aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels
diff options
context:
space:
mode:
authorManuel Bottini <manuel.bottini@arm.com>2021-04-13 13:09:30 +0100
committerManuel Bottini <manuel.bottini@arm.com>2021-04-14 14:21:50 +0000
commit327225d3b2f716d5c62d801a7fafc7d377521f34 (patch)
treec19125b74a5ddf9a63e165cbffa7a85b01c7aff1 /src/core/NEON/kernels
parent21c28957f9c6fe1a28ef934e711bb7474b8d65ee (diff)
downloadComputeLibrary-327225d3b2f716d5c62d801a7fafc7d377521f34.tar.gz
Port NEDirectConvolutionLayer to new API
Partially resolves: COMPMID-4009 Change-Id: I19ffb61c5c4541134a5028677d2d81228740e454 Signed-off-by: Manuel Bottini <manuel.bottini@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5419 Tested-by: Arm Jenkins <bsgcomp@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: SiCong Li <sicong.li@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Diffstat (limited to 'src/core/NEON/kernels')
-rw-r--r--src/core/NEON/kernels/NEDirectConvolutionLayerKernel.cpp1382
-rw-r--r--src/core/NEON/kernels/NEDirectConvolutionLayerKernel.h109
-rw-r--r--src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.cpp504
-rw-r--r--src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h102
4 files changed, 0 insertions, 2097 deletions
diff --git a/src/core/NEON/kernels/NEDirectConvolutionLayerKernel.cpp b/src/core/NEON/kernels/NEDirectConvolutionLayerKernel.cpp
deleted file mode 100644
index 98b76c7db3..0000000000
--- a/src/core/NEON/kernels/NEDirectConvolutionLayerKernel.cpp
+++ /dev/null
@@ -1,1382 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NEDirectConvolutionLayerKernel.h"
-
-#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
-#include "src/core/NEON/wrapper/wrapper.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/IAccessWindow.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/AccessWindowStatic.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/NEON/NEFixedPoint.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include <algorithm>
-
-using namespace arm_compute::detail;
-
-namespace arm_compute
-{
-namespace
-{
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-template <unsigned int stridex>
-float16x8_t internal_vld1q(const float16_t *in);
-
-template <>
-float16x8_t internal_vld1q<1>(const float16_t *in)
-{
- return vld1q_f16(in);
-}
-
-template <>
-float16x8_t internal_vld1q<2>(const float16_t *in)
-{
- const float16x8x2_t tmp = vld2q_f16(in);
- return tmp.val[0];
-}
-
-template <>
-float16x8_t internal_vld1q<3>(const float16_t *in)
-{
- const float16x8x3_t tmp = vld3q_f16(in);
- return tmp.val[0];
-}
-
-inline float16x8_t internal_vdupq_n(float16_t v)
-{
- return vdupq_n_f16(v);
-}
-
-inline void internal_vst1q(float16_t *p, const float16x8_t &v)
-{
- vst1q_f16(p, v);
-}
-
-float16x8_t internal_vmull(const float16x8_t &x, const float16x8_t &y)
-{
- return vmulq_f16(x, y);
-}
-
-inline float16x8_t internal_vmlal(const float16x8_t &x, const float16x8_t &y, const float16x8_t &z)
-{
- return vaddq_f16(x, vmulq_f16(y, z));
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-template <unsigned int stridex>
-float32x4_t internal_vld1q(const float *in);
-
-template <>
-float32x4_t internal_vld1q<1>(const float *in)
-{
- return vld1q_f32(in);
-}
-
-template <>
-float32x4_t internal_vld1q<2>(const float *in)
-{
- const float32x4x2_t tmp = vld2q_f32(in);
- return tmp.val[0];
-}
-
-template <>
-float32x4_t internal_vld1q<3>(const float *in)
-{
- const float32x4x3_t tmp = vld3q_f32(in);
- return tmp.val[0];
-}
-
-inline float32x4_t internal_vdupq_n(float v)
-{
- return vdupq_n_f32(v);
-}
-
-inline void internal_vst1q(float *p, const float32x4_t &v)
-{
- vst1q_f32(p, v);
-}
-
-float32x4_t internal_vmull(const float32x4_t &x, const float32x4_t &y)
-{
- return vmulq_f32(x, y);
-}
-
-inline float32x4_t internal_vmlal(const float32x4_t &x, const float32x4_t &y, const float32x4_t &z)
-{
- return vmlaq_f32(x, y, z);
-}
-
-constexpr int small_tensor_size_optim = 8;
-inline bool run_optim_small_tensor_info(const ITensorInfo *t)
-{
- return t->dimension(Window::DimX) <= small_tensor_size_optim && t->dimension(Window::DimY) <= small_tensor_size_optim;
-}
-
-inline bool run_optim_small_tensor(const ITensor *t)
-{
- return run_optim_small_tensor_info(t->info());
-}
-
-// Optimized convolver for 1x1 kernels used only where input width and height are both <= 8
-// For big Z as in Input=7x7x832, this implementation is faster than the general code becuase it doesn't need to
-// store intermidiate results in memory. Temporary results are stored in SIMD registers directly and then written to the output buffer.
