aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h
diff options
context:
space:
mode:
Diffstat (limited to 'arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h')
-rw-r--r--arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h965
1 files changed, 0 insertions, 965 deletions
diff --git a/arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h b/arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h
deleted file mode 100644
index d4cbc7f4af..0000000000
--- a/arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h
+++ /dev/null
@@ -1,965 +0,0 @@
-/*
- * Copyright (c) 2017-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#ifndef ARM_COMPUTE_NEDIRECTCONVOLUTIONDETAIL_H
-#define ARM_COMPUTE_NEDIRECTCONVOLUTIONDETAIL_H
-
-#include "arm_compute/core/AccessWindowStatic.h"
-#include "arm_compute/core/NEON/NEFixedPoint.h"
-#include "arm_compute/core/NEON/wrapper/wrapper.h"
-#include "arm_compute/core/utils/misc/Requires.h"
-
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-namespace detail
-{
-/** Loads a 3x3 matrix as a row (float).
- *
- * @param[in] ptr Pointer to a float 3x3 matrix.
- * @param[in] weights_offset (Optional) Weights quantization offset.
- *
- * @return The loaded matrix.
- */
-inline float32x4x3_t load_matrix_row(const float *ptr, int weights_offset = 0)
-{
- ARM_COMPUTE_UNUSED(weights_offset);
- const float32x4x3_t r =
- {
- {
- vld1q_dup_f32(ptr),
- vld1q_dup_f32(1 + ptr),
- vld1q_dup_f32(2 + ptr)
- }
- };
- return r;
-}
-
-/** Loads a 3x3 matrix as a row (uint8_t/int8_t).
- *
- * @param[in] ptr Pointer to a uint8_t/int8_t 3x3 matrix.
- * @param[in] weights_offset (Optional) Weights quantization offset.
- *
- * @return The loaded matrix.
- */
-template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
-inline int32x4x3_t load_matrix_row(const T *ptr, int weights_offset = 0)
-{
- const int32x4_t v_weights_offset = vdupq_n_s32(weights_offset);
-
- /* ptr is a pointer to a row in a 3x3 matrix, the function returns 3 vectors holding exactly the same value in all lanes:
- r.val[0] contains the first element, r.val[1] the second element and r.val[2] the third element (in all lanes) */
- int32x4x3_t r =
- {
- {
- vaddq_s32(v_weights_offset, vdupq_n_s32(*ptr)),
- vaddq_s32(v_weights_offset, vdupq_n_s32(*(ptr + 1))),
- vaddq_s32(v_weights_offset, vdupq_n_s32(*(ptr + 2)))
- }
- };
- return r;
-}
-
-/** Stores a float32x4x2_t array into a memory location.
- *
- * @param[in] buffer Pointer to the memory location where the values will be stored.
- * @param[in] values Values that will be stored.
- *
- */
-template <unsigned int stridex>
-void store_results(float *buffer, const float32x4x2_t &values);
-
-template <>
-inline void store_results<1>(float *buffer, const float32x4x2_t &values)
-{
- vst1q_f32(buffer, values.val[0]);
- vst1q_f32(buffer + 4, values.val[1]);
-}
-
-template <>
-inline void store_results<2>(float *buffer, const float32x4x2_t &values)
-{
- vst1q_f32(buffer, values.val[0]);
-}
-
-template <>
-inline void store_results<3>(float *buffer, const float32x4x2_t &values)
-{
- vst1_f32(buffer, vget_low_f32(values.val[0]));
-}
-
-/** Stores a uint32_t array into a memory location.
- *
- * @param[in] buffer Pointer to the memory location where the values will be stored.
- * @param[in] values Values that will be stored.
