aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorSiCongLi <sicong.li@arm.com>2021-10-06 15:25:57 +0100
committerSiCong Li <sicong.li@arm.com>2021-10-28 11:00:52 +0000
commit1af5416917268692fcd4b34b1d7ffebd3a2aea8a (patch)
tree81833ecad401eeb0101fb0d464728df8b699caf8 /src
parent49956ccf029ff4c1873e3a6702b5bede95d81f7a (diff)
downloadComputeLibrary-1af5416917268692fcd4b34b1d7ffebd3a2aea8a.tar.gz
Add experimental PostOp interface to ClGemmMatrixMultiplyReshapedKernel Part 1
This interface supports the fusion of multiple elementwise operations Partially resolves: COMPMID-4435 Change-Id: If68dd7dd98dcf239fde7cb1f0a4a6d4d1e899a6f Signed-off-by: SiCongLi <sicong.li@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6483 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src')
-rw-r--r--src/core/CL/CLUtils.cpp97
-rw-r--r--src/core/CL/CLUtils.h86
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h101
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl1404
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h262
-rw-r--r--src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h113
-rw-r--r--src/core/CL/cl_kernels/common/gemm.cl6
-rw-r--r--src/core/experimental/PostOp.h171
-rw-r--r--src/gpu/cl/ClKernelLibrary.cpp8
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp42
-rw-r--r--src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h1
-rw-r--r--src/runtime/CL/functions/CLBatchNormalizationLayer.cpp3
12 files changed, 2285 insertions, 9 deletions
diff --git a/src/core/CL/CLUtils.cpp b/src/core/CL/CLUtils.cpp
index 67af240044..1da970e705 100644
--- a/src/core/CL/CLUtils.cpp
+++ b/src/core/CL/CLUtils.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -21,12 +21,18 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
+#include "arm_compute/core/CL/CLCompileContext.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Validate.h"
+#include "support/StringSupport.h"
#include "src/core/CL/CLUtils.h"
+#include "src/core/experimental/PostOp.h"
-cl::Image2D arm_compute::create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, DataType data_type, size_t image_row_pitch)
+namespace arm_compute
+{
+cl::Image2D create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, DataType data_type, size_t image_row_pitch)
{
cl_channel_type cl_data_type;
@@ -62,3 +68,90 @@ cl::Image2D arm_compute::create_image2d_from_buffer(const cl::Context &ctx, cons
return cl::Image2D(cl_image);
}
+
+namespace experimental
+{
+PostOpCLKernelUtils::PostOpCLKernelUtils(const Config &supported_config)
+ : _supported_config(supported_config)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(supported_config.empty(), "Empty PostOp CL kernel support configuration is not allowed");
+ for(auto it = _supported_config.begin(); it != _supported_config.end(); ++it)
+ {
+ auto post_op_sequence = it->first;
+ auto post_op_slots = std::get<1>(it->second);
+ ARM_COMPUTE_ERROR_ON_MSG(post_op_sequence.size() != post_op_slots.size(), "The number of PostOps must be the same as that of the assigned slots");
+ }
+}
+
+bool PostOpCLKernelUtils::are_post_op_shapes_compliant(const ITensorInfo *dst, const experimental::PostOpList<ITensorInfo *> &post_ops)
+{
+ // All post ops must be elementwise and must not alter the shape of the original dst tensor after broadcasting
+ for(const auto &op : post_ops.get_list())
+ {
+ for(const auto &tensor : op->arguments())
+ {
+ const TensorShape &out_shape = TensorShape::broadcast_shape(dst->tensor_shape(), (*tensor)->tensor_shape());
+ if(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0))
+ {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+bool PostOpCLKernelUtils::is_post_op_sequence_supported(const PostOpList<ITensorInfo *> &post_ops) const
+{
+ if(post_ops.size() == 0)
+ {
+ return true; // Always support cases where no post op is specified
+ }
+ const auto post_op_sequence = get_post_op_sequence(post_ops);
+
+ return _supported_config.find(post_op_sequence) != _supported_config.end();
+}
+
+void PostOpCLKernelUtils::set_post_ops_cl_build_options(CLBuildOptions &build_opts, const PostOpList<ITensorInfo *> &post_ops) const
+{
+ const auto post_op_sequence = get_post_op_sequence(post_ops);
+ const auto slots = std::get<1>(_supported_config.at(post_op_sequence));
+ for(size_t post_op_id = 0; post_op_id < post_ops.size(); ++post_op_id)
+ {
+ const auto &post_op = post_ops.get_list().at(post_op_id);
+ const auto slot_prefix = "-DP" + support::cpp11::to_string(slots[post_op_id]);
+ if(post_op->type() == experimental::PostOpType::Activation)
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const experimental::PostOpAct<ITensorInfo *> *>(post_op.get());
+ const auto act_type = slot_prefix + "_ACTIVATION_TYPE=" + lower_string(string_from_activation_func(_post_op->_act_info.activation()));
+ const auto act_a_val = slot_prefix + "_ACTIVATION_A_VAL=" + float_to_string_with_full_precision(_post_op->_act_info.a());
+ const auto act_b_val = slot_prefix + "_ACTIVATION_B_VAL=" + float_to_string_with_full_precision(_post_op->_act_info.b());
+ build_opts.add_option(act_type);
+ build_opts.add_option(act_a_val);
+ build_opts.add_option(act_b_val);
+ }
+ else if(post_op->type() == experimental::PostOpType::Eltwise_Add)
+ {
+ size_t arg_id = 1;
+ const auto eltwise_op = slot_prefix + "_ELTWISE_OP=ADD" + "_X_POS_" + support::cpp11::to_string(post_op->prev_dst_pos());
+ build_opts.add_option(eltwise_op);
+ for(const auto &tensor : post_op->arguments())
+ {
+ const auto height = slot_prefix + "_ELTWISE_ARG" + support::cpp11::to_string(arg_id) + "_HEIGHT=" + support::cpp11::to_string((*tensor)->dimension(1));
+ const auto width = slot_prefix + "_ELTWISE_ARG" + support::cpp11::to_string(arg_id) + "_WIDTH=" + support::cpp11::to_string((*tensor)->dimension(0));
+ build_opts.add_option(height);
+ build_opts.add_option(width);
+ ++arg_id;
+ }
+ }
+ }
+}
+
+void PostOpCLKernelUtils::set_post_ops_cl_kernel_name(std::string &kernel_name, const PostOpList<ITensorInfo *> &post_ops) const
+{
+ const auto post_op_sequence = get_post_op_sequence(post_ops);
+ const auto postfix = std::get<0>(_supported_config.at(post_op_sequence));
+ kernel_name += postfix;
+}
+} // namespace experimental
+
+} // namespace arm_compute \ No newline at end of file
diff --git a/src/core/CL/CLUtils.h b/src/core/CL/CLUtils.h
index b65d547756..d133e4fe6f 100644
--- a/src/core/CL/CLUtils.h
+++ b/src/core/CL/CLUtils.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020 Arm Limited.
+ * Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -26,10 +26,13 @@
#define ARM_COMPUTE_CL_CLUTILS_H
#include "arm_compute/core/CL/OpenCL.h"
+#include "arm_compute/core/experimental/IPostOp.h"
namespace arm_compute
{
class TensorShape;
+class CLBuildOptions;
+class ITensorInfo;
/** Create a cl::Image2D object from an OpenCL buffer
*
@@ -51,6 +54,87 @@ class TensorShape;
*/
cl::Image2D create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, DataType data_type, size_t image_row_pitch);
+namespace experimental
+{
+/** @name (EXPERIMENTAL_POST_OPS)
+ * @{
+ */
+
+/** Manage validation, building and configurations of PostOp CL kernels */
+class PostOpCLKernelUtils final
+{
+public:
+ /** CL kernel name postfix for post ops */
+ using NamePostfix = std::string;
+ /** CL kernels that supports post ops assign each post op to a 'slot', in accordance with the postfix
+ * For example, for a kernel with postfix '_act_prelu_eltwiseadd', there are 3 slots
+ * slot 1: (unary) activation, slot 2: pRelu, slot 3: elementwise addition
+ *
+ * Some kernels may allow some slots to be optional, to support multiple combinations of post op sequences.
+ * In such cases, we need to explicitly set up a mapping between each post op and the slots for that kernel.
+ * For example, suppose we have 2 kernels with postfixes: _eltwiseadd_prelu, _act_eltwiseadd_act_prelu, where the activations in the
+ * second kernel are optional. Say we want to support an eltwise addition, followed by a prelu (sequence { eltwiseadd, prelu }).
+ * Now we can choose which one of the 2 kernels to use, since they both support this post op sequence.
+ * We can either:
+ * 1. assign the elementwise to slot 1 and prelu to slot 2 of kernel 1
+ * { { Eltwise_Add, PRelu } -> {"_eltwise_act", {1, 2} } } or
+ * 2. assign the elementwise to slot 2 and prelu to slot 4 of kernel 1
+ * { { Eltwise_Add, PRelu } -> {"_act_eltwiseadd_act_prelu", {2, 4} } }
+ */
+ using Slots = std::vector<unsigned int>;
+ using Config = std::map<PostOpTypeSequence, std::tuple<NamePostfix, Slots>>;
+
+public:
+ explicit PostOpCLKernelUtils(const Config &config);
+
+ /** Check if post op argument tensor shapes are compliant
+ * All post ops must not alter the shape of the original dst tensor (even after broadcasting)
+ *
+ * @param[in] dst Dst tensor to apply the post ops to
+ * @param[in] post_ops Post ops
+ *
+ * @return true if shapes are compliant and false otherwise
+ */
+ static bool are_post_op_shapes_compliant(const ITensorInfo *dst, const experimental::PostOpList<ITensorInfo *> &post_ops);
+ /** Check if the post op sequence is supported in the current configuration
+ *
+ * @param[in] post_ops Post ops
+ *
+ * @return true if the post op sequence is supported and false otherwise
+ */
+ bool is_post_op_sequence_supported(const PostOpList<ITensorInfo *> &post_ops) const;
+ /** Helper function to set PostOp related build options
+ * @note Convention
+ * 1. Each post op "slot" is prefixed with "P<slot number>", followed by the usual parameters for that post op.
+ * E.g. If the first slot is an activation, we need to pass 3 definitions in this way:
+ * -P1_ACTIVATION_TYPE=... -P1_ACTIVATION_A_VAL=... -P1_ACTIVATION_B_VAL=...
+ *
+ * 2. For multi-ary post ops, to pass the position of the previous op's dest tensor,
+ * we append "_X_POS_<pos>" to the post op type.
+ * E.g. for a single post op add(dst, x), where dst is the result of the main op.
+ * In this case, the position of the previous op's dest is 0, so we pass
+ * -P1_ELTWISE_OP=ADD_X_POS_0
+ *
+ * @param[out] built_opts OpenCL kernel build options
+ * @param[in] post_ops Post ops
+ *
+ */
+ void set_post_ops_cl_build_options(CLBuildOptions &built_opts, const PostOpList<ITensorInfo *> &post_ops) const;
+ /** Helper function to set PostOp kernel name
+ *
+ * @param[out] kernel_name OpenCL kernel name
+ * @param[in] post_ops Post ops
+ *
+ */
+ void set_post_ops_cl_kernel_name(std::string &kernel_name, const PostOpList<ITensorInfo *> &post_ops) const;
+
+private:
+ Config _supported_config{};
+};
+/** @} */ // end of group (EXPERIMENTAL_POST_OPS)
+
+} // namespace experimental
+
} // arm_compute
#endif /* ARM_COMPUTE_CL_CLUTILS_H */
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h
new file mode 100644
index 0000000000..fc9704f13b
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/fp_post_ops_act_eltwise_op_act.h
@@ -0,0 +1,101 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_mixed_precision_helpers.h"
+
+/** (EXPERIMENTAL_POST_OPS) Post Op expansions for the post op sequence:
+ * act (optional): POST_OP1_ACTIVATION_OPTIONAL
+ * eltwise_op : POST_OP2_ELTWISE_OP
+ * act (optional): POST_OP3_ACTIVATION_OPTIONAL
+ */
+
+/** Post Op 1: Activation Block (Optional)
+ * @name POST_OP1_ACTIVATION_OPTIONAL
+ * Toggled by -DP1_ACTIVATION_TYPE
+ * params: same as those in @ref MIXED_PRECISION_ACTIVATION_BLOCK
+ * @{
+ */
+#if defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL)
+#define POST_OP1_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) \
+ MIXED_PRECISION_ACTIVATION_BLOCK(N, P1_ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, DATA_TYPE_ACCUMULATOR);
+#else // defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL)
+#define POST_OP1_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) // noop
+#endif // defined(P1_ACTIVATION_TYPE) && defined(P1_ACTIVATION_A_VAL) && defined(P1_ACTIVATION_B_VAL)
+/** @} */ // end of group POST_OP1_ACTIVATION_OPTIONAL
+
+/** Post Op 2: Eltwise Op Block
+ * Handles both broadcasting and non-broadcasting cases
+ * @name POST_OP2_ELTWISE_OP
+ *
+ * @param[in] P2_ELTWISE_ARG1_HEIGHT Height (number of rows) of the @ref ELTWISE_OPERAND_NAME tensor
+ * @param[in] P2_ELTWISE_ARG1_WIDTH Width (number of columns) of the @ref ELTWISE_OPERAND_NAME tensor
+ * @param[in] OP The elementwise post op
+ * @param[in] M0 The number of consecutive rows
+ * @param[in] N0 The number of consecutive columns
+ * @param[in] BASENAME The basename of the result variables
+ * @param[in] ELTWISE_OPERAND_NAME The basename of the other operand variables
+ * @param[in] DATA_TYPE Data type of the result variables
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @param[in] ZERO Zero vector for z offset
+ * @param[in] PARTIAL_LOAD_M0 The partial size in y, for partial blocks. Supported: [0, @p M0)
+ * @param[in] PARTIAL_LOAD_N0 The partial size in x, for partial blocks. Supported: [0, @p N0)
+ * @param[in] PARTIAL_COND_Y Condition on the y axis to perform the partial load Y. True to use PARTIAL_LOAD_M0 rather than M0.
+ * @param[in] PARTIAL_COND_X Condition on the x axis to perform the partial load X. True to use PARTIAL_LOAD_N0 rather than N0.
