aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/Helpers.h
diff options
context:
space:
mode:
Diffstat (limited to 'arm_compute/core/Helpers.h')
-rw-r--r--arm_compute/core/Helpers.h682
1 files changed, 66 insertions, 616 deletions
diff --git a/arm_compute/core/Helpers.h b/arm_compute/core/Helpers.h
index 09c672ecfa..960201510a 100644
--- a/arm_compute/core/Helpers.h
+++ b/arm_compute/core/Helpers.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2016-2020 ARM Limited.
+ * Copyright (c) 2016-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -24,23 +24,17 @@
#ifndef ARM_COMPUTE_HELPERS_H
#define ARM_COMPUTE_HELPERS_H
-#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/IAccessWindow.h"
-#include "arm_compute/core/Steps.h"
-#include "arm_compute/core/Strides.h"
-#include "arm_compute/core/TensorShape.h"
+#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
-#include "support/MemorySupport.h"
#include <array>
#include <cstddef>
#include <cstdint>
-#include <memory>
#include <tuple>
-#include <type_traits>
-#include <utility>
namespace arm_compute
{
@@ -48,307 +42,6 @@ class IKernel;
class ITensor;
class ITensorInfo;
-/** Disable bitwise operations by default */
-template <typename T>
-struct enable_bitwise_ops
-{
- static constexpr bool value = false; /**< Disabled */
-};
-
-#ifndef DOXYGEN_SKIP_THIS
-template <typename T>
-typename std::enable_if<enable_bitwise_ops<T>::value, T>::type operator&(T lhs, T rhs)
-{
- using underlying_type = typename std::underlying_type<T>::type;
- return static_cast<T>(static_cast<underlying_type>(lhs) & static_cast<underlying_type>(rhs));
-}
-#endif /* DOXYGEN_SKIP_THIS */
-
-/** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object
- * It also calls the kernel's configuration.
- *
- * @param[in] args All the arguments that need pass to kernel's configuration.
- *
- * @return A unique pointer pointed to a CL/GLES kernel object
- */
-template <typename Kernel, typename... T>
-std::unique_ptr<Kernel> create_configure_kernel(T &&... args)
-{
- std::unique_ptr<Kernel> k = arm_compute::support::cpp14::make_unique<Kernel>();
- k->configure(std::forward<T>(args)...);
- return k;
-}
-
-/** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object
- *
- * @return A unique pointer pointed to a Kernel kernel object
- */
-template <typename Kernel>
-std::unique_ptr<Kernel> create_kernel()
-{
- std::unique_ptr<Kernel> k = arm_compute::support::cpp14::make_unique<Kernel>();
- return k;
-}
-
-namespace traits
-{
-/** Check if a type T is contained in a tuple Tuple of types */
-template <typename T, typename Tuple>
-struct is_contained;
-
-template <typename T>
-struct is_contained<T, std::tuple<>> : std::false_type
-{
-};
-
-template <typename T, typename... Ts>
-struct is_contained<T, std::tuple<T, Ts...>> : std::true_type
-{
-};
-
-template <typename T, typename U, typename... Ts>
-struct is_contained<T, std::tuple<U, Ts...>> : is_contained<T, std::tuple<Ts...>>
-{
-};
-}
-
-/** Computes bilinear interpolation using the pointer to the top-left pixel and the pixel's distance between
- * the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
- *
- * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
- * @param[in] stride Stride to access the bottom-left and bottom-right pixel values
- * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
- * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
- *
- * @note dx and dy must be in the range [0, 1.0]
- *
- * @return The bilinear interpolated pixel value
- */
-template <typename T>
-inline T delta_bilinear_c1(const T *pixel_ptr, size_t stride, float dx, float dy)
-{
- ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
-
- const float dx1 = 1.0f - dx;
- const float dy1 = 1.0f - dy;
-
- const T a00 = *pixel_ptr;
- const T a01 = *(pixel_ptr + 1);
- const T a10 = *(pixel_ptr + stride);
- const T a11 = *(pixel_ptr + stride + 1);
-
- const float w1 = dx1 * dy1;
- const float w2 = dx * dy1;
- const float w3 = dx1 * dy;
- const float w4 = dx * dy;
-
- return static_cast<T>(a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4);
-}
-
-/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
- * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8 and in single channel format.