- *
- */
-template <unsigned int stridex>
-void store_results(int32_t *buffer, const int32x4x2_t &values);
-
-template <>
-inline void store_results<1>(int32_t *buffer, const int32x4x2_t &values)
-{
- vst1q_s32(buffer, values.val[0]);
- vst1q_s32(buffer + 4, values.val[1]);
-}
-
-template <>
-inline void store_results<2>(int32_t *buffer, const int32x4x2_t &values)
-{
- vst1q_s32(buffer, values.val[0]);
-}
-
-template <>
-inline void store_results<3>(int32_t *buffer, const int32x4x2_t &values)
-{
- vst1_s32(buffer, vget_low_s32(values.val[0]));
-}
-
-template <unsigned int stridex>
-inline void accumulate_results(float *buffer, const float32x4x2_t &values);
-
-template <>
-inline void accumulate_results<1>(float *buffer, const float32x4x2_t &values)
-{
- vst1q_f32(buffer, vaddq_f32(vld1q_f32(buffer), values.val[0]));
- vst1q_f32(buffer + 4, vaddq_f32(vld1q_f32(buffer + 4), values.val[1]));
-}
-
-template <>
-inline void accumulate_results<2>(float *buffer, const float32x4x2_t &values)
-{
- vst1q_f32(buffer, vaddq_f32(vld1q_f32(buffer), values.val[0]));
-}
-
-template <>
-inline void accumulate_results<3>(float *buffer, const float32x4x2_t &values)
-{
- vst1_f32(buffer, vadd_f32(vld1_f32(buffer), vget_low_f32(values.val[0])));
-}
-
-template <unsigned int stridex>
-void accumulate_results(int32_t *buffer, const int32x4x2_t &values);
-
-template <>
-inline void accumulate_results<1>(int32_t *buffer, const int32x4x2_t &values)
-{
- vst1q_s32(buffer, vaddq_s32(vld1q_s32(buffer), values.val[0]));
- vst1q_s32(buffer + 4, vaddq_s32(vld1q_s32(buffer + 4), values.val[1]));
-}
-
-template <>
-inline void accumulate_results<2>(int32_t *buffer, const int32x4x2_t &values)
-{
- vst1q_s32(buffer, vaddq_s32(vld1q_s32(buffer), values.val[0]));
-}
-
-template <>
-inline void accumulate_results<3>(int32_t *buffer, const int32x4x2_t &values)
-{
- vst1_s32(buffer, vadd_s32(vld1_s32(buffer), vget_low_s32(values.val[0])));
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-/** Stores a float16x8x2_t array into a memory location.
- *
- * @param[in] buffer Pointer to the memory location where the values will be stored.
- * @param[in] values Values that will be stored.
- *
- */
-template <unsigned int stridex>
-void store_results(float16_t *buffer, const float16x8x2_t &values);
-
-template <>
-inline void store_results<1>(float16_t *buffer, const float16x8x2_t &values)
-{
- vst1q_f16(buffer, values.val[0]);
- vst1q_f16(buffer + 8, values.val[1]);
-}
-
-template <>
-inline void store_results<2>(float16_t *buffer, const float16x8x2_t &values)
-{
- vst1q_f16(buffer, values.val[0]);
-}
-
-template <>
-inline void store_results<3>(float16_t *buffer, const float16x8x2_t &values)
-{
- vst1_f16(buffer, vget_low_f16(values.val[0]));
-}
-
-template <unsigned int stridex>
-inline void accumulate_results(float16_t *buffer, const float16x8x2_t &values);
-
-template <>
-inline void accumulate_results<1>(float16_t *buffer, const float16x8x2_t &values)
-{
- vst1q_f16(buffer, vaddq_f16(vld1q_f16(buffer), values.val[0]));
- vst1q_f16(buffer + 8, vaddq_f16(vld1q_f16(buffer + 8), values.val[1]));
-}
-
-template <>
-inline void accumulate_results<2>(float16_t *buffer, const float16x8x2_t &values)
-{
- vst1q_f16(buffer, vaddq_f16(vld1q_f16(buffer), values.val[0]));
-}
-
-template <>
-inline void accumulate_results<3>(float16_t *buffer, const float16x8x2_t &values)
-{
- vst1_f16(buffer, vadd_f16(vld1_f16(buffer), vget_low_f16(values.val[0])));
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-/** Perform a 3x3 convolution for 4 consecutive elements on float32 when dilation.x() or dilation.y() is not 1.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] dilation_x Dilation, in elements across x.
- * @param[in] input_offset (Optional) Input quantization offset.
