aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/Helpers.cpp
diff options
context:
space:
mode:
authorGunes Bayir <gunes.bayir@arm.com>2023-04-13 18:22:58 +0100
committerGunes Bayir <gunes.bayir@arm.com>2023-04-17 15:54:44 +0000
commit9d0c4deb760efc2ca07e5e0b8218995201ad8a1f (patch)
tree8f64b754d05768e2f69cfae387137140a6bb22b5 /tests/validation/Helpers.cpp
parent99145f787e9e99b45522f16d861c8527583f2b4e (diff)
downloadComputeLibrary-9d0c4deb760efc2ca07e5e0b8218995201ad8a1f.tar.gz
Add quantized CL MatMul kernels for Lhs NT/T, Rhs NT
Implement OpenCL kernels for batched Matrix Multiplication for the quantized data types QASYMM8 and QASYMM8_SIGNED. Quantized MatMul is supported with the following MatMul attributes: * adj_x = false, adj_y = false * adj_x = true, adj_y = false We consider native format kernels only. In other words, no reshaping of the operand matrices is done. Resolves: COMPMID-5921, COMPMID-5922 Change-Id: I99e0f68054a2bd635c60ec2641acc2e7ff398473 Signed-off-by: Omar Al Khatib <omar.alkhatib@arm.com> Signed-off-by: Gunes Bayir <gunes.bayir@arm.com> Signed-off-by: Jakub Sujak <jakub.sujak@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/9435 Reviewed-by: SiCong Li <sicong.li@arm.com> Reviewed-by: Viet-Hoa Do <viet-hoa.do@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Benchmark: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'tests/validation/Helpers.cpp')
-rw-r--r--tests/validation/Helpers.cpp102
1 files changed, 101 insertions, 1 deletions
diff --git a/tests/validation/Helpers.cpp b/tests/validation/Helpers.cpp
index be194dd266..110325c5a0 100644
--- a/tests/validation/Helpers.cpp
+++ b/tests/validation/Helpers.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2022 Arm Limited.
+ * Copyright (c) 2017-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -22,6 +22,7 @@
* SOFTWARE.
*/
#include "tests/validation/Helpers.h"
+#include "tests/framework/Asserts.h"
#include <algorithm>
#include <cmath>
@@ -373,6 +374,105 @@ void add_padding_y(std::initializer_list<ITensor *> tensors, const DataLayout &d
}
}
+QuantizationInfo calculate_mat_mul_dst_q_info(const QuantizationInfo &a_q_info, const QuantizationInfo &b_q_info, int m, int n, int k, DataType data_type)
+{
+ ARM_COMPUTE_UNUSED(m, n);
+ QuantizationInfo c_q_info;
+
+ ARM_COMPUTE_ASSERT(data_type == DataType::QASYMM8 || data_type == DataType::QASYMM8_SIGNED);
+
+ const int32_t t_max = static_cast<int32_t>(data_type == DataType::QASYMM8 ? std::numeric_limits<uint8_t>::max() : std::numeric_limits<int8_t>::max());
+ const int32_t t_min = static_cast<int32_t>(data_type == DataType::QASYMM8 ? std::numeric_limits<uint8_t>::min() : std::numeric_limits<int8_t>::min());
+
+ /** Quantization Setup of matrix multiplication
+ *
+ * We have a matrix multiplication of the form C = A * B
+ * where A is (M X K), B is (K x N) and C is therefore (M x N).
+ *
+ * If we have some distributions statistics of A and B, i.e. mean and variance,
+ * we can estimate the mean and variance of a single value in C matrix and
+ * pick good scale and offset values for the output and have non-saturated tests.
+ *
+ * Each element in the output matrix can be calculated as follows:
+ * C_ij = sum_k(A_ik * B_kj)
+ *
+ * All values are float above.
+ *
+ * Note: All possible A_ik, B_kj random variables are assumed mutually independent.
