aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/OpticalFlow.cpp
diff options
context:
space:
mode:
authorJohn Richardson <john.richardson@arm.com>2018-02-22 14:09:31 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:49:16 +0000
commit8de92619e223225aabdca873c02f231d8e941fd1 (patch)
tree6b0c7a04e58e120fc9969270cb7ba432a31e1258 /tests/validation/reference/OpticalFlow.cpp
parent2abb216e1aaeefe65c8a7e6294b4735f0647c927 (diff)
downloadComputeLibrary-8de92619e223225aabdca873c02f231d8e941fd1.tar.gz
COMPMID-585: Port OpticalFlow to new validation
Change-Id: Ia36bd11ca27420d3059eea15df81b237900149ec Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/125175 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: John Richardson <john.richardson@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'tests/validation/reference/OpticalFlow.cpp')
-rw-r--r--tests/validation/reference/OpticalFlow.cpp404
1 files changed, 404 insertions, 0 deletions
diff --git a/tests/validation/reference/OpticalFlow.cpp b/tests/validation/reference/OpticalFlow.cpp
new file mode 100644
index 0000000000..da0b9f9f94
--- /dev/null
+++ b/tests/validation/reference/OpticalFlow.cpp
@@ -0,0 +1,404 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "OpticalFlow.h"
+
+#include "GaussianPyramidHalf.h"
+#include "Scharr.h"
+#include "Utils.h"
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace reference
+{
+namespace
+{
+using KeyPointArray = std::vector<KeyPoint>;
+using InternalKeyPointArray = std::vector<InternalKeyPoint>;
+
+// Constants used for Lucas-Kanade Algorithm
+constexpr int W_BITS = 14;
+constexpr float D0 = 1 << W_BITS;
+constexpr float DETERMINANT_THRESHOLD = 1.0e-07f;
+constexpr float EIGENVALUE_THRESHOLD = 1.0e-04f;
+constexpr float FLT_SCALE = 1.0f / (1 << 20);
+
+// Creates an InternalKeyPointArray for tracking non-integral pixel coordinates
+InternalKeyPointArray create_internal_keypoints(const KeyPointArray &keypoints)
+{
+ InternalKeyPointArray internal_keypoints;
+
+ for(auto keypoint : keypoints)
+ {
+ InternalKeyPoint internal_keypoint;
+
+ internal_keypoint.x = static_cast<float>(keypoint.x);
+ internal_keypoint.y = static_cast<float>(keypoint.y);
+ internal_keypoint.tracking_status = static_cast<bool>(keypoint.tracking_status);
+
+ internal_keypoints.push_back(internal_keypoint);
+ }
+
+ return internal_keypoints;
+}
+
+// Scale tracked points based on Pyramid level
+void scale_tracked_points(size_t level, size_t num_levels, bool use_initial_estimate,
+ InternalKeyPointArray &old_points_internal, InternalKeyPointArray &new_points_internal,
+ const KeyPointArray &old_points, const KeyPointArray &new_points_estimates)
+{
+ if(level == num_levels - 1) // lowest resolution
+ {
+ const float scale = std::pow(SCALE_PYRAMID_HALF, level);
+
+ for(size_t i = 0; i < old_points.size(); ++i)
+ {
+ old_points_internal.at(i).x = old_points.at(i).x * scale;
+ old_points_internal.at(i).y = old_points.at(i).y * scale;
+ old_points_internal.at(i).tracking_status = true;
+
+ InternalKeyPoint keypoint_to_track;
+
+ if(use_initial_estimate)
+ {
+ keypoint_to_track.x = new_points_estimates.at(i).x * scale;
+ keypoint_to_track.y = new_points_estimates.at(i).y * scale;
+ keypoint_to_track.tracking_status = (new_points_estimates.at(i).tracking_status == 1);
+ }
+ else
+ {
+ keypoint_to_track.x = old_points_internal.at(i).x;
+ keypoint_to_track.y = old_points_internal.at(i).y;
+ keypoint_to_track.tracking_status = true;
+ }
+
+ new_points_internal.at(i) = keypoint_to_track;
+ }
+ }
+ else
+ {
+ for(size_t i = 0; i < old_points.size(); ++i)