- *
- * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
- * @param[in] stride Stride to access the bottom-left and bottom-right pixel values
- * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
- * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
- * @param[in] iq_info Input QuantizationInfo
- * @param[in] oq_info Output QuantizationInfo
- *
- * @note dx and dy must be in the range [0, 1.0]
- *
- * @return The bilinear interpolated pixel value
- */
-inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
-{
- ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
-
- const float dx1 = 1.0f - dx;
- const float dy1 = 1.0f - dy;
-
- const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info);
- const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info);
- const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info);
- const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info);
-
- const float w1 = dx1 * dy1;
- const float w2 = dx * dy1;
- const float w3 = dx1 * dy;
- const float w4 = dx * dy;
- float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
- return static_cast<uint8_t>(quantize_qasymm8(res, oq_info));
-}
-
-/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
- * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8_SIGNED and in single channel format.
- *
- * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
- * @param[in] stride Stride to access the bottom-left and bottom-right pixel values
- * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
- * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
- * @param[in] iq_info Input QuantizationInfo
- * @param[in] oq_info Output QuantizationInfo
- *
- * @note dx and dy must be in the range [0, 1.0]
- *
- * @return The bilinear interpolated pixel value
- */
-inline int8_t delta_bilinear_c1_quantized(const int8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
-{
- ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
-
- const float dx1 = 1.0f - dx;
- const float dy1 = 1.0f - dy;
-
- const float a00 = dequantize_qasymm8_signed(*pixel_ptr, iq_info);
- const float a01 = dequantize_qasymm8_signed(*(pixel_ptr + 1), iq_info);
- const float a10 = dequantize_qasymm8_signed(*(pixel_ptr + stride), iq_info);
- const float a11 = dequantize_qasymm8_signed(*(pixel_ptr + stride + 1), iq_info);
-
- const float w1 = dx1 * dy1;
- const float w2 = dx * dy1;
- const float w3 = dx1 * dy;
- const float w4 = dx * dy;
- float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
- return static_cast<int8_t>(quantize_qasymm8_signed(res, oq_info));
-}
-
-/** Computes linear interpolation using the pointer to the top pixel and the pixel's distance between
- * the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
- *
- * @param[in] pixel_ptr Pointer to the top pixel value of a single channel input.
- * @param[in] stride Stride to access the bottom pixel value
- * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
- *
- * @note dy must be in the range [0, 1.0]
- *
- * @return The linear interpolated pixel value
- */
-template <typename T>
-inline T delta_linear_c1_y(const T *pixel_ptr, size_t stride, float dy)
-{
- ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
-
- const float dy1 = 1.0f - dy;
-
- const T a00 = *pixel_ptr;
- const T a10 = *(pixel_ptr + stride);
-
- const float w1 = dy1;
- const float w3 = dy;
-
- return static_cast<T>(a00 * w1 + a10 * w3);
-}
-/** Computes linear interpolation using the pointer to the left pixel and the pixel's distance between
- * the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
- *
- * @param[in] pixel_ptr Pointer to the left pixel value of a single channel input.
- * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
- *
- * @note dx must be in the range [0, 1.0]
- *
- * @return The linear interpolated pixel value
- */
-template <typename T>
-inline T delta_linear_c1_x(const T *pixel_ptr, float dx)
-{
- ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
-
- const T a00 = *pixel_ptr;
- const T a01 = *(pixel_ptr + 1);
-
- const float dx1 = 1.0f - dx;
-
- const float w1 = dx1;
- const float w2 = dx;
-
- return static_cast<T>(a00 * w1 + a01 * w2);
-}
-/** Return the pixel at (x,y) using bilinear interpolation.
- *
- * @warning Only works if the iterator was created with an IImage
- *
- * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel input.
- * @param[in] stride Stride in bytes of the image;
- * @param[in] x X position of the wanted pixel
- * @param[in] y Y position of the wanted pixel
- *
- * @return The pixel at (x, y) using bilinear interpolation.
- */
-template <typename T>
-inline T pixel_bilinear_c1(const T *first_pixel_ptr, size_t stride, float x, float y)
-{
- ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
-
- const int32_t xi = std::floor(x);
- const int32_t yi = std::floor(y);
-
- const float dx = x - xi;
- const float dy = y - yi;
-
- return delta_bilinear_c1(first_pixel_ptr + xi + yi * stride, stride, dx, dy);
-}
-
-/** Return the pixel at (x,y) using bilinear interpolation by clamping when out of borders. The image must be single channel input
- *
- * @warning Only works if the iterator was created with an IImage
- *
- * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel image.