-template <unsigned int stridex>
-class convolver_w1x1_i8x8_f32
-{
-public:
- static void convolve(const Window &window, const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
- {
- ARM_COMPUTE_ERROR_ON(input->info()->dimension(Window::DimX) > small_tensor_size_optim);
- ARM_COMPUTE_ERROR_ON(input->info()->dimension(Window::DimY) > small_tensor_size_optim);
-
- const int input_stride_x = input->info()->strides_in_bytes().x();
- const int input_stride_y = input->info()->strides_in_bytes().y();
- const int input_stride_z = input->info()->strides_in_bytes().z();
- const int output_stride_y = output->info()->strides_in_bytes().y();
- const int output_stride_z = output->info()->strides_in_bytes().z();
- const int kernel_stride_z = weights->info()->strides_in_bytes().z();
- const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
- const int output_h = output->info()->dimension(1);
- const int range_z = window.z().end() - window.z().start();
- const int kernel_depth = weights->info()->dimension(Window::DimZ);
- const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
- const unsigned int conv_pad_left = conv_info.pad_left();
- const unsigned int conv_pad_top = conv_info.pad_top();
-
- // setup output window for the iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
- window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));
- window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), range_z));
-
- // setup input window for the iterator
- Window window_in = window;
- // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
- window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
-
- Window window_k = calculate_max_window(*weights->info(), Steps(1u));
- Iterator out(output, window_out);
- Iterator in(input, window_in);
- Iterator k(weights, window_k);
-
- const uint8_t *k_ptr = k.ptr();
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
- uint8_t *out_ptr = out.ptr();
- int ih = 0;
- int oh = 0;
- std::array<float32x4_t, 8> accum0 = { vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0) };
- std::array<float32x4_t, 8> accum1 = { vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0) };
- for(int oz = 0; oz < range_z; ++oz)
- {
- accum0[0] = accum0[1] = accum0[2] = accum0[3] = accum0[4] = accum0[5] = accum0[6] = accum0[7] = vdupq_n_f32(0.f);
- accum1[0] = accum1[1] = accum1[2] = accum1[3] = accum1[4] = accum1[5] = accum1[6] = accum1[7] = vdupq_n_f32(0.f);
- auto p_out_base = out_ptr + oz * output_stride_z;
- for(int p = 0; p < kernel_depth; ++p)
- {
- const auto k_val = reinterpret_cast<const float *>(k_ptr + p * kernel_stride_z + (id.z() + oz) * kernel_stride_w);
- const auto vk0 = internal_vdupq_n(*k_val);
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- const int offset_xy = ih * input_stride_y;
- auto in_val = reinterpret_cast<const float *>(input_ptr + p * input_stride_z + offset_xy);
- auto v_in0 = internal_vld1q<stridex>(in_val);
- auto v_in1 = internal_vld1q<stridex>(in_val + 4);
- accum0[oh] = vmlaq_f32(accum0[oh], vk0, v_in0);
- accum1[oh] = vmlaq_f32(accum1[oh], vk0, v_in1);
- }
- }
- for(oh = 0; oh < output_h; ++oh)
- {
- auto p_out = reinterpret_cast<float *>(p_out_base + oh * output_stride_y);
- vst1q_f32(p_out, accum0[oh]);
- vst1q_f32(p_out + 4, accum1[oh]);
- }
- }
- },
- in, out);
- }
-};
-
-template <typename T1, typename T2, unsigned int stridex>
-class convolver_1x1
-{
-public:
- static void convolve(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
- {
- const int input_stride_x = input->info()->strides_in_bytes().x();
- const int input_stride_y = input->info()->strides_in_bytes().y();
- const int input_stride_z = input->info()->strides_in_bytes().z();
- const int output_stride_y = output->info()->strides_in_bytes().y();
- const int output_stride_z = output->info()->strides_in_bytes().z();
- const int kernel_stride_z = weights->info()->strides_in_bytes().z();
- const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
- const int output_w = output->info()->dimension(0);
- const int output_h = output->info()->dimension(1);
- const int range_z = window.z().end() - window.z().start();
- const int kernel_depth = weights->info()->dimension(Window::DimZ);
- const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
- const unsigned int conv_pad_left = conv_info.pad_left();
- const unsigned int conv_pad_top = conv_info.pad_top();
-
- // setup output window for the iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
- window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));
- window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), range_z));
-
- // setup input window for the iterator
- Window window_in = window;
- // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