+ * @{
+ */
+#if defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+#if P2_ELTWISE_ARG1_HEIGHT == 1
+#if P2_ELTWISE_ARG1_WIDTH == 1 // Case 1: Broadcasting in both X and Y; op2 arg tile shape[YxX] == [1x1]
+#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \
+ VEC_DATA_TYPE(DATA_TYPE, 1) \
+ ELTWISE_OPERAND_NAME##0 = VLOAD(1)(0, (__global DATA_TYPE *)ELTWISE_OPERAND_NAME##_addr); \
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, 1, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp);
+#else // P2_ELTWISE_ARG1_WIDTH == 1; Case 2: Broadcasting in only Y; op2 arg tile shape[YxX] == [1xN0]
+#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, ELTWISE_OPERAND_NAME, ELTWISE_OPERAND_NAME##_addr, 0, ELTWISE_OPERAND_NAME##_stride_y, ZERO, 1, PARTIAL_LOAD_N0, false, PARTIAL_COND_X); \
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp);
+#endif // P2_ELTWISE_ARG1_WIDTH == 1
+#else // P2_ELTWISE_ARG1_HEIGHT == 1; Case 3: No broadcasting; op2 arg tile shape[YxX] == [M0xN0]
+#define POST_OP2_ELTWISE_OP(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE, DATA_TYPE_ACCUMULATOR, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ __global uchar *ELTWISE_OPERAND_NAME##_addr = ELTWISE_OPERAND_NAME##_ptr + ELTWISE_OPERAND_NAME##_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * ELTWISE_OPERAND_NAME##_stride_y) + get_global_id(2) * ELTWISE_OPERAND_NAME##_stride_z; \
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, ELTWISE_OPERAND_NAME, ELTWISE_OPERAND_NAME##_addr, 0, ELTWISE_OPERAND_NAME##_stride_y, ZERO, PARTIAL_LOAD_M0, PARTIAL_LOAD_N0, PARTIAL_COND_Y, PARTIAL_COND_X); \
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, BASENAME, ELTWISE_OPERAND_NAME, DATA_TYPE_ACCUMULATOR, ELTWISE_OPERAND_NAME##_hp);
+#endif // P2_ELTWISE_ARG1_HEIGHT == 1
+#endif // defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+/** @} */ // end of group POST_OP2_ELTWISE_OP
+
+/** Post Op 3: Activation Block (Optional)
+ * @name POST_OP3_ACTIVATION_OPTIONAL
+ * Toggled by -DP3_ACTIVATION_TYPE
+ * params: same as those in @ref MIXED_PRECISION_ACTIVATION_BLOCK
+ * @{
+ */
+#if defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL)
+#define POST_OP3_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) \
+ MIXED_PRECISION_ACTIVATION_BLOCK(N, P3_ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, DATA_TYPE_ACCUMULATOR);
+#else // defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL)
+#define POST_OP3_ACTIVATION_OPTIONAL(N, DATA_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME) // noop
+#endif // defined(P3_ACTIVATION_TYPE) && defined(P3_ACTIVATION_A_VAL) && defined(P3_ACTIVATION_B_VAL)
+/** @} */ // end of group POST_OP3_ACTIVATION_OPTIONAL
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
new file mode 100644
index 0000000000..9404c5e6db
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
@@ -0,0 +1,1404 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_post_ops_act_eltwise_op_act.h"
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped kernel */
+
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+
+#if defined(MIXED_PRECISION)
+#if K0 == 2
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ })
+#elif K0 == 3 // K0 == 3
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ })
+#elif K0 == 4 // K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ c += a.s3 * b.s3; \
+ })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ c += a.s3 * b.s3; \
+ c += a.s4 * b.s4; \
+ c += a.s5 * b.s5; \
+ c += a.s6 * b.s6; \
+ c += a.s7 * b.s7; \
+ })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c += a.s0 * b.s0; \
+ c += a.s1 * b.s1; \
+ c += a.s2 * b.s2; \
+ c += a.s3 * b.s3; \
+ c += a.s4 * b.s4; \
+ c += a.s5 * b.s5; \
+ c += a.s6 * b.s6; \
+ c += a.s7 * b.s7; \
+ c += a.s8 * b.s8; \
+ c += a.s9 * b.s9; \
+ c += a.sA * b.sA; \
+ c += a.sB * b.sB; \
+ c += a.sC * b.sC; \
+ c += a.sD * b.sD; \
+ c += a.sE * b.sE; \
+ c += a.sF * b.sF; \
+ })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0 conditions
+#else // defined(MIXED_PRECISION)
+#if K0 == 2
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ })
+#elif K0 == 3 // K0 == 3
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ })
+#elif K0 == 4 // K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ c = fma(a.s3, b.s3, c); \
+ })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ c = fma(a.s3, b.s3, c); \
+ c = fma(a.s4, b.s4, c); \
+ c = fma(a.s5, b.s5, c); \
+ c = fma(a.s6, b.s6, c); \
+ c = fma(a.s7, b.s7, c); \
+ })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ c = fma(a.s0, b.s0, c); \
+ c = fma(a.s1, b.s1, c); \
+ c = fma(a.s2, b.s2, c); \
+ c = fma(a.s3, b.s3, c); \
+ c = fma(a.s4, b.s4, c); \
+ c = fma(a.s5, b.s5, c); \
+ c = fma(a.s6, b.s6, c); \
+ c = fma(a.s7, b.s7, c); \
+ c = fma(a.s8, b.s8, c); \
+ c = fma(a.s9, b.s9, c); \
+ c = fma(a.sA, b.sA, c); \
+ c = fma(a.sB, b.sB, c); \
+ c = fma(a.sC, b.sC, c); \
+ c = fma(a.sD, b.sD, c); \
+ c = fma(a.sE, b.sE, c); \
+ c = fma(a.sF, b.sF, c); \
+ })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0 conditions
+#endif // defined(MIXED_PRECISION)
+
+#if defined(ARM_DOT_K0XN0)
+#undef ARM_DOT_K0XN0
+#endif // defined(ARM_DOT_K0XN0)
+
+#if N0 == 2
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ })
+#elif N0 == 3 // N0 == 3
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ })
+#elif N0 == 4 // N0 == 4
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ })
+#elif N0 == 8 // N0 == 8
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ })
+#elif N0 == 16 // N0 == 16
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ ARM_DOT_K0((a), (b##8), (c.s8)); \
+ ARM_DOT_K0((a), (b##9), (c.s9)); \
+ ARM_DOT_K0((a), (b##A), (c.sA)); \
+ ARM_DOT_K0((a), (b##B), (c.sB)); \
+ ARM_DOT_K0((a), (b##C), (c.sC)); \
+ ARM_DOT_K0((a), (b##D), (c.sD)); \
+ ARM_DOT_K0((a), (b##E), (c.sE)); \
+ ARM_DOT_K0((a), (b##F), (c.sF)); \
+ })
+#else // N0 not supported
+#error "N0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
+ (get_global_id(2) * lhs_stride_z);
+
+ // Compute RHS matrix address
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += get_global_id(2) * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+ for(int i = 0; i < k; i += K0)
+ {
+ // Supported cases (M0, K0):
+ // 1,2 - 1,3 - 1,4 - 1,8 - 1,16
+ // 2,2 - 2,3 - 2,4 - 2,8 - 2,16
+ // 3,2 - 3,3 - 3,4 - 3,8 - 3,16
+ // 4,2 - 4,3 - 4,4 - 4,8 - 4,16
+ // 5,2 - 5,3 - 5,4 - 5,8 - 5,16
+ // 6,2 - 6,3 - 6,4 - 6,8 - 6,16
+ // 7,2 - 7,3 - 7,4 - 7,8 - 7,16
+ // 8,2 - 8,3 - 8,4 - 8,8 - 8,16
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
+
+ // Load values from RHS matrix
+ LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_addr, 0, RHS_STEP_X * sizeof(DATA_TYPE), zero);
+
+ // Accumulate
+ ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef LHS_STEP_LOOP
+#undef RHS_STEP_LOOP
+}
+
+#if defined(OPENCL_IMAGE_SUPPORT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_nt_rhs_t_texture, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
