aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/NESymm.h
diff options
context:
space:
mode:
Diffstat (limited to 'arm_compute/core/NEON/NESymm.h')
-rw-r--r--arm_compute/core/NEON/NESymm.h256
1 files changed, 0 insertions, 256 deletions
diff --git a/arm_compute/core/NEON/NESymm.h b/arm_compute/core/NEON/NESymm.h
deleted file mode 100644
index d6c5a7073a..0000000000
--- a/arm_compute/core/NEON/NESymm.h
+++ /dev/null
@@ -1,256 +0,0 @@
-/*
- * Copyright (c) 2019-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NESYMM_H
-#define ARM_COMPUTE_NESYMM_H
-
-#include "arm_compute/core/NEON/NEMath.h"
-#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-using qsymm8_t = int8_t; /**< 8 bit quantized symmetric scalar value */
-using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */
-
-using qsymm16x8_t = int16x8_t; /**< 16 bit quantized symmetric vector with 8 elements */
-using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */
-
-/** Performs final quantization step on 8 signed 16-bit elements
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param[in] in_s32 Input to be quantized.
- * @param[in] result_fixedpoint_multiplier Result multiplier parameter
- * @param[in] result_shift Result shift parameter
- * @param[in] min_s16 Relu lower bound
- * @param[in] max_s16 Relu upper bound
- *
- * @return Quantized values
- */
-template <bool is_bounded_relu>
-int16x8_t finalize_quantization_int16(int32x4x2_t &in_s32,
- int result_fixedpoint_multiplier,
- int32_t result_shift,
- int16x8_t min_s16,
- int16x8_t max_s16)
-{
- if(result_shift < 0)
- {
- in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift));
- in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift));
-
- in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
- in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
- }
- else
- {
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
- in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
- // Round to the nearest division by a power-of-two using result_shift_s32
- in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
- in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
- }
-
- // Convert S32 to S16
- int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1]));
-
- if(is_bounded_relu)
- {
- out_s16 = vmaxq_s16(out_s16, min_s16);
- out_s16 = vminq_s16(out_s16, max_s16);
- }
-
- return out_s16;
-}
-
-/** Performs final quantization step on single signed 16-bit element
- *
- * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
- *
- * @param[in] in_value Input to be quantized.
- * @param[in] result_fixedpoint_multiplier Result multiplier parameter
- * @param[in] result_shift Result shift parameter
- * @param[in] min_s16 Relu lower bound
- * @param[in] max_s16 Relu upper bound
- *
- * @return Quantized values
- */
-template <bool is_bounded_relu>
-inline int16_t finalize_quantization_int16(int32_t in_value, int result_fixedpoint_multiplier,
- int32_t result_shift, int16_t min_s16, int16_t max_s16)
-{
- if(result_shift < 0)
- {
- const int64_t in_64 = static_cast<int64_t>(in_value) * (1 << (-result_shift)) * static_cast<int64_t>(result_fixedpoint_multiplier);
- in_value = static_cast<int32_t>((in_64 + (1 << 30)) >> 31);
- }
- else
- {
- // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
- const int64_t in_64 = static_cast<int64_t>(in_value) * static_cast<int64_t>(result_fixedpoint_multiplier);
- // Shift value by result_shift_s32
- in_value = rounding_divide_by_pow2(static_cast<int32_t>((in_64 + (1 << 30)) >> 31), result_shift);
- }
-
- // Bound the result
- int16_t out_s16 = static_cast<int16_t>(std::max<int32_t>(-32768, std::min<int32_t>(32767, in_value)));
-
- if(is_bounded_relu)
- {
- out_s16 = static_cast<int16_t>(std::max(min_s16, std::min(max_s16, out_s16)));
- }
-
- return out_s16;
-}
-
-/** Dequantize a neon vector holding 8 16-bit quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] scale Quantization scale
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale)
-{
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x2_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale)
- }
- };
- return vdequantized_input;
-}
-
-/** Quantize a neon vector holding 8 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] scale Quantization scale
- *
- * @return A neon vector holding the quantized values
- */
-inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale)
-{
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
-
- const int32x4x2_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
-#else //__aarch64__
- vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
-#endif //__aarch64__
- }
- };
- return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
-}
-
-/** Dequantize a neon vector holding 16 16-bit quantized values.
- *
- * @param[in] qv Input values to be dequantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return Dequantized values in a neon vector
- */
-inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- const float32x4_t vscale = vdupq_n_f32(scale);
- const float32x4x4_t vdequantized_input =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale),
- }
- };
- return vdequantized_input;
-}
-
-/** Quantize a neon vector holding 16 floating point values.
- *
- * @param[in] qv Input values to be quantized.
- * @param[in] qi Quantization information to be used in the computation.
- *
- * @return A neon vector holding the quantized values
- */
-inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
-{
- const float scale = qi.scale;
- ARM_COMPUTE_ERROR_ON(scale == 0.f);
- const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
- vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
- vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
- vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
-#else //__aarch64__
- vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
- vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
- vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
- vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
-#endif //__aarch64__
- }
- };
- const qsymm16x8x2_t res =
- {
- vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])),
- vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])),
- };
-
- return res;
-}
-
-/** Multiply a neon vector using quantized multiplier and shift
- *
- * @param[in] input Input vector to mutiply values to be quantized.
- * @param[in] qmul Quantized multipler
- * @param[in] shift Left bit shift
- *
- * @return A neon vector holding the multiplied value
- */
-inline int32x4x2_t multiply_by_quantized_multiplier_2row(int32x4x2_t input, int32_t qmul, int32_t shift)
-{
- const auto left_shift = shift > 0 ? shift : 0;
- const auto right_shift = shift > 0 ? 0 : -shift;
- const auto one_shifted = 1 << left_shift;
-
- int32x4x2_t result;
- result.val[0] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[0], one_shifted), qmul), right_shift);
- result.val[1] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[1], one_shifted), qmul), right_shift);
-
- return result;
-}
-
-} // namespace arm_compute
-#endif // ARM_COMPUTE_NESYMM_H