- window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
-
- Window window_k = calculate_max_window(*weights->info(), Steps(1u));
- Iterator out(output, window_out);
- Iterator in(input, window_in);
- Iterator k(weights, window_k);
-
- const uint8_t *k_ptr = k.ptr();
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- /*
- For a detailed explanation on how the algorithm works refer to template <> class convolver_3x3<1>
- */
- const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
- uint8_t *out_ptr = out.ptr();
- int ih = 0;
- int oh = 0;
- for(int oz = 0; oz < range_z; ++oz)
- {
- auto p_out_base = out_ptr + oz * output_stride_z;
- // Step 1
- {
- const auto k_val = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + (id.z() + oz) * kernel_stride_w);
- const auto vk = internal_vdupq_n(*k_val);
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- const int offset_xy = ih * input_stride_y;
- auto in_val = reinterpret_cast<const T1 *>(input_ptr + (0 * input_stride_z + offset_xy));
- auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
- for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration, in_val += num_elems_read_per_iteration, p_out += num_elems_written_per_iteration)
- {
- internal_vst1q(p_out, internal_vmull(vk, internal_vld1q<stridex>(in_val)));
- }
- }
- }
-
- // Step 2
- for(int p = 1; p < kernel_depth; ++p)
- {
- const auto k_val = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + (id.z() + oz) * kernel_stride_w);
- const auto vk = internal_vdupq_n(*k_val);
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- const int offset_xy = ih * input_stride_y;
- auto in_val = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + offset_xy);
- auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
- for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration, in_val += num_elems_read_per_iteration, p_out += num_elems_written_per_iteration)
- {
- internal_vst1q(p_out, internal_vmlal(internal_vld1q<1>(p_out), vk, internal_vld1q<stridex>(in_val)));
- }
- }
- }
- }
- },
- in, out);
- }
-};
-
-template <unsigned int stridex>
-float32x4x2_t convolve_5x5(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
- const float *m0, const float *m1, const float *m2, const float *m3, const float *m4);
-
-inline float32x4x3_t load_matrix_hi(const float *const m0, const float *const m1, const float *const m2)
-{
- const float32x4x3_t m00 =
- {
- {
- vld1q_dup_f32(m0),
- vld1q_dup_f32(m1),
- vld1q_dup_f32(m2)
- }
- };
- return m00;
-}
-
-inline float32x4x2_t load_matrix_lo(const float *const m3, const float *const m4)
-{
- const float32x4x2_t m00 =
- {
- {
- vld1q_dup_f32(m3),
- vld1q_dup_f32(m4)
- }
- };
- return m00;
-}
-
-inline float32x4x3_t load_input(const float *const in)
-{
- const float32x4x3_t vin =
- {
- {
- vld1q_f32(in),
- vld1q_f32(in + 4),
- vld1q_f32(in + 8)
- }
- };
- return vin;
-}
-
-template <>
-inline float32x4x2_t convolve_5x5<1>(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
- const float *m0, const float *m1, const float *m2, const float *m3, const float *m4)
-{
- const float32x4x3_t vin0 = load_input(in_0);
- const float32x4x3_t vin1 = load_input(in_1);
- const float32x4x3_t vin2 = load_input(in_2);
- const float32x4x3_t vin3 = load_input(in_3);
- const float32x4x3_t vin4 = load_input(in_4);
- const float32x4x3_t m00 = load_matrix_hi(m0, 1 + m0, 2 + m0);
- const float32x4x2_t m01 = load_matrix_lo(3 + m0, 4 + m0);
- const float32x4x3_t m10 = load_matrix_hi(m1, 1 + m1, 2 + m1);
- const float32x4x2_t m11 = load_matrix_lo(3 + m1, 4 + m1);
- const float32x4x3_t m20 = load_matrix_hi(m2, 1 + m2, 2 + m2);
- const float32x4x2_t m21 = load_matrix_lo(3 + m2, 4 + m2);
- const float32x4x3_t m30 = load_matrix_hi(m3, 1 + m3, 2 + m3);
- const float32x4x2_t m31 = load_matrix_lo(3 + m3, 4 + m3);
- const float32x4x3_t m40 = load_matrix_hi(m4, 1 + m4, 2 + m4);
- const float32x4x2_t m41 = load_matrix_lo(3 + m4, 4 + m4);
-
- float32x4x2_t out =
- {
- {
- vmulq_f32(vin0.val[0], m00.val[0]),
- vmulq_f32(vin0.val[1], m00.val[0])
- }
- };
-
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin0.val[0], vin0.val[1], 1), m00.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin0.val[0], vin0.val[1], 2), m00.val[2]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin0.val[0], vin0.val[1], 3), m01.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vin0.val[1], m01.val[1]);
-
- out.val[0] = vmlaq_f32(out.val[0], vin1.val[0], m10.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin1.val[0], vin1.val[1], 1), m10.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin1.val[0], vin1.val[1], 2), m10.val[2]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin1.val[0], vin1.val[1], 3), m11.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vin1.val[1], m11.val[1]);
