aboutsummaryrefslogtreecommitdiff
path: root/examples/neon_gemm_s8_f32.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/neon_gemm_s8_f32.cpp')
-rw-r--r--examples/neon_gemm_s8_f32.cpp239
1 files changed, 239 insertions, 0 deletions
diff --git a/examples/neon_gemm_s8_f32.cpp b/examples/neon_gemm_s8_f32.cpp
new file mode 100644
index 0000000000..7c1497ec41
--- /dev/null
+++ b/examples/neon_gemm_s8_f32.cpp
@@ -0,0 +1,239 @@
+/*
+ * Copyright (c) 2020-2021, 2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/core/WindowIterator.h"
+#include "arm_compute/runtime/NEON/NEFunctions.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+
+#include "support/ToolchainSupport.h"
+#include "utils/Utils.h"
+
+#include <cstdlib>
+
+using namespace arm_compute;
+using namespace utils;
+
+QuantizationInfo dynamic_qinfo(QuantizationInfo qinfo)
+{
+ return QuantizationInfo(qinfo.scale(), qinfo.offset(), true);
+}
+void set_qinfo_dynamic(Tensor &t)
+{
+ t.info()->set_quantization_info(dynamic_qinfo(t.info()->quantization_info()));
+}
+
+void quantize(Tensor &qt, const Tensor &t, float min, float max)
+{
+ DataType dt = DataType::QASYMM8_SIGNED;
+
+ // Determine the scale
+ const float scale = (max - min) / 256.0f;
+
+ // Determine the zero-point; using affine equation val = (qval-zerop) * scale
+ const float zero_point = -128.0f - min / scale;
+
+ QuantizationInfo qinfo(scale, (int32_t)round(zero_point), true);
+
+ // We now have the quantisation info and can configure the quantised tensor
+ qt.allocator()->init(TensorInfo(t.info()->tensor_shape(), 1, dt, qinfo));
+ qt.allocator()->allocate();
+ NEQuantizationLayer quantization;
+ quantization.configure(&t, &qt);
+ quantization.run();
+}
+
+void invert_qinfo_offset(Tensor &t)
+{
+ QuantizationInfo qinfo = t.info()->quantization_info();
+ t.info()->set_quantization_info(QuantizationInfo(qinfo.scale()[0], -qinfo.offset()[0], qinfo.is_dynamic()));
+}
+
+void print_quantization_info(const Tensor &t, const std::string &name_prefix)
+{
+ QuantizationInfo qinfo = t.info()->quantization_info();
+ std::cout << name_prefix << "_qinfo="
+ << "QuantizationInfo(" << qinfo.scale()[0] << ", " << qinfo.offset()[0] << ")\n";
+}
+
+int main(int argc, char **argv)
+{
+ size_t M = 4;
+ size_t N = 4;
+ size_t K = 4;
+
+ // Parse args
+ if (argc < 3) /* case default matrix sizes */
+ {
+ // Print help
+ std::cout << "Usage: ./build/neon_gemm_qasymm8 M N K\n";
+ std::cout << "Too few or no inputs provided. Using default M=4, N=4, K=4\n\n";
+ }
+ else /* case M N K arguments provided */
+ {
+ M = strtol(argv[1], nullptr, 10);
+ N = strtol(argv[2], nullptr, 10);
+ K = strtol(argv[3], nullptr, 10);
+ }
+
+ /*** Floating point matrix multiplication ***/
+
+ // Initialise input matrices
+ NEGEMM fgemm{};
+
+ Tensor src1;
+ Tensor src2;
+ Tensor dst;
+ src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::F32));
+ src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::F32));
+ dst.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));
+ fgemm.configure(&src1, &src2, nullptr, &dst, 1, 0);
+
+ // Allocate matrices
+ src1.allocator()->allocate();
+ src2.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ float min1 = 0.0f;
+ float max1 = 1.0f;
+ fill_random_tensor(src1, 0, min1, max1);
+