+
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X (PIXEL_UNIT * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X PIXEL_UNIT
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((get_global_id(0) * N0 >= N) || (get_global_id(1) * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
+ (get_global_id(2) * lhs_stride_z);
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = get_global_id(2);
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+ for(int i = 0; i < K; i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_addr, 0, LHS_STEP_X * sizeof(DATA_TYPE), zlhs);
+
+ // Load values from RHS matrix stored in a cl_image
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+
+ // Accumulate
+ ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
+
+ x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, get_global_id(1) * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef PIXEL_UNIT
+#undef LHS_STEP_LOOP
+#undef RHS_STEP_LOOP
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT)
+
+#if defined(LHS_TRANSPOSE)
+
+#define VTYPE(TYPE, SIZE) VEC_DATA_TYPE(TYPE, SIZE)
+
+#if defined(MIXED_PRECISION)
+
+#if(GPU_ARCH == GPU_ARCH_MIDGARD)
+#define ARM_VFMA(N0, a, b, c) c += (CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))) * (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0)));
+#else // GPU_ARCH == GPU_ARCH_MIDGARD
+#define ARM_VFMA(N0, a, b, c) c = fma((CONVERT(a, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (CONVERT(b, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0))), (c));
+#endif // GPU_ARCH == GPU_ARCH_MIDGARD
+
+#else // defined(MIXED_PRECISION
+
+#if(GPU_ARCH == GPU_ARCH_MIDGARD)
+#define ARM_VFMA(N0, a, b, c) c += (a) * (b);
+#else // GPU_ARCH == GPU_ARCH_MIDGARD
+#define ARM_VFMA(N0, a, b, c) c = fma((a), (b), (c));
+#endif // GPU_ARCH == GPU_ARCH_MIDGARD
+
+#endif // defined(MIXED_PRECISION)
+
+#define ARM_VVM_T_NT_1xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a), b, (C##0)); \
+ })
+#define ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s0), b, (C##0)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s1), b, (C##1)); \
+ })
+#define ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VVM_T_NT_2xN0x1(N0, TYPE, a, b, C); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s2), b, (C##2)); \
+ })
+#define ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VVM_T_NT_3xN0x1(N0, TYPE, a, b, C); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s3), b, (C##3)); \
+ })
+#define ARM_VVM_T_NT_8xN0x1(N0, TYPE, a, b, C) \
+ ({ \
+ ARM_VVM_T_NT_4xN0x1(N0, TYPE, a, b, C); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s4), b, (C##4)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s5), b, (C##5)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s6), b, (C##6)); \
+ ARM_VFMA(N0, (VTYPE(TYPE, N0))(a.s7), b, (C##7)); \
+ })
+
+// Factory macro for the column-vector (transposed) by row-vector (not transposed) multiplication. K0 = 1
+// a is the column-vector (transposed)
+// b is the row-vector (not transposed)
+// C is the output matrix
+// Lower case is a vector (a, b)
+// Upper case is a matrix (C)
+#define ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, a, b, C) ARM_VVM_T_NT_##M0##xN0x1(N0, TYPE, a, b, C)
+
+#define ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##0), (B##0), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##1), (B##1), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x2(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##2), (B##2), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x3(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##3), (B##3), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x4(M0, N0, TYPE, A, B, C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##4), (B##4), C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##5), (B##5), C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##6), (B##6), C); \
+ ARM_VVM_T_NT_M0xN0x1(M0, N0, TYPE, (A##7), (B##7), C); \
+ })
+#define ARM_MM_T_NT_M0xN0x16(M0, N0, TYPE, A, B, C) \
+ ({ \
+ ARM_MM_T_NT_M0xN0x8(M0, N0, TYPE, A, B, C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##8), (B##8), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##9), (B##9), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##A), (B##A), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##B), (B##B), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##C), (B##C), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##D), (B##D), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##E), (B##E), C); \
+ ARM_MM_T_NT_M0xN0x1(M0, N0, TYPE, (A##F), (B##F), C); \
+ })
+
+// Factory macro for the matrix (transposed) by matrix (not transposed) multiplication.
+// The dimensions for this matrix multiplications are defined through M0, N0 and K0
+// The dimensions supported are:
+// M0: 1, 2, 3, 4, 8
+// N0: 1, 2, 3, 4, 8, 16
+// K0: 1, 2, 3, 4, 8, 16
+// This macro calls the vector-by-matrix macro K0 times
+// A, B and C are matrices
+#define ARM_MM_T_NT(M0, N0, K0, TYPE, A, B, C) \
+ CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
+ (M0, N0, TYPE, A, B, C)
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops:
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (M0)
+#define LHS_STEP_X ((M0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (M0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (N0)
+#define RHS_STEP_X ((N0) * (H0))
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (N0)
+#endif // defined(RHS_INTERLEAVE)
+
+ const uint x = get_global_id(0);
+ const uint y = get_global_id(1);
+ const uint z = get_global_id(2);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
+
+ // Compute RHS matrix address
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (z % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += z * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+ __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
+ __global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
+
+ for(int i = 0; i < k; i += K0)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, M0)
+ a0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+#if K0 > 1
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 1
+
+#if K0 > 2
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 2
+
+#if K0 > 3
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 3
+
+#if K0 > 4
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 4
+
+#if K0 > 8
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = VLOAD(N0)(0, rhs);
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+ rhs += RHS_STEP_X;
+#endif // K0 > 8
+
+#ifndef LHS_INTERLEAVE
+ lhs += (M0 * K0 * (V0 - 1));
+#endif // LHS_INTERLEAVE
+
+#ifndef RHS_INTERLEAVE
+ rhs += (N0 * K0 * (H0 - 1));
+#endif // RHS_INTERLEAVE
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#if defined(OPENCL_IMAGE_SUPPORT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object.