-
- out.val[0] = vmlaq_f32(out.val[0], vin2.val[0], m20.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin2.val[0], vin2.val[1], 1), m20.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin2.val[0], vin2.val[1], 2), m20.val[2]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin2.val[0], vin2.val[1], 3), m21.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vin2.val[1], m21.val[1]);
-
- out.val[0] = vmlaq_f32(out.val[0], vin3.val[0], m30.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin3.val[0], vin3.val[1], 1), m30.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin3.val[0], vin3.val[1], 2), m30.val[2]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin3.val[0], vin3.val[1], 3), m31.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vin3.val[1], m31.val[1]);
-
- out.val[0] = vmlaq_f32(out.val[0], vin4.val[0], m40.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin4.val[0], vin4.val[1], 1), m40.val[1]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin4.val[0], vin4.val[1], 2), m40.val[2]);
- out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin4.val[0], vin4.val[1], 3), m41.val[0]);
- out.val[0] = vmlaq_f32(out.val[0], vin4.val[1], m41.val[1]);
-
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin0.val[1], vin0.val[2], 1), m00.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin0.val[1], vin0.val[2], 2), m00.val[2]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin0.val[1], vin0.val[2], 3), m01.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vin0.val[2], m01.val[1]);
-
- out.val[1] = vmlaq_f32(out.val[1], vin1.val[1], m10.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin1.val[1], vin1.val[2], 1), m10.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin1.val[1], vin1.val[2], 2), m10.val[2]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin1.val[1], vin1.val[2], 3), m11.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vin1.val[2], m11.val[1]);
-
- out.val[1] = vmlaq_f32(out.val[1], vin2.val[1], m20.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin2.val[1], vin2.val[2], 1), m20.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin2.val[1], vin2.val[2], 2), m20.val[2]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin2.val[1], vin2.val[2], 3), m21.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vin2.val[2], m21.val[1]);
-
- out.val[1] = vmlaq_f32(out.val[1], vin3.val[1], m30.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin3.val[1], vin3.val[2], 1), m30.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin3.val[1], vin3.val[2], 2), m30.val[2]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin3.val[1], vin3.val[2], 3), m31.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vin3.val[2], m31.val[1]);
-
- out.val[1] = vmlaq_f32(out.val[1], vin4.val[1], m40.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin4.val[1], vin4.val[2], 1), m40.val[1]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin4.val[1], vin4.val[2], 2), m40.val[2]);
- out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin4.val[1], vin4.val[2], 3), m41.val[0]);
- out.val[1] = vmlaq_f32(out.val[1], vin4.val[2], m41.val[1]);
-
- return out;
-}
-
-template <>
-inline float32x4x2_t convolve_5x5<2>(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
- const float *m0, const float *m1, const float *m2, const float *m3, const float *m4)
-{
- float32x4x2_t out = convolve_5x5<1>(in_0, in_1, in_2, in_3, in_4, m0, m1, m2, m3, m4);
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 2), out.val[0], 1);
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 0), out.val[0], 2);
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 2), out.val[0], 3);
- return out;
-}
-
-template <>
-inline float32x4x2_t convolve_5x5<3>(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
- const float *m0, const float *m1, const float *m2, const float *m3, const float *m4)
-{
- float32x4x2_t out = convolve_5x5<1>(in_0, in_1, in_2, in_3, in_4, m0, m1, m2, m3, m4);
- out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 3), out.val[0], 1);
- return out;
-}
-
-template <typename T1, typename T2, unsigned int stridex>
-class convolver_3x3
-{
-public:
- static void convolve(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
- {
- ARM_COMPUTE_UNUSED(num_elems_read_per_iteration);
- const int input_stride_x = input->info()->strides_in_bytes().x();
- const int input_stride_y = input->info()->strides_in_bytes().y();
- const int input_stride_z = input->info()->strides_in_bytes().z();
- const int output_stride_y = output->info()->strides_in_bytes().y();
- const int output_stride_z = output->info()->strides_in_bytes().z();
- const int kernel_stride_x = weights->info()->strides_in_bytes().x();