- *
- */
-inline float32x4_t single_convolve_3x3_dilation(const float *in_top, const float *in_mid, const float *in_low,
- const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
- const size_t dilation_x, int input_offset)
-{
- ARM_COMPUTE_UNUSED(input_offset);
-
- const float32x4x3_t vtop =
- {
- {
- vld1q_f32(in_top),
- vld1q_f32(in_top + dilation_x),
- vld1q_f32(in_top + 2 * dilation_x)
- }
- };
- const float32x4x3_t vmid =
- {
- {
- vld1q_f32(in_mid),
- vld1q_f32(in_mid + dilation_x),
- vld1q_f32(in_mid + 2 * dilation_x)
- }
- };
- const float32x4x3_t vlow =
- {
- {
- vld1q_f32(in_low),
- vld1q_f32(in_low + dilation_x),
- vld1q_f32(in_low + 2 * dilation_x)
- }
- };
- float32x4_t out = vmulq_f32(vtop.val[0], m0.val[0]);
- out = vmlaq_f32(out, vtop.val[1], m0.val[1]);
- out = vmlaq_f32(out, vtop.val[2], m0.val[2]);
-
- out = vmlaq_f32(out, vmid.val[0], m1.val[0]);
- out = vmlaq_f32(out, vmid.val[1], m1.val[1]);
- out = vmlaq_f32(out, vmid.val[2], m1.val[2]);
-
- out = vmlaq_f32(out, vlow.val[0], m2.val[0]);
- out = vmlaq_f32(out, vlow.val[1], m2.val[1]);
- out = vmlaq_f32(out, vlow.val[2], m2.val[2]);
-
- return out;
-}
-
-/** Perform a 3x3 convolution for 8 consecutive elements on float32 when dilation.x() or dilation.y() is not 1.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] dilation_x Dilation, in elements across x.
- * @param[in] stridex Stride value in elements across x.
- * @param[in] input_offset (Optional) Input quantization offset.
- *
- */
-inline float32x4x2_t convolve_3x3_dilation(const float *in_top, const float *in_mid, const float *in_low,
- const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
- const size_t dilation_x, unsigned int stridex, int input_offset = 0)
-{
- ARM_COMPUTE_ERROR_ON(stridex > 3);
- float32x4x2_t out =
- {
- {
- single_convolve_3x3_dilation(in_top, in_mid, in_low, m0, m1, m2, dilation_x, input_offset),
- single_convolve_3x3_dilation(in_top + 4, in_mid + 4, in_low + 4, m0, m1, m2, dilation_x, input_offset)
- }
- };
-
- if(stridex == 2)
- {
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 2), out.val[0], 1);
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 0), out.val[0], 2);
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 2), out.val[0], 3);
- }
- else if(stridex == 3)
- {
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 3), out.val[0], 1);
- }
-
- return out;
-}
-
-/** Perform a convolve3x3 on float32.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[out] out_ptr Pointer to the output.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] stridex Stride value in elements across x.
- * @param[in] input_offset (Optional) Input quantization offset.
- *
- */
-template <bool accumulate>
-void convolve_3x3(const float *in_top, const float *in_mid, const float *in_low, float *out_ptr,
- const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
- unsigned int stridex, int input_offset = 0);
-
-template <bool accumulate>
-inline void convolve_3x3(const float *in_top, const float *in_mid, const float *in_low, float *out_ptr,
- const float32x4x3_t &m0, const float32x4x3_t &m1, const float32x4x3_t &m2,
- unsigned int stridex, int input_offset)
-{
- ARM_COMPUTE_UNUSED(input_offset);
- ARM_COMPUTE_ERROR_ON(stridex > 3);
-
- float32x4x2_t out =
- {
- {
- vdupq_n_f32(0.f),
- vdupq_n_f32(0.f)
- }
- };
- if(stridex == 2)
- {
- const float32x4x2_t vtop = vld2q_f32(in_top);
- const float32x4x2_t vmid = vld2q_f32(in_mid);
- const float32x4x2_t vlow = vld2q_f32(in_low);
- const float32x4_t vtop_end = vld1q_f32(in_top + 8);
- const float32x4_t vmid_end = vld1q_f32(in_mid + 8);
- const float32x4_t vlow_end = vld1q_f32(in_low + 8);
-
- out.val[0] = vmulq_f32(vtop.val[0], m0.val[0]);
-
- out.val[0] = vmlaq_f32(out.val[0], vtop.val[1], m0.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vtop.val[0], vtop_end, 1), m0.val[2]);
-
- out.val[0] = vmlaq_f32(out.val[0], vmid.val[0], m1.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vmid.val[1], m1.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vmid.val[0], vmid_end, 1), m1.val[2]);
-
- out.val[0] = vmlaq_f32(out.val[0], vlow.val[0], m2.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vlow.val[1], m2.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vlow.val[0], vlow_end, 1), m2.val[2]);
-
- accumulate ? accumulate_results<2>(out_ptr, out) : store_results<2>(out_ptr, out);
- }
- else
- {
- const float32x4x3_t vtop =
- {
- {
- vld1q_f32(in_top),
- vld1q_f32(in_top + 4),
- vld1q_f32(in_top + 8)