+ * Post op 1: activation (optional)
+ * Post op 2: elementwise op
+ * Post op 3: activation (optional)
+ *
+ * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform
+ * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2
+ * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3
+ *
+ * All parameters are similarly defined in kernel gemm_mm_reshaped_lhs_t_rhs_nt_texture, with these additions:
+ *
+ * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32
+ * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes)
+ * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes)
+ * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes)
+ */
+__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ // Post-Op arguments
+ IMAGE_DECLARATION(eltwise_operand),
+ uint k,
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z,
+ uint eltwise_operand_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
+
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (M0)
+#define LHS_STEP_X ((M0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (M0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (PIXEL_UNIT)
+#endif // defined(RHS_INTERLEAVE)
+
+ const uint x = get_global_id(0);
+ const uint y = get_global_id(1);
+ const uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (y % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (y / V0) * (uint)lhs_stride_y + (z * lhs_stride_z);
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (z % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE_ACCUMULATOR, N0), c, 0);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+ __global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
+
+ for(int i = 0; i < K; i += K0)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, M0)
+ a0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+#if K0 > 1
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 1
+
+#if K0 > 2
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 2
+
+#if K0 > 3
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 3
+
+#if K0 > 4
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 4
+
+#if K0 > 8
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+
+ a0 = VLOAD(M0)(0, lhs);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
+
+ ARM_MM_T_NT(M0, N0, 1, DATA_TYPE, a, b, c);
+
+ lhs += LHS_STEP_X;
+#endif // K0 > 8
+
+#ifndef LHS_INTERLEAVE
+ lhs += (M0 * K0 * (V0 - 1));
+#endif // LHS_INTERLEAVE
+
+ x_rhs += K0 * RHS_STEP_X;
+#ifndef RHS_INTERLEAVE
+ x_rhs += (PIXEL_UNIT * K0 * (H0 - 1));
+#endif // RHS_INTERLEAVE
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0);
+
+ const bool cond_y = ((get_global_id(1) + 1) * M0 >= M);
+ const bool cond_x = ((get_global_id(0) + 1) * N0 >= N);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y * (uint)M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * bias_stride_y) + z * bias_stride_z;
+
+ LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ MIXED_PRECISION_ELTWISE_OP_BLOCK(ADD, M0, N0, c, bias, DATA_TYPE_ACCUMULATOR, bias_hp);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ // c = act(c)
+ POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+ // c = c + eltwise_operand (mix-precision, broadcast, boundary aware)
+ POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
+ // c = act(c)
+ POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c);
+
+ // Store output block
+ MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x, c_lp);
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef PIXEL_UNIT
+#undef LHS_STEP_LOOP
+#undef RHS_STEP_LOOP
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT)
+
+#endif // defined(LHS_TRANSPOSE)
+#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N) \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h
new file mode 100644
index 0000000000..9ddf51a13c
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_elementwise_op_helpers.h
@@ -0,0 +1,262 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+/** (EXPERIMENTAL_POST_OPS) Macros for (binary) elementwise operations */
+
+/** List of (binary) elementwise operators, accounting for the argument position of argument X
+ * @note X_Pos denotes the position of argument X. e.g. X_POS_0 means X is in the first place whereas X_POS_1 means X is in the second place
+ * @name elementwise_post_ops
+ * @{
+ */
+#if defined(N0) && !defined(VEC_SIZE)
+#define VEC_SIZE N0
+#endif // defined(N0) && !defined(VEC_SIZE)
+
+#if defined(VEC_SIZE) && defined(DATA_TYPE)
+
+#define ADD_X_POS_0(x, y) (x) + (y)
+#define SUB_X_POS_0(x, y) (x) - (y)
+#define MAX_X_POS_0(x, y) max(x, y)
+#define MIN_X_POS_0(x, y) min(x, y)
+#define SQUARED_DIFF_X_POS_0(x, y) (x - y) * (x - y)
+#define POWER_X_POS_0(x, y) pow(x, y)
+#if VEC_SIZE == 1
+#define PRELU_X_POS_0(x, y) (x > 0 ? x : x * y)
+#else // VEC_SIZE == 1
+#define PRELU_X_POS_0(x, y) (select(y * x, x, CONVERT((x > (DATA_TYPE)0), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))))
+#endif // VEC_SIZE == 1
+#define DIV_X_POS_0(x, y) (x / y)
+#define AND_X_POS_0(x, y) (CONVERT((x && y), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) & ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))1))
+#define OR_X_POS_0(x, y) (CONVERT((x || y), VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)) & ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))1))
+
+#define ADD_X_POS_1(x, y) ADD_X_POS_0(x, y)
+#define SUB_X_POS_1(x, y) (y) - (x)
+#define MAX_X_POS_1(x, y) MAX_X_POS_0(x, y)
+#define MIN_X_POS_1(x, y) MIN_X_POS_0(x, y)
+#define SQUARED_DIFF_X_POS_1(x, y) SQUARED_DIFF_X_POS_0(x, y)
+#define POWER_X_POS_1(x, y) pow(y, x)
+#if VEC_SIZE == 1
+#define PRELU_X_POS_1(x, y) (y > 0 ? y : y * x)
+#else // VEC_SIZE == 1
+#define PRELU_X_POS_1(x, y) (select(x * y, y, CONVERT((y > (DATA_TYPE)0), SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))))
+#endif // VEC_SIZE == 1
+#define DIV_X_POS_1(x, y) (y / x)
+#define AND_X_POS_1(x, y) AND_X_POS_0(x, y)
+#define OR_X_POS_1(x, y) OR_X_POS_0(x, y)
+
+// By default use the order of the arguments as they are passed in, ie. _X_POS_0
+#define ADD(x, y) ADD_X_POS_0(x, y)
+#define SUB(x, y) SUB_X_POS_0(x, y)
+#define MAX(x, y) MAX_X_POS_0(x, y)
+#define MIN(x, y) MIN_X_POS_0(x, y)
+#define SQUARED_DIFF(x, y) SQUARED_DIFF_X_POS_0(x, y)
+#define POWER(x, y) POWER_X_POS_0(x, y)
+#define PRELU(x, y) PRELU_X_POS_0(x, y)
+#define DIV(x, y) DIV_X_POS_0(x, y)
+#define AND(x, y) AND_X_POS_0(x, y)
+#define OR(x, y) OR_X_POS_0(x, y)
+
+#endif // defined(VEC_SIZE) && defined(DATA_TYPE)
+/** @} */ // end of group elementwise_post_ops
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name ELTWISE_OP_ROW_n
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in, out] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_ROW_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##0 = OP(OPERAND1##0, OPERAND2##0);
+
+#define ELTWISE_OP_ROW_2(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##1 = OP(OPERAND1##1, OPERAND2##1);
+
+#define ELTWISE_OP_ROW_3(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_2(OP, OPERAND1, OPERAND2) \
+ OPERAND1##2 = OP(OPERAND1##2, OPERAND2##2);
+
+#define ELTWISE_OP_ROW_4(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_3(OP, OPERAND1, OPERAND2) \
+ OPERAND1##3 = OP(OPERAND1##3, OPERAND2##3);
+
+#define ELTWISE_OP_ROW_5(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_4(OP, OPERAND1, OPERAND2) \
+ OPERAND1##4 = OP(OPERAND1##4, OPERAND2##4);
+
+#define ELTWISE_OP_ROW_6(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_5(OP, OPERAND1, OPERAND2) \
+ OPERAND1##5 = OP(OPERAND1##5, OPERAND2##5);
+
+#define ELTWISE_OP_ROW_7(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_6(OP, OPERAND1, OPERAND2) \
+ OPERAND1##6 = OP(OPERAND1##6, OPERAND2##6);
+