- const int kernel_stride_y = weights->info()->strides_in_bytes().y();
- const int kernel_stride_z = weights->info()->strides_in_bytes().z();
- const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
- const int output_w = output->info()->dimension(0);
- const int output_h = output->info()->dimension(1);
- const int num_planes_z = window.z().end() - window.z().start();
- const int delta_input = get_input_num_elems_processed(num_elems_written_per_iteration, stridex);
- const int kernel_depth = weights->info()->dimension(Window::DimZ);
- const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
- const unsigned int conv_pad_left = conv_info.pad_left();
- const unsigned int conv_pad_top = conv_info.pad_top();
-
- // setup output window for the iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
- window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));
- window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), num_planes_z));
-
- // setup input window for the iterator
- Window window_in = window;
- // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
- window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
-
- Window window_k = calculate_max_window(*weights->info(), Steps(1u));
-
- Iterator out(output, window_out);
- Iterator in(input, window_in);
- Iterator k(weights, window_k);
-
- const uint8_t *k_ptr = k.ptr();
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
- uint8_t *out_ptr = out.ptr();
- int ih = 0;
- int oh = 0;
- /*
- Each thread executing this kernel computes one or more output's volume planes.
-
- Let's say the 3rd dimension of the output volume is 32, the first thread will compute the output for Z = [0,7], the second thread will compute the output for Z = [8,15],
- the third thread [16,24] and the fourth thread [25,31].
-
- The algorithm outer loop iterates over Z, P, Y, X where P is the depth/3rd dimension of each kernel. This order is not arbitrary, the main benefit of this
- is that we setup the neon registers containing the kernel's values only once and then compute each XY using the preloaded registers as opposed as doing this for every XY value.
-
- The algorithm does not require allocating any additional memory amd computes the results directly in-place in two stages:
- 1) Convolve plane 0 with kernel 0 and initialize the corresponding output plane with these values.
- 2) Convolve the remaining planes and accumulate the results in the output's plane which has been initialized in step 1.
- */
- for(int oz = 0; oz < num_planes_z; ++oz)
- {
- const int zoffset = id.z() + oz;
- uint8_t *p_out_base = out_ptr + oz * output_stride_z;
- // Step 1
- {
- const auto ptr_k_r0 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 0 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r1 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 1 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r2 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 2 * kernel_stride_y + 0 * kernel_stride_x);
- const auto vk_r0 = load_matrix_row(ptr_k_r0);
- const auto vk_r1 = load_matrix_row(ptr_k_r1);
- const auto vk_r2 = load_matrix_row(ptr_k_r2);
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- auto in_top = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 0) * input_stride_y);
- auto in_mid = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 1) * input_stride_y);
- auto in_low = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 2) * input_stride_y);
- auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
- for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
- in_top += delta_input, in_mid += delta_input, in_low += delta_input, p_out += num_elems_written_per_iteration)
- {
- convolve_3x3<false>(in_top, in_mid, in_low, p_out, vk_r0, vk_r1, vk_r2, stridex);
- }
- }
- }
- // Step 2
- for(int p = 1; p < kernel_depth; ++p)
- {
- const uint8_t *ptr_k_base = k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w;
- const uint8_t *input_base = input_ptr + p * input_stride_z;
- const auto ptr_k_r0 = reinterpret_cast<const T1 *>(ptr_k_base);
- const auto ptr_k_r1 = reinterpret_cast<const T1 *>(ptr_k_base + kernel_stride_y);
- const auto ptr_k_r2 = reinterpret_cast<const T1 *>(ptr_k_base + kernel_stride_y * 2);
- const auto vk_r0 = load_matrix_row(ptr_k_r0);
- const auto vk_r1 = load_matrix_row(ptr_k_r1);
- const auto vk_r2 = load_matrix_row(ptr_k_r2);
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- auto in_top = reinterpret_cast<const T1 *>(input_base + (ih + 0) * input_stride_y);
- auto in_mid = reinterpret_cast<const T1 *>(input_base + (ih + 1) * input_stride_y);
- auto in_low = reinterpret_cast<const T1 *>(input_base + (ih + 2) * input_stride_y);
- auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