- * @param[in] stride Stride in bytes of the image
- * @param[in] width Width of the image
- * @param[in] height Height of the image
- * @param[in] x X position of the wanted pixel
- * @param[in] y Y position of the wanted pixel
- *
- * @return The pixel at (x, y) using bilinear interpolation.
- */
-template <typename T>
-inline uint8_t pixel_bilinear_c1_clamp(const T *first_pixel_ptr, size_t stride, size_t width, size_t height, float x, float y)
-{
- ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
-
- x = std::max(-1.f, std::min(x, static_cast<float>(width)));
- y = std::max(-1.f, std::min(y, static_cast<float>(height)));
-
- const float xi = std::floor(x);
- const float yi = std::floor(y);
-
- const float dx = x - xi;
- const float dy = y - yi;
-
- if(dx == 0.0f)
- {
- if(dy == 0.0f)
- {
- return static_cast<T>(first_pixel_ptr[static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride]);
- }
- return delta_linear_c1_y(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dy);
- }
- if(dy == 0.0f)
- {
- return delta_linear_c1_x(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, dx);
- }
- return delta_bilinear_c1(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride, dx, dy);
-}
-
-/** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8
- *
- * @note The interpolation area depends on the width and height ration of the input and output images
- * @note Currently average of the contributing pixels is calculated
- *
- * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image.
- * @param[in] stride Stride in bytes of the image
- * @param[in] width Width of the image
- * @param[in] height Height of the image
- * @param[in] wr Width ratio among the input image width and output image width.
- * @param[in] hr Height ratio among the input image height and output image height.
- * @param[in] x X position of the wanted pixel
- * @param[in] y Y position of the wanted pixel
- *
- * @return The pixel at (x, y) using area interpolation.
- */
-inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y);
-
/** Iterator updated by @ref execute_window_loop for each window element */
class Iterator
{
@@ -362,6 +55,16 @@ public:
*/
Iterator(const ITensor *tensor, const Window &window);
+ /** Create a container iterator for the tensor with the specified number of dimensions, stride, buffer pointer and window.
+ *
+ * @param[in] num_dims The number of dimensions.
+ * @param[in] strides The strides in bytes.
+ * @param[in] buffer The data buffer.
+ * @param[in] offset The offset in bytes from the beginning of the buffer to the first element of the tensor.
+ * @param[in] window The window which will be used to iterate over the tensor.
+ */
+ Iterator(size_t num_dims, const Strides &strides, uint8_t *buffer, size_t offset, const Window &window);
+
/** Increment the iterator along the specified dimension of the step value associated to the dimension.
*
* @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow.
@@ -376,7 +79,7 @@ public:
*
* @return The current position of the iterator in bytes relative to the first element.
*/
- constexpr int offset() const;
+ constexpr size_t offset() const;
/** Return a pointer to the current pixel.
*
@@ -393,18 +96,27 @@ public:
void reset(size_t dimension);
private:
+ /** Initialize a container iterator for the tensor with the specified number of dimensions, stride, buffer pointer and window.
+ *
+ * @param[in] num_dims The number of dimensions.
+ * @param[in] strides The strides in bytes.
+ * @param[in] buffer The data buffer.
+ * @param[in] offset The offset in bytes from the beginning of the buffer to the first element of the tensor.
+ * @param[in] window The window which will be used to iterate over the tensor.
+ */
+ void initialize(size_t num_dims, const Strides &strides, uint8_t *buffer, size_t offset, const Window &window);
+
uint8_t *_ptr;
class Dimension
{
public:
- constexpr Dimension()
- : _dim_start(0), _stride(0)
+ constexpr Dimension() : _dim_start(0), _stride(0)
{
}
- int _dim_start;
- int _stride;
+ size_t _dim_start;
+ size_t _stride;
};
std::array<Dimension, Coordinates::num_max_dimensions> _dims;
@@ -419,180 +131,7 @@ private:
* @param[in,out] iterators Tensor iterators which will be updated by this function before calling lambda_function.
*/
template <typename L, typename... Ts>
-inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators);
-
-/** Update window and padding size for each of the access patterns.
- *
- * First the window size is reduced based on all access patterns that are not
- * allowed to modify the padding of the underlying tensor. Then the padding of
- * the remaining tensors is increased to match the window.