- }
- };
- const float32x4x3_t vmid =
- {
- {
- vld1q_f32(in_mid),
- vld1q_f32(in_mid + 4),
- vld1q_f32(in_mid + 8)
- }
- };
- const float32x4x3_t vlow =
- {
- {
- vld1q_f32(in_low),
- vld1q_f32(in_low + 4),
- vld1q_f32(in_low + 8)
- }
- };
- out.val[0] = vmulq_f32(vtop.val[0], m0.val[0]);
- out.val[1] = vmulq_f32(vtop.val[1], m0.val[0]);
-
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vtop.val[0], vtop.val[1], 1), m0.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vtop.val[0], vtop.val[1], 2), m0.val[2]);
-
- out.val[0] = vmlaq_f32(out.val[0], vmid.val[0], m1.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vmid.val[0], vmid.val[1], 1), m1.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vmid.val[0], vmid.val[1], 2), m1.val[2]);
-
- out.val[0] = vmlaq_f32(out.val[0], vlow.val[0], m2.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vlow.val[0], vlow.val[1], 1), m2.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vlow.val[0], vlow.val[1], 2), m2.val[2]);
-
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vtop.val[1], vtop.val[2], 1), m0.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vtop.val[1], vtop.val[2], 2), m0.val[2]);
-
- out.val[1] = vmlaq_f32(out.val[1], vmid.val[1], m1.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vmid.val[1], vmid.val[2], 1), m1.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vmid.val[1], vmid.val[2], 2), m1.val[2]);
-
- out.val[1] = vmlaq_f32(out.val[1], vlow.val[1], m2.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vlow.val[1], vlow.val[2], 1), m2.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vlow.val[1], vlow.val[2], 2), m2.val[2]);
-
- if(stridex == 3)
- {
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 3), out.val[0], 1);
- accumulate ? accumulate_results<3>(out_ptr, out) : store_results<3>(out_ptr, out);
- }
- else
- {
- accumulate ? accumulate_results<1>(out_ptr, out) : store_results<1>(out_ptr, out);
- }
- }
-}
-
-/** Perform a 3x3 convolution for 4 consecutive 8-bit elements when dilation.x() or dilation.y() is not 1.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] dilation_x Dilation, in elements across x.
- * @param[in] input_offset Input quantization offset.
- *
- */
-template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
-inline int32x4_t single_convolve_3x3_dilation(const T *in_top, const T *in_mid, const T *in_low,
- const int32x4x3_t &m0, const int32x4x3_t &m1, const int32x4x3_t &m2,
- size_t dilation_x, int32_t input_offset)
-{
- using VectorType = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x3_t, int8x8x3_t>::type;
- using OutputTagType = typename wrapper::traits::neon_bitvector_tag_t<int32_t, wrapper::traits::BitWidth::W128>;
-
- const int32x4_t v_input_offset = wrapper::vdup_n(input_offset, OutputTagType{});
-
- const VectorType vtop =
- {
- {
- wrapper::vload(in_top),
- wrapper::vload(in_top + dilation_x),
- wrapper::vload(in_top + 2 * dilation_x)
- }
- };
- const VectorType vmid =
- {
- {
- wrapper::vload(in_mid),
- wrapper::vload(in_mid + dilation_x),
- wrapper::vload(in_mid + 2 * dilation_x)
- }
- };
- const VectorType vlow =
- {
- {
- wrapper::vload(in_low),
- wrapper::vload(in_low + dilation_x),
- wrapper::vload(in_low + 2 * dilation_x)
- }
- };
-
- const int32x4x3_t vtop_s32 =
- {
- {
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[1])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[2])))),
- }
- };
- const int32x4x3_t vmid_s32 =
- {
- {
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[1])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[2])))),
- }
- };
- const int32x4x3_t vlow_s32 =
- {
- {
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[1])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[2])))),
- }
- };
-
- int32x4_t out = wrapper::vmul(vtop_s32.val[0], m0.val[0]);
- out = wrapper::vmla(out, vtop_s32.val[1], m0.val[1]);
- out = wrapper::vmla(out, vtop_s32.val[2], m0.val[2]);
-
- out = wrapper::vmla(out, vmid_s32.val[0], m1.val[0]);
- out = wrapper::vmla(out, vmid_s32.val[1], m1.val[1]);
- out = wrapper::vmla(out, vmid_s32.val[2], m1.val[2]);
-
- out = wrapper::vmla(out, vlow_s32.val[0], m2.val[0]);
- out = wrapper::vmla(out, vlow_s32.val[1], m2.val[1]);
- out = wrapper::vmla(out, vlow_s32.val[2], m2.val[2]);
-
- return out;
-}
-
-/** Perform a 3x3 convolution for 4 consecutive 8-bit elements when dilation.x() or dilation.y() is not 1.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] dilation_x Dilation, in elements across x.