+ {
+ old_points_internal.at(i).x /= SCALE_PYRAMID_HALF;
+ old_points_internal.at(i).y /= SCALE_PYRAMID_HALF;
+ new_points_internal.at(i).x /= SCALE_PYRAMID_HALF;
+ new_points_internal.at(i).y /= SCALE_PYRAMID_HALF;
+ }
+ }
+}
+
+bool is_invalid_keypoint(const InternalKeyPoint &keypoint, const ValidRegion &valid_region, size_t window_dimension)
+{
+ const int half_window = window_dimension / 2;
+ const int x = std::floor(keypoint.x);
+ const int y = std::floor(keypoint.y);
+
+ return (x - half_window < valid_region.start(0)) || (x + half_window >= valid_region.end(0) - 1) || (y - half_window < valid_region.start(1)) || (y + half_window >= valid_region.end(1) - 1);
+}
+
+template <typename T>
+constexpr int INT_ROUND(T x, int n)
+{
+ return (x + (1 << (n - 1))) >> n;
+}
+
+// Return the bilinear value at a specified coordinate with different border modes
+template <typename T>
+int bilinear_interpolate(const SimpleTensor<T> &in, Coordinates id, float wx, float wy, BorderMode border_mode, T constant_border_value, int scale)
+{
+ const int level = id.x();
+ const int idy = id.y();
+
+ const float dx = wx;
+ const float dy = wy;
+ const float dx_1 = 1.0f - dx;
+ const float dy_1 = 1.0f - dy;
+
+ const T border_value = constant_border_value;
+
+ id.set(0, level);
+ id.set(1, idy);
+ const T tl = tensor_elem_at(in, id, border_mode, border_value);
+ id.set(0, level + 1);
+ id.set(1, idy);
+ const T tr = tensor_elem_at(in, id, border_mode, border_value);
+ id.set(0, level);
+ id.set(1, idy + 1);
+ const T bl = tensor_elem_at(in, id, border_mode, border_value);
+ id.set(0, level + 1);
+ id.set(1, idy + 1);
+ const T br = tensor_elem_at(in, id, border_mode, border_value);
+
+ // weights
+ const int w00 = roundf(dx_1 * dy_1 * D0);
+ const int w01 = roundf(dx * dy_1 * D0);
+ const int w10 = roundf(dx_1 * dy * D0);
+ const int w11 = D0 - w00 - w01 - w10;
+
+ return static_cast<int>(INT_ROUND(tl * w00 + tr * w01 + bl * w10 + br * w11, scale));
+}
+
+template <typename T>
+std::vector<int> compute_derivative(const SimpleTensor<T> &input, const InternalKeyPoint &keypoint,
+ BorderMode border_mode, uint8_t constant_border_value, size_t window_dimension, int scale)
+{
+ std::vector<int> bilinear_values;
+
+ const int half_window = window_dimension / 2;
+
+ float keypoint_int_x = 0;
+ float keypoint_int_y = 0;
+
+ const float wx = std::modf(keypoint.x, &keypoint_int_x);
+ const float wy = std::modf(keypoint.y, &keypoint_int_y);
+
+ Coordinates tl_window(static_cast<int>(keypoint_int_x) - half_window, static_cast<int>(keypoint_int_y) - half_window);
+ Coordinates br_window(static_cast<int>(keypoint_int_x) + half_window, static_cast<int>(keypoint_int_y) + half_window);
+
+ for(int y = tl_window.y(); y <= br_window.y(); ++y)
+ {
+ for(int x = tl_window.x(); x <= br_window.x(); ++x)
+ {
+ bilinear_values.push_back(bilinear_interpolate(input, Coordinates(x, y), wx, wy, border_mode, static_cast<T>(constant_border_value), scale));
+ }
+ }
+
+ return bilinear_values;
+}
+
+std::tuple<float, float, float> compute_spatial_gradient_matrix(const std::vector<int> &bilinear_ix, const std::vector<int> &bilinear_iy)
+{
+ ARM_COMPUTE_ERROR_ON(bilinear_ix.size() != bilinear_iy.size());
+
+ int iA11 = 0;
+ int iA12 = 0;
+ int iA22 = 0;
+
+ for(size_t i = 0; i < bilinear_ix.size(); ++i)
+ {
+ int ixval = bilinear_ix[i];
+ int iyval = bilinear_iy[i];
+
+ iA11 += ixval * ixval;
+ iA12 += ixval * iyval;
+ iA22 += iyval * iyval;
+ }
+
+ return std::make_tuple(iA11 * FLT_SCALE, iA12 * FLT_SCALE, iA22 * FLT_SCALE);
+}
+