- *
- * @param[in] win Window that is used by the kernel.
- * @param[in] patterns Access patterns used to calculate the final window and padding.
- *
- * @return True if the window has been changed. Changes to the padding do not
- * influence the returned value.
- */
-template <typename... Ts>
-bool update_window_and_padding(Window &win, Ts &&... patterns)
-{
- bool window_changed = false;
-
- utility::for_each([&](const IAccessWindow & w)
- {
- window_changed |= w.update_window_if_needed(win);
- },
- patterns...);
-
- bool padding_changed = false;
-
- utility::for_each([&](IAccessWindow & w)
- {
- padding_changed |= w.update_padding_if_needed(win);
- },
- patterns...);
-
- return window_changed;
-}
-
-/** Calculate the maximum window for a given tensor shape and border setting
- *
- * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
- * @param[in] steps (Optional) Number of elements processed for each step.
- * @param[in] skip_border (Optional) If true exclude the border region from the window.
- * @param[in] border_size (Optional) Border size.
- *
- * @return The maximum window the kernel can be executed on.
- */
-Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize());
-
-/** Calculate the maximum window for a given tensor shape and border setting
- *
- * @param[in] info Tensor info object defining the shape of the object for which the window is created.
- * @param[in] steps (Optional) Number of elements processed for each step.
- * @param[in] skip_border (Optional) If true exclude the border region from the window.
- * @param[in] border_size (Optional) Border size.
- *
- * @return The maximum window the kernel can be executed on.
- */
-inline Window calculate_max_window(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize())
-{
- return calculate_max_window(info.valid_region(), steps, skip_border, border_size);
-}
-
-/** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting
- *
- * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
- * @param[in] steps (Optional) Number of elements processed for each step.
- * @param[in] skip_border (Optional) If true exclude the border region from the window.
- * @param[in] border_size (Optional) Border size. The border region will be excluded from the window.
- *
- * @return The maximum window the kernel can be executed on.
- */
-Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize());
-
-/** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting
- *
- * @param[in] info Tensor info object defining the shape of the object for which the window is created.
- * @param[in] steps (Optional) Number of elements processed for each step.
- * @param[in] skip_border (Optional) If true exclude the border region from the window.
- * @param[in] border_size (Optional) Border size.
- *
- * @return The maximum window the kernel can be executed on.
- */
-inline Window calculate_max_window_horizontal(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize())
-{
- return calculate_max_window_horizontal(info.valid_region(), steps, skip_border, border_size);
-}
-
-/** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border.
- *
- * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created.
- * @param[in] steps (Optional) Number of elements processed for each step.
- * @param[in] border_size (Optional) Border size. The border region will be included in the window.
- *
- * @return The maximum window the kernel can be executed on.
- */
-Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps = Steps(), BorderSize border_size = BorderSize());
-
-/** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border.
- *
- * @param[in] info Tensor info object defining the shape of the object for which the window is created.
- * @param[in] steps (Optional) Number of elements processed for each step.
- * @param[in] border_size (Optional) Border size. The border region will be included in the window.
- *
- * @return The maximum window the kernel can be executed on.
- */
-inline Window calculate_max_enlarged_window(const ITensorInfo &info, const Steps &steps = Steps(), BorderSize border_size = BorderSize())
-{
- return calculate_max_enlarged_window(info.valid_region(), steps, border_size);
-}
-
-/** Intersect multiple valid regions.
- *
- * @param[in] regions Valid regions.
- *
- * @return Intersection of all regions.
- */
-template <typename... Ts>
-ValidRegion intersect_valid_regions(const Ts &... regions)
-{
- auto intersect = [](const ValidRegion & r1, const ValidRegion & r2) -> ValidRegion
- {
- ValidRegion region;
-
- for(size_t d = 0; d < std::min(r1.anchor.num_dimensions(), r2.anchor.num_dimensions()); ++d)
- {
- region.anchor.set(d, std::max(r1.anchor[d], r2.anchor[d]));
- }
-
- for(size_t d = 0; d < std::min(r1.shape.num_dimensions(), r2.shape.num_dimensions()); ++d)
- {
- region.shape.set(d, std::min(r1.shape[d], r2.shape[d]));
- }
-
- return region;
- };
-
- return utility::foldl(intersect, regions...);
-}
-
-/** Create a strides object based on the provided strides and the tensor dimensions.