- * @param[in] stridex Stride value in elements across x.
- * @param[in] input_offset Input quantization offset.
- *
- */
-template < typename T, REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
-inline int32x4x2_t convolve_3x3_dilation(const T *in_top, const T *in_mid, const T *in_low, const int32x4x3_t &m0, const int32x4x3_t &m1, const int32x4x3_t &m2,
- const size_t dilation_x, unsigned int stridex, int input_offset)
-{
- ARM_COMPUTE_ERROR_ON(stridex > 3);
- int32x4x2_t out =
- {
- {
- single_convolve_3x3_dilation(in_top, in_mid, in_low, m0, m1, m2, dilation_x, input_offset),
- single_convolve_3x3_dilation(in_top + 4, in_mid + 4, in_low + 4, m0, m1, m2, dilation_x, input_offset)
- }
- };
-
- if(stridex == 2)
- {
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 2), out.val[0], 1);
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 0), out.val[0], 2);
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 2), out.val[0], 3);
- }
- else if(stridex == 3)
- {
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 3), out.val[0], 1);
- }
- return out;
-}
-
-/** Perform a convolve3x3 on 8-bit elements
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[out] out_ptr Pointer to the output.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] stridex Stride value in elements across x.
- * @param[in] input_offset Input quantization offset.
- *
- */
-template < bool accumulate, typename T1, typename T2, REQUIRES_TA(std::is_same<T1, uint8_t>::value || std::is_same<T1, int8_t>::value) >
-void convolve_3x3(const T1 *in_top, const T1 *in_mid, const T1 *in_low, T2 *out_ptr,
- const int32x4x3_t &m0, const int32x4x3_t &m1, const int32x4x3_t &m2,
- unsigned int stridex, int32_t input_offset)
-{
- ARM_COMPUTE_ERROR_ON(stridex > 3);
- using VectorType = typename std::conditional<std::is_same<T1, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
- using OutputTagType = typename wrapper::traits::neon_bitvector_tag_t<int32_t, wrapper::traits::BitWidth::W128>;
-
- const int32x4_t v_input_offset = wrapper::vdup_n(input_offset, OutputTagType{});
-
- const VectorType vtop =
- {
- {
- wrapper::vload(in_top),
- wrapper::vload(in_top + 8)
- }
- };
- const VectorType vmid =
- {
- {
- wrapper::vload(in_mid),
- wrapper::vload(in_mid + 8)
- }
- };
- const VectorType vlow =
- {
- {
- wrapper::vload(in_low),
- wrapper::vload(in_low + 8)
- }
- };
-
- const int32x4x3_t vtop_s32 =
- {
- {
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgethigh(wrapper::vmovl(vtop.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vtop.val[1])))),
- }
- };
- const int32x4x3_t vmid_s32 =
- {
- {
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgethigh(wrapper::vmovl(vmid.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vmid.val[1])))),
- }
- };
- const int32x4x3_t vlow_s32 =
- {
- {
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgethigh(wrapper::vmovl(vlow.val[0])))),
- wrapper::vaddw(v_input_offset, wrapper::vreinterpret(wrapper::vgetlow(wrapper::vmovl(vlow.val[1])))),
- }
- };
-
- int32x4x2_t out
- {
- {
- wrapper::vdup_n(static_cast<int32_t>(0), OutputTagType{}),
- wrapper::vdup_n(static_cast<int32_t>(0), OutputTagType{}),
- }
- };
-
- // 0
- out.val[0] = wrapper::vmla(out.val[0], vtop_s32.val[0], m0.val[0]);