+ *
+ * Terminology:
+ * E[X]: Mean of the random variable X (sometimes referred as mu_x)
+ * var(X): Variance of the random variable X (someimes referred as sigma^2_x)
+ * std(X): sqrt(var(X)), standard deviation of X
+ *
+ * 1) Calculate the mean:
+ * E[C_ij] = sum_k( E[A_ik] * E[B_kj] ) = K * mean_a * mean_b
+ *
+ * Since elements of A and B are uniformly distributed random variables, we have
+ * mean_a = (max_a + min_a) / 2, mean_b = (max_b + min_b ) / 2
+ * max_a and min_a can be calculated with the scale_a/b and offset_a/b
+ * by replacing data type minimum and maximums in the equations
+ *
+ * 2) Calculate the variance:
+ * var(C_ij) = sum_k( var(A_ik * B_kj) )
+ * = sum_k ( E[A_ik^2 * B_kj^2] - E[A_ik]^2E[B_kj^2] )
+ * = ...
+ * = K * (var_a * var_b + var_a * mean^2_b + var_b * mean^2_a)
+ *
+ * Similarly, due to uniform random variable properties, we have
+ * var_a = (max_a - min_a)^2 / 12
+ * var_b = (max_b - min_b)^2 / 12
+ *
+ *
+ * 3) Now, we have an idea of what would an average C_ij will like and how much deviation
+ * is present around it. The exact distribution of C is not easy to come up with dependent on K.
+ * But, as K increases, due to Central Limit Theorem, it'll look more like a bell shaped figure,
+ * approaching normal distribution.
+ *
+ * This is useful because, in normal distribution, we know that values +- 2 std_deviation around
+ * the mean constitute 95% of the values. Therefore, setting a plausible range for us:
+ * C_range = [C_min, C_max] = [mean_c - 2 * std_c, mean_c + 2 * std_c]
+ *
+ * 4)
+ * If we map this [C_min, C_max] to [0, 255] or [-128, 127] depending on the signedness of the
+ * data type, we can find a suitable scale and offset for the output. On average, it's expected
+ * that 5% of the output values will saturate and 95% will remain in the range.
+ *
+ * The equations to be solved for offset_c and scale_c are:
+ * C_min = scale_c * (type_min - offset_c)
+ * C_max = scale_c * (type_max - offset_c)
+ */
+
+ const int32_t a_offset = a_q_info.uniform().offset;
+ const float a_scale = a_q_info.uniform().scale;
+ const int32_t b_offset = b_q_info.uniform().offset;
+ const float b_scale = b_q_info.uniform().scale;
+
+ // Lhs/A stats
+ const float max_a = (t_max - a_offset) * a_scale;
+ const float min_a = (t_min - a_offset) * a_scale;
+ const float mean_a = (max_a + min_a) / 2;
+ const float var_a = (max_a - min_a) * (max_a - min_a) / 12;
+
+ // Rhs/B stats
+ const float max_b = (t_max - b_offset) * b_scale;
+ const float min_b = (t_min - b_offset) * b_scale;
+ const float mean_b = (max_b + min_b) / 2;
+ const float var_b = (max_b - min_b) * (max_b - min_b) / 12;
+
+ // Output stats
+ const float mean_out = k * mean_a * mean_b;
+ const float var_out = k * (var_a * var_b + var_a * mean_b * mean_b + var_b * mean_a * mean_a);
+ const float std_out = sqrt(var_out);
+
+ // Output quantization setup
+ const float scale_out = 4 * std_out / 255;
+ const int32_t offset_out = static_cast<int32_t>(t_min - (mean_out - 2.f * std_out) / scale_out);
+
+ c_q_info = QuantizationInfo(scale_out, offset_out);
+ return c_q_info;
+}
+
template void get_tile(const SimpleTensor<float> &in, SimpleTensor<float> &roi, const Coordinates &coord);
template void get_tile(const SimpleTensor<half> &in, SimpleTensor<half> &roi, const Coordinates &coord);
template void get_tile(const SimpleTensor<int> &in, SimpleTensor<int> &roi, const Coordinates &coord);