in_bytes + get_global_id(1) * output_stride_y);
+
+ DATA_TYPE final_value = input_addr[0];
+ DATA_TYPE_OUTPUT final_idx = 0;
+
+#if VEC_SIZE > 1
+ VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE)
+ vidx = init_idx_vector();
+
+ int x = 0;
+ for(; x <= (WIDTH - VEC_SIZE); x += VEC_SIZE)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ vals = VLOAD(VEC_SIZE)(0, (input_addr + x));
+ DATA_TYPE local_min_max_value;
+ DATA_TYPE_OUTPUT local_min_max_idx;
+
+ VECTORIZED_OP(&local_min_max_value, &local_min_max_idx, vals, vidx);
+ local_min_max_idx += x;
+ scalar_compute_global_min_max(local_min_max_value, local_min_max_idx, &final_value, &final_idx);
+ }
+#endif // VEC_SIZE > 1
+
+#if(WIDTH % VEC_SIZE)
+ LOOP_UNROLLING(int, j, 0, 1, WIDTH % VEC_SIZE,
+ {
+ scalar_compute_global_min_max(*(input_addr + j + x), j + x, &final_value, &final_idx);
+ })
+#endif // (WIDTH % VEC_SIZE)
+
+ output_addr[0] = final_idx;
+}
+#endif // defined(WIDTH)
+
+#if defined(HEIGHT)
+/** This kernel performs reduction on y-axis.
+ *
+ * @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ * @note The data type of the output must be passed at compile time using -DDATA_TYPE_OUTPUT: e.g. -DDATA_TYPE_OUTPUT=uint
+ * @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
+ * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void arg_min_max_y(
+ IMAGE_DECLARATION(input),
+ IMAGE_DECLARATION(output))
+{
+ const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y;
+
+ VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN);
+
+ VEC_TYPE_OUT indx0 = 0;
+ for(DATA_TYPE_OUTPUT y = 1; y < HEIGHT; ++y)
+ {
+ VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + y * input_stride_y)), VEC_TYPE_IN);
+
+ VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT);
+ indx0 = select(indx0, (VEC_TYPE_OUT)y, cond_conv);
+ res = select(res, in, CONDITION_TO_USE(in, res));
+ }
+
+ // Store result
+ STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
+}
+#endif // defined(HEIGHT)
+
+#if defined(DEPTH) && !defined(BATCH)
+/** This kernel performs reduction on z-axis.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ * @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
+ * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void arg_min_max_z(
+ TENSOR3D_DECLARATION(input),
+ TENSOR3D_DECLARATION(output))
+{
+ const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z;
+
+ VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN);
+
+ VEC_TYPE_OUT indx0 = 0;
+ for(DATA_TYPE_OUTPUT z = 1; z < DEPTH; ++z)
+ {
+ VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + z * input_stride_z)), VEC_TYPE_IN);
+
+ VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT);
+ indx0 = select(indx0, (VEC_TYPE_OUT)z, cond_conv);
+ res = select(res, in, CONDITION_TO_USE(in, res));
+ }
+
+ // Store result
+ STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
+}
+#endif /* defined(DEPTH) && !defined(BATCH) */
+
+#if defined(BATCH) && defined(DEPTH)
+/** This kernel performs reduction on w-axis.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ * @note The batch size must be passed at compile time using -DBATCH e.g. -DBATCH=128
+ * @note The depth size must be passed at compile time using -DBATCH e.g. -DDEPTH=128
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32
+ * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_stride_w Stride of the output tensor in W dimension (in bytes)
+ * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void arg_min_max_w(
+ TENSOR4D_DECLARATION(input),
+ TENSOR4D_DECLARATION(output))
+{
+ const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+
+ __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + (get_global_id(2) % DEPTH) * input_stride_z +
+ (get_global_id(2) / DEPTH) * input_stride_w;
+ __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y + (get_global_id(
+ 2) % DEPTH) * output_stride_z + (get_global_id(2) / DEPTH) * output_stride_w;
+
+ VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN);
+
+ VEC_TYPE_OUT indx0 = 0;
+ for(DATA_TYPE_OUTPUT w = 1; w < BATCH; ++w)
+ {
+ VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + w * input_stride_w)), VEC_TYPE_IN);
+
+ VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT);
+ indx0 = select(indx0, (VEC_TYPE_OUT)w, cond_conv);
+ res = select(res, in, CONDITION_TO_USE(in, res));
+ }
+
+ // Store result
+ STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0);
+}
+#endif /* defined(BATCH) && defined(DEPTH) */
+#endif // defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE_OUTPUT)