+std::tuple<double, double> compute_temporal_gradient_vector(const std::vector<int> &bilinear_it_old,
+ const std::vector<int> &bilinear_it_new,
+ const std::vector<int> &bilinear_ix,
+ const std::vector<int> &bilinear_iy)
+{
+ ARM_COMPUTE_ERROR_ON(bilinear_ix.size() != bilinear_iy.size());
+ ARM_COMPUTE_ERROR_ON(bilinear_it_old.size() != bilinear_it_new.size());
+
+ int ib1 = 0;
+ int ib2 = 0;
+
+ for(size_t i = 0; i < bilinear_ix.size(); ++i)
+ {
+ int ixval = bilinear_ix[i];
+ int iyval = bilinear_iy[i];
+ int ival = bilinear_it_old[i];
+ int jval = bilinear_it_new[i];
+
+ const int diff = jval - ival;
+
+ ib1 += diff * ixval;
+ ib2 += diff * iyval;
+ }
+
+ const double b1 = ib1 * FLT_SCALE;
+ const double b2 = ib2 * FLT_SCALE;
+
+ return std::make_tuple(b1, b2);
+}
+} // namespace
+
+template <typename T>
+std::vector<KeyPoint> optical_flow(const SimpleTensor<T> &old_input, const SimpleTensor<T> &new_input,
+ const OpticalFlowParameters &params, size_t num_levels,
+ const std::vector<KeyPoint> &old_points, const std::vector<KeyPoint> &new_points_estimates,
+ BorderMode border_mode, uint8_t constant_border_value)
+{
+ const int filter_size = 3; // scharr filter size
+ const size_t max_iterations = 1000; // fixed by kernel
+ const size_t window_dimension = params.window_dimension;
+ const size_t num_iterations = (params.termination == Termination::TERM_CRITERIA_EPSILON) ? max_iterations : params.num_iterations;
+
+ KeyPointArray new_points(old_points.size());
+
+ InternalKeyPointArray old_points_internal = create_internal_keypoints(old_points);
+ InternalKeyPointArray new_points_internal = create_internal_keypoints(new_points_estimates);
+
+ SimpleTensor<int16_t> scharr_gx;
+ SimpleTensor<int16_t> scharr_gy;
+
+ // Create pyramids
+ std::vector<SimpleTensor<T>> old_pyramid = gaussian_pyramid_half(old_input, border_mode, constant_border_value, num_levels);
+ std::vector<SimpleTensor<T>> new_pyramid = gaussian_pyramid_half(new_input, border_mode, constant_border_value, num_levels);
+
+ // Iterate over each level of the pyramid
+ for(size_t idx = num_levels; idx > 0; --idx)
+ {
+ const size_t level = idx - 1;
+
+ // Calculate scharr gradients
+ std::tie(scharr_gx, scharr_gy) = scharr<int16_t, T>(old_pyramid[level], filter_size, border_mode, constant_border_value, GradientDimension::GRAD_XY);
+
+ scale_tracked_points(level, num_levels, params.use_initial_estimate, old_points_internal, new_points_internal, old_points, new_points_estimates);
+
+ // Calculate valid region based on image dimensions of current pyramid level
+ const ValidRegion valid_region = shape_to_valid_region(old_pyramid[level].shape(), (border_mode == BorderMode::UNDEFINED), BorderSize(filter_size / 2));
+
+ for(size_t i = 0; i < old_points.size(); ++i)
+ {
+ InternalKeyPoint &old_keypoint = old_points_internal.at(i);
+ InternalKeyPoint &new_keypoint = new_points_internal.at(i);
+
+ // Helper function for untracking keypoints when on the lowest pyramid level (high resolution)
+ const auto untrack_keypoint = [&](bool predicate)
+ {
+ if(predicate && (level == 0))
+ {
+ new_keypoint.tracking_status = false;
+ return true;
+ }
+ return predicate;
+ };
+
+ if(!old_keypoint.tracking_status)
+ {
+ continue;
+ }
+
+ // Check if tracked coordinate is outside image coordinate
+ if(untrack_keypoint(is_invalid_keypoint(old_keypoint, valid_region, window_dimension)))
+ {
+ continue;
+ }
+
+ // Compute spatial derivative
+ std::vector<int> bilinear_ix = compute_derivative(scharr_gx, old_keypoint, border_mode, constant_border_value, window_dimension, W_BITS);