+#define ELTWISE_OP_ROW_8(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_7(OP, OPERAND1, OPERAND2) \
+ OPERAND1##7 = OP(OPERAND1##7, OPERAND2##7);
+
+#define ELTWISE_OP_ROW_9(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_8(OP, OPERAND1, OPERAND2) \
+ OPERAND1##8 = OP(OPERAND1##8, OPERAND2##8);
+
+#define ELTWISE_OP_ROW_10(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_9(OP, OPERAND1, OPERAND2) \
+ OPERAND1##9 = OP(OPERAND1##9, OPERAND2##9);
+
+#define ELTWISE_OP_ROW_11(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_10(OP, OPERAND1, OPERAND2) \
+ OPERAND1##A = OP(OPERAND1##A, OPERAND2##A);
+
+#define ELTWISE_OP_ROW_12(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_11(OP, OPERAND1, OPERAND2) \
+ OPERAND1##B = OP(OPERAND1##B, OPERAND2##B);
+
+#define ELTWISE_OP_ROW_13(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_12(OP, OPERAND1, OPERAND2) \
+ OPERAND1##C = OP(OPERAND1##C, OPERAND2##C);
+
+#define ELTWISE_OP_ROW_14(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_13(OP, OPERAND1, OPERAND2) \
+ OPERAND1##D = OP(OPERAND1##D, OPERAND2##D);
+
+#define ELTWISE_OP_ROW_15(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_14(OP, OPERAND1, OPERAND2) \
+ OPERAND1##E = OP(OPERAND1##E, OPERAND2##E);
+
+#define ELTWISE_OP_ROW_16(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_15(OP, OPERAND1, OPERAND2) \
+ OPERAND1##F = OP(OPERAND1##F, OPERAND2##F);
+
+/** @} */ // end of group ELTWISE_OP_ROW_n
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name ELTWISE_OP_BLOCK
+ *
+ * Supported cases are N=1,2,3,...,16
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] N The number of vectors in the block
+ * @param[in] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_BLOCK_STR(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_ROW_##N(OP, OPERAND1, OPERAND2)
+#define ELTWISE_OP_BLOCK(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_BLOCK_STR(OP, N, OPERAND1, OPERAND2)
+/** @} */ // end of group ELTWISE_OP_BLOCK
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) with broadcasting
+ * @name ELTWISE_OP_ROW_BROADCAST_n
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in, out] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the broadcast operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_ROW_BROADCAST_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##0 = OP(OPERAND1##0, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_2(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_1(OP, OPERAND1, OPERAND2) \
+ OPERAND1##1 = OP(OPERAND1##1, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_3(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_2(OP, OPERAND1, OPERAND2) \
+ OPERAND1##2 = OP(OPERAND1##2, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_4(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_3(OP, OPERAND1, OPERAND2) \
+ OPERAND1##3 = OP(OPERAND1##3, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_5(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_4(OP, OPERAND1, OPERAND2) \
+ OPERAND1##4 = OP(OPERAND1##4, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_6(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_5(OP, OPERAND1, OPERAND2) \
+ OPERAND1##5 = OP(OPERAND1##5, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_7(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_6(OP, OPERAND1, OPERAND2) \
+ OPERAND1##6 = OP(OPERAND1##6, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_8(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_7(OP, OPERAND1, OPERAND2) \
+ OPERAND1##7 = OP(OPERAND1##7, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_9(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_8(OP, OPERAND1, OPERAND2) \
+ OPERAND1##8 = OP(OPERAND1##8, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_10(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_9(OP, OPERAND1, OPERAND2) \
+ OPERAND1##9 = OP(OPERAND1##9, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_11(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_10(OP, OPERAND1, OPERAND2) \
+ OPERAND1##A = OP(OPERAND1##A, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_12(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_11(OP, OPERAND1, OPERAND2) \
+ OPERAND1##B = OP(OPERAND1##B, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_13(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_12(OP, OPERAND1, OPERAND2) \
+ OPERAND1##C = OP(OPERAND1##C, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_14(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_13(OP, OPERAND1, OPERAND2) \
+ OPERAND1##D = OP(OPERAND1##D, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_15(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_14(OP, OPERAND1, OPERAND2) \
+ OPERAND1##E = OP(OPERAND1##E, OPERAND2);
+
+#define ELTWISE_OP_ROW_BROADCAST_16(OP, OPERAND1, OPERAND2) \
+ ELTWISE_OP_ROW_BROADCAST_15(OP, OPERAND1, OPERAND2) \
+ OPERAND1##F = OP(OPERAND1##F, OPERAND2);
+
+/** @} */ // end of group ELTWISE_OP_ROW_BROADCAST_n
+
+/** Performs OPERAND1 = OP(OPERAND1, OPERAND2) with broadcasting
+ * @name ELTWISE_OP_BLOCK_BROADCAST
+ * @note Only support:
+ * case 1 broadcast in Y dimension : Operand1 [YxX] + Operand2 [1xX];
+ * case 2 broadcast in both Y and X dimensions : Operand1 [YxX] + Operand2 [1x1] (scalar);
+ * Does NOT support broad cast in X dimension: Operand1 [YxX] + Operand2 [Yx1];
+ *
+ * Supported cases are N=1,2,3,...,16
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] N The number of vectors in the block
+ * @param[in] OPERAND1 The basename of the destination and operand 1 variables
+ * @param[in] OPERAND2 The basename of the operand 2 variables
+ * @{
+ */
+#define ELTWISE_OP_BLOCK_BROADCAST_STR(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_ROW_BROADCAST_##N(OP, OPERAND1, OPERAND2)
+#define ELTWISE_OP_BLOCK_BROADCAST(OP, N, OPERAND1, OPERAND2) ELTWISE_OP_BLOCK_BROADCAST_STR(OP, N, OPERAND1, OPERAND2)
+/** @} */ // end of group ELTWISE_OP_BLOCK_BROADCAST \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h
new file mode 100644
index 0000000000..e8df121142
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/fp_mixed_precision_helpers.h
@@ -0,0 +1,113 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "fp_elementwise_op_helpers.h"
+#include "gemm_helpers.h"
+#include "load_store_utility.h"
+
+/** (EXPERIMENTAL_POST_OPS) Convenience macros for automatically handling mixed precision (fp16 and fp32) operations
+ * -DMIXED_PRECISION toggles mixed precision mode
+ */
+
+/** Mixed-Precision-Aware Activation Block
+ * @name MIXED_PRECISION_ACTIVATION_BLOCK
+ * params N ... B_VAL: same as those in @ref ACTIVATION_BLOCK
+ *
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL, DATA_TYPE_ACCUMULATOR) \
+ ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE_ACCUMULATOR, VEC_SIZE, BASENAME, A_VAL, B_VAL);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL, DATA_TYPE_ACCUMULATOR) \
+ ACTIVATION_BLOCK(N, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, BASENAME, A_VAL, B_VAL);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_ACTIVATION_BLOCK
+
+/** Mixed-Precision-Aware Elementwise Op Block
+ * Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name MIXED_PRECISION_ELTWISE_OP_BLOCK
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] M0 The number of consecutive rows
+ * @param[in] N0 The number of consecutive columns
+ * @param[in] OPERAND1 The basename of the first and result operand variables
+ * @param[in] OPERAND2 The basename of the second operand variables
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @param[in] CONVERTED_OPERAND2 The basename of the second operand variables converted to higher-precision in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ CONVERT_BLOCK(M0, N0, DATA_TYPE_ACCUMULATOR, OPERAND2, CONVERTED_OPERAND2); \