- out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_1(vtop_s32.val[0], vtop_s32.val[1]), m0.val[1]);
- out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_2(vtop_s32.val[0], vtop_s32.val[1]), m0.val[2]);
-
- out.val[0] = wrapper::vmla(out.val[0], vmid_s32.val[0], m1.val[0]);
- out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_1(vmid_s32.val[0], vmid_s32.val[1]), m1.val[1]);
- out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_2(vmid_s32.val[0], vmid_s32.val[1]), m1.val[2]);
-
- out.val[0] = wrapper::vmla(out.val[0], vlow_s32.val[0], m2.val[0]);
- out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_1(vlow_s32.val[0], vlow_s32.val[1]), m2.val[1]);
- out.val[0] = wrapper::vmla(out.val[0], wrapper::vext_2(vlow_s32.val[0], vlow_s32.val[1]), m2.val[2]);
-
- // 1
- out.val[1] = wrapper::vmla(out.val[1], vtop_s32.val[1], m0.val[0]);
- out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_1(vtop_s32.val[1], vtop_s32.val[2]), m0.val[1]);
- out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_2(vtop_s32.val[1], vtop_s32.val[2]), m0.val[2]);
-
- out.val[1] = wrapper::vmla(out.val[1], vmid_s32.val[1], m1.val[0]);
- out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_1(vmid_s32.val[1], vmid_s32.val[2]), m1.val[1]);
- out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_2(vmid_s32.val[1], vmid_s32.val[2]), m1.val[2]);
-
- out.val[1] = wrapper::vmla(out.val[1], vlow_s32.val[1], m2.val[0]);
- out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_1(vlow_s32.val[1], vlow_s32.val[2]), m2.val[1]);
- out.val[1] = wrapper::vmla(out.val[1], wrapper::vext_2(vlow_s32.val[1], vlow_s32.val[2]), m2.val[2]);
-
- if(stridex == 1)
- {
- accumulate ? accumulate_results<1>(out_ptr, out) : store_results<1>(out_ptr, out);
- }
- else if(stridex == 2)
- {
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 2), out.val[0], 1);
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 0), out.val[0], 2);
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[1], 2), out.val[0], 3);
-
- accumulate ? accumulate_results<2>(out_ptr, out) : store_results<2>(out_ptr, out);
- }
- else if(stridex == 3)
- {
- out.val[0] = wrapper::vsetlane(wrapper::vgetlane(out.val[0], 3), out.val[0], 1);
- accumulate ? accumulate_results<3>(out_ptr, out) : store_results<3>(out_ptr, out);
- }
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-/** Loads a 3x3 matrix as a row (float16_t).
- *
- * @param[in] ptr Pointer to a float 3x3 matrix.
- *
- * @return The loaded matrix.
- */
-inline float16x8x3_t load_matrix_row(const float16_t *ptr, int weights_offset = 0)
-{
- ARM_COMPUTE_UNUSED(weights_offset);
- /* ptr is a pointer to a row in a 3x3 matrix, the function returns 3 vectors holding exactly the same value in all lanes:
- r.val[0] contains the first element, r.val[1] the second element and r.val[2] the third element (in all lanes) */
- const float16x8x3_t r =
- {
- {
- vld1q_dup_f16(ptr),
- vld1q_dup_f16(1 + ptr),
- vld1q_dup_f16(2 + ptr)
- }
- };
- return r;
-}
-
-/** Perform a 3x3 convolution for 8 consecutive elements on float16 when dilation.x() or dilation.y() is not 1.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] dilation_x Dilation, in elements across x.
- * @param[in] input_offset (Optional)Input quantization offset.