+ float min2 = -1.0f;
+ float max2 = 2.0f;
+ fill_random_tensor(src2, 1, min2, max2);
+
+ // Run single precision gemm and print result
+ fgemm.run();
+
+#if ARM_COMPUTE_DEBUG_ENABLED
+ std::cout << "# F32 GEMM result:\n";
+ std::cout << "src1=[ \n";
+ src1.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "src2=[ \n";
+ src2.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "dst=[ \n";
+ dst.print(std::cout);
+ std::cout << "] \n";
+#endif // ARM_COMPUTE_DEBUG_ENABLED
+
+ Tensor q_src1;
+ quantize(q_src1, src1, min1, max1);
+ print_quantization_info(q_src1, "src1");
+ q_src1.info()->set_are_values_constant(false);
+
+ // NEGEMMLowpMatrixMultiplyCore adopts the opposite convention for the offset
+ // compared to NEQuantizeLayer
+ invert_qinfo_offset(q_src1);
+
+ Tensor q_src2;
+ quantize(q_src2, src2, min2, max2);
+ print_quantization_info(q_src2, "src2");
+ q_src2.info()->set_are_values_constant(false);
+
+ // NEGEMMLowpMatrixMultiplyCore adopts the opposite convention for the offset
+ // compared to NEQuantizeLayer
+ invert_qinfo_offset(q_src2);
+
+ // q_dst will be Dequantized to F32 so it doesn't need a QuantizationInfo
+ Tensor q_dst;
+ q_dst.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));
+
+ // Configure low precision gemm and initialise result tensor (pre-output)
+ NEGEMMLowpMatrixMultiplyCore qgemm;
+ qgemm.configure(&q_src1, &q_src2, nullptr, &q_dst);
+
+ q_dst.allocator()->allocate();
+
+ // Run low precision matrix multiply kernel
+ qgemm.run();
+
+#if ARM_COMPUTE_DEBUG_ENABLED
+ // Print quantized source matrices
+ std::cout << "q_src1=[ \n";
+ q_src1.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "q_src2=[ \n";
+ q_src2.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "# Lowp GEMM output (FP32):\n";
+ std::cout << "q_dst=[ \n";
+ q_dst.print(std::cout);
+ std::cout << "] \n";
+
+ // Expected result
+ std::cout << "# Expected result:\n";
+ std::cout << "dst=[ \n";
+ dst.print(std::cout);
+ std::cout << "] \n";
+#endif // ARM_COMPUTE_DEBUG_ENABLED
+
+ // Rerun to test the ability to modify the Tensor contents and QuantizationInfo (dynamic quantization)
+ min1 = -1.0f;
+ max1 = 1.0f;
+ fill_random_tensor(src1, 2, min1, max1);
+
+#if ARM_COMPUTE_DEBUG_ENABLED
+ std::cout << "# Refilled src1\n";
+ std::cout << "src1=[ \n";
+ src1.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "src2=[ \n";
+ src2.print(std::cout);
+ std::cout << "] \n";
+#endif // ARM_COMPUTE_DEBUG_ENABLED
+
+ fgemm.run();
+
+ quantize(q_src1, src1, min1, max1);
+ set_qinfo_dynamic(q_src1);
+ print_quantization_info(q_src1, "src1");
+
+ // NEGEMMLowpMatrixMultiplyCore adopts the opposite convention for the offset
+ // compared to NEQuantizeLayer
+ invert_qinfo_offset(q_src1);
+
+ qgemm.run();
+
+#if ARM_COMPUTE_DEBUG_ENABLED
+ // Print quantized source matrices
+ std::cout << "q_src1=[ \n";
+ q_src1.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "q_src2=[ \n";
+ q_src2.print(std::cout);
+ std::cout << "] \n";
+ std::cout << "# Lowp GEMM output (FP32):\n";
+ std::cout << "q_dst=[ \n";
+ q_dst.print(std::cout);
+ std::cout << "] \n";
+
+ // Expected result
+ std::cout << "# Expected result:\n";
+ std::cout << "dst=[ \n";
+ dst.print(std::cout);
+ std::cout << "] \n";
+#endif // ARM_COMPUTE_DEBUG_ENABLED
+}