+ ELTWISE_OP_BLOCK(OP, M0, OPERAND1, CONVERTED_OPERAND2);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ ELTWISE_OP_BLOCK(OP, M0, OPERAND1, OPERAND2);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_ELTWISE_OP_BLOCK
+
+/** Mixed-Precision-Aware Elementwise Op Broadcast Block
+ * Performs OPERAND1 = OP(OPERAND1, OPERAND2)
+ * @name MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST
+ * @note Only support:
+ * case 1 broadcast in Y dimension : Operand1 [YxX] + Operand2 [1xX]; this means @p N0 > 1
+ * case 2 broadcast in both Y and X dimensions : Operand1 [YxX] + Operand2 [1x1] (scalar) ; this means @p N0 == 1
+ * Does NOT support broad cast in X dimension: Operand1 [YxX] + Operand2 [Yx1]; this means @p M0 should never == 1
+ *
+ * @param[in] OP The elementwise post op
+ * @param[in] M0 The number of consecutive rows, > 1
+ * @param[in] N0 The number of consecutive columns, >= 1
+ * @param[in] OPERAND1 The basename of the first and result operand variables
+ * @param[in] OPERAND2 The basename of the second operand variables
+ * @param[in] DATA_TYPE_ACCUMULATR Higher-precision accumulator data type in case of mixed-precision op
+ * @param[in] CONVERTED_OPERAND2 The basename of the second operand variables converted to higher-precision in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ CONVERT_BLOCK(1, N0, DATA_TYPE_ACCUMULATOR, OPERAND2, CONVERTED_OPERAND2); \
+ ELTWISE_OP_BLOCK_BROADCAST(OP, M0, OPERAND1, CONVERTED_OPERAND2##0);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST(OP, M0, N0, OPERAND1, OPERAND2, DATA_TYPE_ACCUMULATOR, CONVERTED_OPERAND2) \
+ ELTWISE_OP_BLOCK_BROADCAST(OP, M0, OPERAND1, OPERAND2##0);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_ELTWISE_OP_BLOCK_BROADCAST
+
+/** Mixed-Precision-Aware Boundary-Aware Store Block
+ * @name MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE
+ * params M0 ... PARTIAL_COND_X, same as those in STORE_BLOCK_BOUNDARY_AWARE
+ *
+ * @param[in] BASENAME_LP The name of the low precision variables, converted from BASENAME, in case of mixed-precision op
+ * @{
+ */
+#if defined(MIXED_PRECISION)
+#define MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X, BASENAME_LP) \
+ CONVERT_BLOCK(M0, N0, DATA_TYPE, BASENAME, BASENAME_LP); \
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME_LP, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X);
+#else // defined(MIXED_PRECISION)
+#define MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X, BASENAME_LP) \
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X);
+#endif // defined(MIXED_PRECISION)
+/** @} */ // end of group MIXED_PRECISION_STORE_BLOCK_BOUNDARY_AWARE \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl
index 431c97becc..dd03147ad6 100644
--- a/src/core/CL/cl_kernels/common/gemm.cl
+++ b/src/core/CL/cl_kernels/common/gemm.cl
@@ -2524,6 +2524,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The data type used for the accumulators must be passed at compile time using -DDATA_TYPE_ACCUMULATOR (e.g. -DDATA_TYPE_ACCUMULATOR=float)
@@ -2798,6 +2799,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
@@ -3179,6 +3181,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
@@ -3560,6 +3563,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
+ * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
@@ -3929,7 +3933,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#endif // defined(LHS_TRANSPOSE)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
diff --git a/src/core/experimental/PostOp.h b/src/core/experimental/PostOp.h
new file mode 100644
index 0000000000..64414d2050
--- /dev/null
+++ b/src/core/experimental/PostOp.h
@@ -0,0 +1,171 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_EXPERIMENTAL_POSTOP
+#define ARM_COMPUTE_EXPERIMENTAL_POSTOP
+
+#include "arm_compute/core/experimental/IPostOp.h"
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/experimental/Types.h"
+#include "support/Cast.h"
+
+#include <vector>
+
+/** (EXPERIMENTAL_POST_OPS) */
+namespace arm_compute
+{
+namespace experimental
+{
+template <typename TensorRelatedT>
+struct PostOpAct : public IPostOp<TensorRelatedT>
+{
+public:
+ PostOpAct(const ActivationLayerInfo &act_info)
+ : _act_info{ act_info }
+ {
+ }
+ // NOTE: PostOps do not own any resources pointed to by TensorRelatedT if it's a pointer type, thus allow shallow copy
+ ~PostOpAct() override = default;
+ PostOpAct(const PostOpAct &) = default;
+ PostOpAct &operator=(const PostOpAct &) = default;
+ PostOpAct(PostOpAct &&) = default;
+ PostOpAct &operator=(PostOpAct &&) = default;
+
+ int prev_dst_pos() const override
+ {
+ return 0;
+ }
+ PostOpType type() const override
+ {
+ return PostOpType::Activation;
+ }
+ std::vector<TensorRelatedT *> arguments() override
+ {
+ return {};
+ }
+ std::vector<const TensorRelatedT *> arguments() const override
+ {
+ return {};
+ }
+ std::unique_ptr<IPostOp<TensorRelatedT>> clone() const override
+ {
+ return std::make_unique<PostOpAct<TensorRelatedT>>(*this);
+ }
+ ActivationLayerInfo _act_info;
+};
+
+template <typename TensorRelatedT>
+struct PostOpEltwiseAdd : public IPostOp<TensorRelatedT>
+{
+public:
+ PostOpEltwiseAdd(TensorRelatedT addend, int prev_op_arg_pos, ConvertPolicy policy)
+ : _addend{ addend },
+ _prev_op_arg_pos{ prev_op_arg_pos },
+ _policy{ policy }
+ {
+ }
+ // NOTE: PostOps do not own any resources pointed to by TensorRelatedT if it's a pointer type, thus allow shallow copy
+ ~PostOpEltwiseAdd() override = default;
+ PostOpEltwiseAdd(const PostOpEltwiseAdd &) = default;
+ PostOpEltwiseAdd &operator=(const PostOpEltwiseAdd &) = default;
+ PostOpEltwiseAdd(PostOpEltwiseAdd &&) = default;
+ PostOpEltwiseAdd &operator=(PostOpEltwiseAdd &&) = default;
+ int prev_dst_pos() const override
+ {
+ return _prev_op_arg_pos;
+ }
+ PostOpType type() const override
+ {
+ return PostOpType::Eltwise_Add;
+ }
+ std::vector<TensorRelatedT *> arguments() override
+ {
+ return { &_addend };
+ }
+ std::vector<const TensorRelatedT *> arguments() const override
+ {
+ return { &_addend };
+ }
+ std::unique_ptr<IPostOp<TensorRelatedT>> clone() const override
+ {
+ return std::make_unique<PostOpEltwiseAdd<TensorRelatedT>>(*this);
+ }
+ TensorRelatedT _addend;
+ int _prev_op_arg_pos;
+ ConvertPolicy _policy;
+};
+
+/** Transform a PostOpList of type FromTensorT to one of type ToTensorT */
+template <typename FromTensorT, typename ToTensorT>
+PostOpList<ToTensorT> transform_post_op_list_arguments(const PostOpList<FromTensorT> &post_ops, std::function<ToTensorT(FromTensorT)> transform_arg)
+{
+ PostOpList<ToTensorT> transformed_post_ops;
+ int op_idx = 0;
+ for(const auto &post_op : post_ops.get_list())
+ {
+ switch(post_op->type())
+ {
+ case PostOpType::Activation:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const PostOpAct<FromTensorT> *>(post_op.get());
+ transformed_post_ops.template push_back_op<PostOpAct<ToTensorT>>(_post_op->_act_info);
+ break;
+ }
+ case PostOpType::Eltwise_Add:
+ {
+ const auto _post_op = utils::cast::polymorphic_downcast<const PostOpEltwiseAdd<FromTensorT> *>(post_op.get());
+ transformed_post_ops.template push_back_op<PostOpEltwiseAdd<ToTensorT>>(transform_arg(_post_op->_addend), _post_op->_prev_op_arg_pos, _post_op->_policy);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported PostOpType");
+ }
+ }
+ ++op_idx;
+ }
+ return transformed_post_ops;
+}
+
+/** Get post op argument TensorType from post op argument index in a flattened, ordered post op argument list */
+inline TensorType get_post_op_arg_type(size_t index)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(static_cast<int>(index) > EXPERIMENTAL_ACL_POST_OP_ARG_LAST - EXPERIMENTAL_ACL_POST_OP_ARG_FIRST, "Post Op argument index is out of range");