- *
- */
-inline float16x8_t single_convolve_3x3_dilation(const float16_t *in_top, const float16_t *in_mid, const float16_t *in_low,
- const float16x8x3_t &m0, const float16x8x3_t &m1, const float16x8x3_t &m2,
- const size_t dilation_x, int input_offset = 0)
-{
- ARM_COMPUTE_UNUSED(input_offset);
- const float16x8x3_t vtop =
- {
- {
- vld1q_f16(in_top),
- vld1q_f16(in_top + dilation_x),
- vld1q_f16(in_top + 2 * dilation_x)
- }
- };
- const float16x8x3_t vmid =
- {
- {
- vld1q_f16(in_mid),
- vld1q_f16(in_mid + dilation_x),
- vld1q_f16(in_mid + 2 * dilation_x)
- }
- };
- const float16x8x3_t vlow =
- {
- {
- vld1q_f16(in_low),
- vld1q_f16(in_low + dilation_x),
- vld1q_f16(in_low + 2 * dilation_x)
- }
- };
- float16x8_t out = vmulq_f16(vtop.val[0], m0.val[0]);
- out = vaddq_f16(out, vmulq_f16(vtop.val[1], m0.val[1]));
- out = vaddq_f16(out, vmulq_f16(vtop.val[2], m0.val[2]));
-
- out = vaddq_f16(out, vmulq_f16(vmid.val[0], m1.val[0]));
- out = vaddq_f16(out, vmulq_f16(vmid.val[1], m1.val[1]));
- out = vaddq_f16(out, vmulq_f16(vmid.val[2], m1.val[2]));
-
- out = vaddq_f16(out, vmulq_f16(vlow.val[0], m2.val[0]));
- out = vaddq_f16(out, vmulq_f16(vlow.val[1], m2.val[1]));
- out = vaddq_f16(out, vmulq_f16(vlow.val[2], m2.val[2]));
-
- return out;
-}
-
-/** Perform a 3x3 convolution for 16 consecutive elements on float16 when dilation.x() or dilation.y() is not 1.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] dilation_x Dilation, in elements across x.
- * @param[in] stridex Stride value in elements across x.
- * @param[in] input_offset (Optional) Input quantization offset.
- *
- */
-inline float16x8x2_t convolve_3x3_dilation(const float16_t *in_top, const float16_t *in_mid, const float16_t *in_low,
- const float16x8x3_t &m0, const float16x8x3_t &m1, const float16x8x3_t &m2,
- const size_t dilation_x, unsigned int stridex, int input_offset = 0)
-{
- float16x8x2_t out =
- {
- {
- single_convolve_3x3_dilation(in_top, in_mid, in_low, m0, m1, m2, dilation_x, input_offset),
- single_convolve_3x3_dilation(in_top + 8, in_mid + 8, in_low + 8, m0, m1, m2, dilation_x, input_offset)
- }
- };
-
- if(stridex == 2)
- {
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 2), out.val[0], 1);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 4), out.val[0], 2);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 6), out.val[0], 3);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 0), out.val[0], 4);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 2), out.val[0], 5);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 4), out.val[0], 6);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 6), out.val[0], 7);
- }
- else if(stridex == 3)
- {
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 3), out.val[0], 1);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 6), out.val[0], 2);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 1), out.val[0], 3);
- }
-
- return out;
-}
-
-/** Perform a convolve3x3 on float16.
- *
- * @param[in] in_top Pointer to the first row of the input.
- * @param[in] in_mid Pointer to the second row of the input.
- * @param[in] in_low Pointer to the third row of the input.
- * @param[out] out_ptr Pointer to the output.
- * @param[in] m0 First row of the filter.
- * @param[in] m1 Second row of the filter.
- * @param[in] m2 Third row of the filter.
- * @param[in] stridex Stride value in elements across x.
- * @param[in] input_offset (Optional) Input quantization offset.