- *
- * @param[in] info Tensor info object providing the shape of the tensor for unspecified strides.
- * @param[in] stride_x Stride to be used in X dimension (in bytes).
- * @param[in] fixed_strides Strides to be used in higher dimensions starting at Y (in bytes).
- *
- * @return Strides object based on the specified strides. Missing strides are
- * calculated based on the tensor shape and the strides of lower dimensions.
- */
-template <typename T, typename... Ts>
-inline Strides compute_strides(const ITensorInfo &info, T stride_x, Ts &&... fixed_strides)
-{
- const TensorShape &shape = info.tensor_shape();
-
- // Create strides object
- Strides strides(stride_x, fixed_strides...);
-
- for(size_t i = 1 + sizeof...(Ts); i < info.num_dimensions(); ++i)
- {
- strides.set(i, shape[i - 1] * strides[i - 1]);
- }
-
- return strides;
-}
-
-/** Create a strides object based on the tensor dimensions.
- *
- * @param[in] info Tensor info object used to compute the strides.
- *
- * @return Strides object based on element size and tensor shape.
- */
-template <typename... Ts>
-inline Strides compute_strides(const ITensorInfo &info)
-{
- return compute_strides(info, info.element_size());
-}
+inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&...iterators);
/** Permutes given Dimensions according to a permutation vector
*
@@ -605,7 +144,7 @@ template <typename T>
inline void permute(Dimensions<T> &dimensions, const PermutationVector &perm)
{
auto dimensions_copy = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
- for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
+ for (unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0;
dimensions.set(i, dimension_val);
@@ -622,86 +161,13 @@ inline void permute(Dimensions<T> &dimensions, const PermutationVector &perm)
inline void permute(TensorShape &shape, const PermutationVector &perm)
{
TensorShape shape_copy = shape;
- for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
+ for (unsigned int i = 0; i < perm.num_dimensions(); ++i)
{
size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1;
- shape.set(i, dimension_val, false); // Avoid changes in _num_dimension
+ shape.set(i, dimension_val, false, false); // Avoid changes in _num_dimension
}
}
-/** Auto initialize the tensor info (shape, number of channels and data type) if the current assignment is empty.
- *
- * @param[in,out] info Tensor info used to check and assign.
- * @param[in] shape New shape.
- * @param[in] num_channels New number of channels.
- * @param[in] data_type New data type
- * @param[in] quantization_info (Optional) New quantization info
- *
- * @return True if the tensor info has been initialized
- */
-bool auto_init_if_empty(ITensorInfo &info,
- const TensorShape &shape,
- int num_channels, DataType data_type,
- QuantizationInfo quantization_info = QuantizationInfo());
-
-/** Auto initialize the tensor info using another tensor info.
- *
- * @param info_sink Tensor info used to check and assign
- * @param info_source Tensor info used to assign
- *
- * @return True if the tensor info has been initialized
- */
-bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source);
-
-/** Set the shape to the specified value if the current assignment is empty.
- *
- * @param[in,out] info Tensor info used to check and assign.
- * @param[in] shape New shape.
- *
- * @return True if the shape has been changed.
- */
-bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape);
-
-/** Set the format, data type and number of channels to the specified value if
- * the current data type is unknown.
- *
- * @param[in,out] info Tensor info used to check and assign.
- * @param[in] format New format.
- *
- * @return True if the format has been changed.
- */
-bool set_format_if_unknown(ITensorInfo &info, Format format);
-
-/** Set the data type and number of channels to the specified value if
- * the current data type is unknown.
- *
- * @param[in,out] info Tensor info used to check and assign.
- * @param[in] data_type New data type.
- *
- * @return True if the data type has been changed.
- */
-bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type);
-
-/** Set the data layout to the specified value if
- * the current data layout is unknown.
- *
- * @param[in,out] info Tensor info used to check and assign.
- * @param[in] data_layout New data layout.
- *
- * @return True if the data type has been changed.
- */
-bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout);
-
-/** Set the quantization info to the specified value if
- * the current quantization info is empty and the data type of asymmetric quantized type
- *
- * @param[in,out] info Tensor info used to check and assign.
- * @param[in] quantization_info Quantization info
- *
- * @return True if the quantization info has been changed.
- */
-bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info);
-
/** Helper function to calculate the Valid Region for Scale.