+ return static_cast<TensorType>(EXPERIMENTAL_ACL_POST_OP_ARG_FIRST + static_cast<int>(index));
+}
+
+template <typename T>
+PostOpTypeSequence get_post_op_sequence(const PostOpList<T> &post_ops)
+{
+ PostOpTypeSequence post_op_sequence;
+ for(const auto &op : post_ops.get_list())
+ {
+ post_op_sequence.push_back(op->type());
+ }
+ return post_op_sequence;
+}
+
+} // namespace experimental
+} // namespace arm_compute
+#endif //ARM_COMPUTE_EXPERIMENTAL_POSTOP \ No newline at end of file
diff --git a/src/gpu/cl/ClKernelLibrary.cpp b/src/gpu/cl/ClKernelLibrary.cpp
index 9d524f936e..cbc4caf5f6 100644
--- a/src/gpu/cl/ClKernelLibrary.cpp
+++ b/src/gpu/cl/ClKernelLibrary.cpp
@@ -276,6 +276,10 @@ const std::map<std::string, std::string> ClKernelLibrary::_kernel_program_map =
{ "gemm_mm_reshaped_lhs_nt_rhs_t_texture", "common/gemm.cl" },
{ "gemm_mm_reshaped_lhs_t_rhs_nt", "common/gemm.cl" },
{ "gemm_mm_reshaped_lhs_t_rhs_nt_texture", "common/gemm.cl" },
+ { "gemm_mm_reshaped_lhs_nt_rhs_t_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
+ { "gemm_mm_reshaped_lhs_nt_rhs_t_texture_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
+ { "gemm_mm_reshaped_lhs_t_rhs_nt_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
+ { "gemm_mm_reshaped_lhs_t_rhs_nt_texture_post_act_eltwise_op_act", "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl" },
{ "gemm_mm_reshaped_only_rhs_nt", "common/gemm.cl" },
{ "gemm_mm_reshaped_only_rhs_nt_texture", "common/gemm.cl" },
{ "gemm_mm_reshaped_only_rhs_t", "common/gemm.cl" },
@@ -581,6 +585,10 @@ const std::map<std::string, std::string> ClKernelLibrary::_program_source_map =
#include "./cl_kernels/common/gemm.clembed"
},
{
+ "common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.cl",
+#include "./cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped.clembed"
+ },
+ {
"common/gemmlowp.cl",
#include "./cl_kernels/common/gemmlowp.clembed"
},
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
index 3a39128c0a..4b28e2badc 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.cpp
@@ -34,6 +34,7 @@
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/CL/CLUtils.h"
#include "src/core/CL/CLValidate.h"
+#include "src/core/experimental/PostOp.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/helpers/float_ops.h"
@@ -51,6 +52,16 @@ namespace
{
using ElementsProcessed = Steps;
+const auto post_op_utils = experimental::PostOpCLKernelUtils(
+{
+ // PostOp sequence -> {Kernel Postfix, PostOp Slots}
+ { {}, { "", {} } },
+ { { experimental::PostOpType::Activation }, { "", { 1 } } },
+ { { experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 2 } } },
+ { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 1, 2 } } },
+ { { experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 2, 3 } } },
+ { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 1, 2, 3 } } }
+});
Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info,
const GEMMRHSMatrixInfo &rhs_info,
const GEMMKernelInfo &gemm_info)
@@ -74,6 +85,7 @@ Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, cons
"Bias addition only supported with broadcast mode in case the input or dst has to be reinterpreted as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision && (src0->data_type() == DataType::F32), "Mixed precision only supported for F16 data type");
ARM_COMPUTE_RETURN_ON_ERROR(gemm::validate_image2d_support_on_rhs(*src1, rhs_info));
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.is_post_op_sequence_supported(gemm_info.post_ops), "The sequence of Post Ops is not supported");
const unsigned int m = gemm_info.m;
const unsigned int n = gemm_info.n;
@@ -117,6 +129,7 @@ Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, cons
const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.are_post_op_shapes_compliant(dst, gemm_info.post_ops), "The Post Op shapes are not compliant");
}
return Status{};
@@ -180,6 +193,7 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
_add_bias = src2 != nullptr;
_export_to_cl_image = rhs_info.export_to_cl_image;
_k = gemm_info.k;
+ _num_post_op_args = gemm_info.post_ops.total_num_arguments();
// Check if we need to slide the matrix B
const unsigned int num_dimensions_src0 = src0->num_dimensions();
@@ -222,9 +236,6 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
build_opts.add_option_if(lhs_info.transpose, "-DLHS_TRANSPOSE");
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
- build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
- build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
- build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
build_opts.add_option_if(enable_mixed_precision, "-DMIXED_PRECISION");
build_opts.add_option_if(rhs_info.export_to_cl_image, "-DOPENCL_IMAGE_SUPPORT");
build_opts.add_option("-DRHS_HEIGHT=" + support::cpp11::to_string(src1->dimension(1)));
@@ -240,11 +251,23 @@ void ClGemmMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compi
build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
+ // If post_ops are used, then we disable the use of gemm_info.activation_info
+ if(gemm_info.post_ops.size() > 0)
+ {
+ post_op_utils.set_post_ops_cl_build_options(build_opts, gemm_info.post_ops);
+ }
+ else
+ {
+ build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
+ build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
+ build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
+ }
std::string kernel_name("gemm_mm_reshaped_");
kernel_name += lhs_info.transpose ? "lhs_t_" : "lhs_nt_";
kernel_name += rhs_info.transpose ? "rhs_t" : "rhs_nt";
kernel_name += rhs_info.export_to_cl_image ? "_texture" : "";
+ post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
@@ -360,6 +383,13 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
// dst buffer
add_2D_tensor_argument(idx, dst, slice);
+ // post op argument buffers
+ for(size_t i = 0; i < _num_post_op_args; ++i)
+ {
+ const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
+ add_2D_tensor_argument(idx, post_op_arg, slice);
+ }
+
// K dimension (not used if _export_to_cl_image == true)
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_k));
@@ -378,6 +408,12 @@ void ClGemmMatrixMultiplyReshapedKernel::run_op(ITensorPack &tensors, const Wind
// dst stride_z
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
+ // post op argument stride_z
+ for(size_t i = 0; i < _num_post_op_args; ++i)
+ {
+ const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(post_op_arg->info()->strides_in_bytes()[2]));
+ }
// Cross-plan padding (if _reinterpret_output_as_3d = true)
if(_reinterpret_output_as_3d)
{
diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
index b320d318e9..09160ec0d1 100644
--- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
+++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h
@@ -106,6 +106,7 @@ private:
bool _add_bias{ false };
bool _export_to_cl_image{ false };
unsigned int _k{ 1 };
+ unsigned int _num_post_op_args{ 0 }; // (EXPERIMENTAL_POST_OPS) total number of post op arguments
};
} // namespace kernels
} // namespace opencl
diff --git a/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp b/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp
index e8affc0853..234a0df2aa 100644
--- a/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp
+++ b/src/runtime/CL/functions/CLBatchNormalizationLayer.cpp
@@ -29,11 +29,10 @@
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
+#include "src/common/utils/Log.h"
#include "src/core/CL/kernels/CLBatchNormalizationLayerKernel.h"
-#include "src/common/utils/Log.h"
-
namespace arm_compute
{
CLBatchNormalizationLayer::CLBatchNormalizationLayer()