- *
- */
-template <bool accumulate>
-inline void convolve_3x3(const float16_t *in_top, const float16_t *in_mid, const float16_t *in_low, float16_t *out_ptr,
- const float16x8x3_t &m0, const float16x8x3_t &m1, const float16x8x3_t &m2,
- unsigned int stridex, int input_offset = 0)
-{
- ARM_COMPUTE_UNUSED(input_offset);
-
- float16x8x2_t out =
- {
- {
- vdupq_n_f16(0),
- vdupq_n_f16(0)
- }
- };
- if(stridex == 2)
- {
- const float16x8x2_t vtop = vld2q_f16(in_top);
- const float16x8x2_t vmid = vld2q_f16(in_mid);
- const float16x8x2_t vlow = vld2q_f16(in_low);
- const float16x8_t vtop_end = vld1q_f16(in_top + 16);
- const float16x8_t vmid_end = vld1q_f16(in_mid + 16);
- const float16x8_t vlow_end = vld1q_f16(in_low + 16);
-
- out.val[0] = vmulq_f16(vtop.val[0], m0.val[0]);
-
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vtop.val[1], m0.val[1]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vtop.val[0], vtop_end, 1), m0.val[2]));
-
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vmid.val[0], m1.val[0]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vmid.val[1], m1.val[1]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vmid.val[0], vmid_end, 1), m1.val[2]));
-
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vlow.val[0], m2.val[0]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vlow.val[1], m2.val[1]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vlow.val[0], vlow_end, 1), m2.val[2]));
-
- accumulate ? accumulate_results<2>(out_ptr, out) : store_results<2>(out_ptr, out);
- }
- else
- {
- const float16x8x3_t vtop =
- {
- {
- vld1q_f16(in_top),
- vld1q_f16(in_top + 8),
- vld1q_f16(in_top + 16)
- }
- };
- const float16x8x3_t vmid =
- {
- {
- vld1q_f16(in_mid),
- vld1q_f16(in_mid + 8),
- vld1q_f16(in_mid + 16)
- }
- };
- const float16x8x3_t vlow =
- {
- {
- vld1q_f16(in_low),
- vld1q_f16(in_low + 8),
- vld1q_f16(in_low + 16)
- }
- };
- out.val[0] = vmulq_f16(vtop.val[0], m0.val[0]);
- out.val[1] = vmulq_f16(vtop.val[1], m0.val[0]);
-
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vtop.val[0], vtop.val[1], 1), m0.val[1]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vtop.val[0], vtop.val[1], 2), m0.val[2]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vmid.val[0], m1.val[0]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vmid.val[0], vmid.val[1], 1), m1.val[1]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vmid.val[0], vmid.val[1], 2), m1.val[2]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vlow.val[0], m2.val[0]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vlow.val[0], vlow.val[1], 1), m2.val[1]));
- out.val[0] = vaddq_f16(out.val[0], vmulq_f16(vextq_f16(vlow.val[0], vlow.val[1], 2), m2.val[2]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vtop.val[1], vtop.val[2], 1), m0.val[1]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vtop.val[1], vtop.val[2], 2), m0.val[2]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vmid.val[1], m1.val[0]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vmid.val[1], vmid.val[2], 1), m1.val[1]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vmid.val[1], vmid.val[2], 2), m1.val[2]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vlow.val[1], m2.val[0]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vlow.val[1], vlow.val[2], 1), m2.val[1]));
- out.val[1] = vaddq_f16(out.val[1], vmulq_f16(vextq_f16(vlow.val[1], vlow.val[2], 2), m2.val[2]));
-
- if(stridex == 3)
- {
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 3), out.val[0], 1);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[0], 6), out.val[0], 2);
- out.val[0] = vsetq_lane_f16(vgetq_lane_f16(out.val[1], 1), out.val[0], 3);
-
- accumulate ? accumulate_results<3>(out_ptr, out) : store_results<3>(out_ptr, out);
- }
- else
- {
- accumulate ? accumulate_results<1>(out_ptr, out) : store_results<1>(out_ptr, out);
- }
- }
-}
-#endif /** __ARM_FEATURE_FP16_VECTOR_ARITHMETIC **/
-
-/** Get the number of elements processed on 3x3 convolution.
- *
- * @param[in] num_elems_written_per_iteration Number of elements written per iteration on 3x3 convolution.
- * @param[in] stridex Stride value in elements across x.
- *
- * @return The number of elements processed.
- */
-inline int get_input_num_elems_processed(unsigned int num_elems_written_per_iteration, unsigned int stridex)
-{
- switch(stridex)
- {
- case 1:
- return num_elems_written_per_iteration;
- case 2:
- return num_elems_written_per_iteration << 1;
- case 3:
- return num_elems_written_per_iteration * 3;
- default:
- ARM_COMPUTE_ERROR("stridex not supported");
- return 0;
- }
-}
-}
-} // namespace arm_compute
-#endif /* ARM_COMPUTE_NEDIRECTCONVOLUTIONDETAIL_H */