*
* @param[in] src_info Input tensor info used to check.
@@ -712,8 +178,11 @@ bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantiza
*
* @return The corresponding valid region
*/
-ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape,
- InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined);
+ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info,
+ const TensorShape &dst_shape,
+ InterpolationPolicy interpolate_policy,
+ SamplingPolicy sampling_policy,
+ bool border_undefined);
/** Convert a linear index into n-dimensional coordinates.
*
@@ -733,6 +202,22 @@ inline Coordinates index2coords(const TensorShape &shape, int index);
*/
inline int coords2index(const TensorShape &shape, const Coordinates &coord);
+/** Returns a static map used to find an index or dimension based on a data layout
+ *
+ * *** Layouts ***
+ *
+ * *** 4D ***
+ * [N C H W]
+ * [3 2 1 0]
+ * [N H W C]
+ *
+ * * *** 5D ***
+ * [N C D H W]
+ * [4 3 2 1 0]
+ * [N D H W C]
+ */
+const std::map<DataLayout, std::vector<DataLayoutDimension>> &get_layout_map();
+
/** Get the index of the given dimension.
*
* @param[in] data_layout The data layout.
@@ -740,7 +225,8 @@ inline int coords2index(const TensorShape &shape, const Coordinates &coord);
*
* @return The int conversion of the requested data layout index.
*/
-inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension);
+inline size_t get_data_layout_dimension_index(const DataLayout &data_layout,
+ const DataLayoutDimension &data_layout_dimension);
/** Get the DataLayoutDimension of a given index and layout.
*
@@ -749,22 +235,7 @@ inline size_t get_data_layout_dimension_index(const DataLayout data_layout, cons
*
* @return The dimension which this index is requested for.
*/
-inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index);
-
-/** Calculate the normalization dimension index for a given normalization type
- *
- * @param[in] layout Data layout of the input and output tensor
- * @param[in] info Normalization info
- *
- * @return Normalization dimension index
- */
-inline unsigned int get_normalization_dimension_index(DataLayout layout, const NormalizationLayerInfo &info)
-{
- const unsigned int width_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::WIDTH);
- const unsigned int channel_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::CHANNEL);
-
- return info.is_in_map() ? width_idx : channel_idx;
-}
+inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout &data_layout, const size_t index);
/** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform
* to know the number of tiles on the x and y direction
@@ -776,10 +247,17 @@ inline unsigned int get_normalization_dimension_index(DataLayout layout, const N
*
* @return the number of output tiles along the x and y directions of size "output_tile_size"
*/
-inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims, const Size2D &kernel_size, const Size2D &output_tile_size, const PadStrideInfo &conv_info)
+inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims,
+ const Size2D &kernel_size,
+ const Size2D &output_tile_size,
+ const PadStrideInfo &conv_info)
{
- int num_tiles_x = std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>(output_tile_size.width));
- int num_tiles_y = std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>(output_tile_size.height));
+ int num_tiles_x =
+ std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) /
+ static_cast<float>(output_tile_size.width));
+ int num_tiles_y =
+ std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) /
+ static_cast<float>(output_tile_size.height));
// Clamp in case we provide paddings but we have 1D convolution
num_tiles_x = std::min(num_tiles_x, static_cast<int>(in_dims.width));
@@ -808,40 +286,12 @@ inline T wrap_around(T x, T m)
*/
inline Coordinates &convert_negative_axis(Coordinates &coords, int max_value)
{
- for(unsigned int i = 0; i < coords.num_dimensions(); ++i)
+ for (unsigned int i = 0; i < coords.num_dimensions(); ++i)
{
coords[i] = wrap_around(coords[i], max_value);
}
return coords;
}
-
-/** Given an integer value, this function returns the next power of two
- *
- * @param[in] x Input value
- *
- * @return the next power of two
- */
-inline unsigned int get_next_power_two(unsigned int x)
-{
- // Decrement by 1
- x--;
-
- // Shift right by 1
- x |= x >> 1u;
- // Shift right by 2
- x |= x >> 2u;
- // Shift right by 4
- x |= x >> 4u;
- // Shift right by 8
- x |= x >> 8u;
- // Shift right by 16
- x |= x >> 16u;
-
- // Increment by 1
- x++;
-
- return x;
-}
} // namespace arm_compute
#include "arm_compute/core/Helpers.inl"