+ std::vector<int> bilinear_iy = compute_derivative(scharr_gy, old_keypoint, border_mode, constant_border_value, window_dimension, W_BITS);
+
+ float A11 = 0.f;
+ float A12 = 0.f;
+ float A22 = 0.f;
+ std::tie(A11, A12, A22) = compute_spatial_gradient_matrix(bilinear_ix, bilinear_iy);
+
+ // Calculate criteria for lost tracking : Matrix A is invertible
+ // 1. The determinant of the matrix is less than DETERMINANT_THRESHOLD
+ // 2. The minimum eigenvalue of the matrix is less than EIGENVALUE_THRESHOLD
+ const float trace_A = A11 + A22;
+ const float determinant = A11 * A22 - A12 * A12;
+ const float discriminant = (trace_A * trace_A) - 4.0f * (determinant);
+ const float eigenvalue_A = (trace_A - std::sqrt(discriminant)) / 2.0f;
+
+ // Divide by window_dimension squared to reduce the floating point accummulation error
+ const float eigenvalue = eigenvalue_A / (window_dimension * window_dimension);
+
+ // Check if it is a good point to track
+ if(untrack_keypoint(eigenvalue < EIGENVALUE_THRESHOLD || determinant < DETERMINANT_THRESHOLD))
+ {
+ continue;
+ }
+
+ float prev_delta_x = 0.f;
+ float prev_delta_y = 0.f;
+
+ for(size_t j = 0; j < num_iterations; ++j)
+ {
+ // Check if tracked coordinate is outside image coordinate
+ if(untrack_keypoint(is_invalid_keypoint(new_keypoint, valid_region, window_dimension)))
+ {
+ break;
+ }
+
+ // Compute temporal derivative
+ std::vector<int> bilinear_it_old = compute_derivative(old_pyramid[level], old_keypoint, border_mode, constant_border_value, window_dimension, W_BITS - 5);
+ std::vector<int> bilinear_it_new = compute_derivative(new_pyramid[level], new_keypoint, border_mode, constant_border_value, window_dimension, W_BITS - 5);
+
+ double b1 = 0.f;
+ double b2 = 0.f;
+ std::tie(b1, b2) = compute_temporal_gradient_vector(bilinear_it_old, bilinear_it_new, bilinear_ix, bilinear_iy);
+
+ // Compute motion vector -> A^-1 * -b
+ const float delta_x = (A12 * b2 - A22 * b1) / determinant;
+ const float delta_y = (A12 * b1 - A11 * b2) / determinant;
+
+ // Update the new position
+ new_keypoint.x += delta_x;
+ new_keypoint.y += delta_y;
+
+ const float magnitude_squared = delta_x * delta_x + delta_y * delta_y;
+
+ // Check if termination criteria is EPSILON and if it is satisfied
+ if(magnitude_squared <= params.epsilon && (params.termination == Termination::TERM_CRITERIA_EPSILON || params.termination == Termination::TERM_CRITERIA_BOTH))
+ {
+ break;
+ }
+
+ // Check convergence analyzing the previous delta
+ if(j > 0 && (std::fabs(delta_x + prev_delta_x) < 0.01f && std::fabs(delta_y + prev_delta_y) < 0.01f))
+ {
+ new_keypoint.x -= delta_x * SCALE_PYRAMID_HALF;
+ new_keypoint.y -= delta_y * SCALE_PYRAMID_HALF;
+
+ break;
+ }
+
+ prev_delta_x = delta_x;
+ prev_delta_y = delta_y;
+ }
+ }
+ }
+
+ // Copy optical flow coordinates to output vector
+ for(size_t i = 0; i < old_points.size(); ++i)
+ {
+ const InternalKeyPoint &new_keypoint = new_points_internal.at(i);
+
+ new_points.at(i).x = roundf(new_keypoint.x);
+ new_points.at(i).y = roundf(new_keypoint.y);
+ new_points.at(i).tracking_status = new_keypoint.tracking_status ? 1 : 0;
+ }
+
+ return new_points;
+}
+
+template std::vector<KeyPoint> optical_flow(const SimpleTensor<uint8_t> &old_input, const SimpleTensor<uint8_t> &new_input,
+ const OpticalFlowParameters &params, size_t num_levels,
+ const std::vector<KeyPoint> &old_points, const std::vector<KeyPoint> &new_points_estimates,
+ BorderMode border_mode, uint8_t constant_border_value);
+} // namespace reference
+} // namespace validation
+} // namespace test
+} // namespace arm_compute