- for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
- in_top += delta_input, in_mid += delta_input, in_low += delta_input, p_out += num_elems_written_per_iteration)
- {
- convolve_3x3<true>(in_top, in_mid, in_low, p_out, vk_r0, vk_r1, vk_r2, stridex);
- }
- }
- }
- }
- },
- in, out);
- }
-};
-
-template <typename T1, typename T2, unsigned int stridex>
-class convolver_5x5
-{
-public:
- static void convolve(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
- {
- ARM_COMPUTE_UNUSED(num_elems_read_per_iteration);
- const int input_stride_x = input->info()->strides_in_bytes().x();
- const int input_stride_y = input->info()->strides_in_bytes().y();
- const int input_stride_z = input->info()->strides_in_bytes().z();
- const int output_stride_y = output->info()->strides_in_bytes().y();
- const int output_stride_z = output->info()->strides_in_bytes().z();
- const int kernel_stride_x = weights->info()->strides_in_bytes().x();
- const int kernel_stride_y = weights->info()->strides_in_bytes().y();
- const int kernel_stride_z = weights->info()->strides_in_bytes().z();
- const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
- const int output_w = output->info()->dimension(0);
- const int output_h = output->info()->dimension(1);
- const int num_planes_z = window.z().end() - window.z().start();
- const int delta_input = get_input_num_elems_processed(num_elems_written_per_iteration, stridex);
- const int kernel_depth = weights->info()->dimension(Window::DimZ);
- const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
- const unsigned int conv_pad_left = conv_info.pad_left();
- const unsigned int conv_pad_top = conv_info.pad_top();
-
- // setup output window for the iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
- window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));
- window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), num_planes_z));
-
- // setup input window for the iterator
- Window window_in = window;
- // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
- window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
- window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
-
- Window window_k = calculate_max_window(*weights->info(), Steps(1u));
-
- Iterator out(output, window_out);
- Iterator in(input, window_in);
- Iterator k(weights, window_k);
-
- const uint8_t *k_ptr = k.ptr();
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
- uint8_t *out_ptr = out.ptr();
- int ih = 0;
- int oh = 0;
- for(int oz = 0; oz < num_planes_z; ++oz)
- {
- const int zoffset = id.z() + oz;
- uint8_t *p_out_base = out_ptr + oz * output_stride_z;
- // Step 1
- {
- const auto ptr_k_r0 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 0 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r1 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 1 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r2 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 2 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r3 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 3 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r4 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 4 * kernel_stride_y + 0 * kernel_stride_x);
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- auto in_0 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 0) * input_stride_y);
- auto in_1 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 1) * input_stride_y);
- auto in_2 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 2) * input_stride_y);
- auto in_3 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 3) * input_stride_y);
- auto in_4 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 4) * input_stride_y);
- auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
- for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
- in_0 += delta_input, in_1 += delta_input, in_2 += delta_input, in_3 += delta_input, in_4 += delta_input, p_out += num_elems_written_per_iteration)
- {
- auto vres = convolve_5x5<stridex>(in_0, in_1, in_2, in_3, in_4, ptr_k_r0, ptr_k_r1, ptr_k_r2, ptr_k_r3, ptr_k_r4);
- store_results<stridex>(p_out, vres);
- }
- }
- }
- // Step 2
- for(int p = 1; p < kernel_depth; ++p)
- {
- const auto ptr_k_r0 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 0 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r1 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 1 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r2 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 2 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r3 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 3 * kernel_stride_y + 0 * kernel_stride_x);
- const auto ptr_k_r4 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 4 * kernel_stride_y + 0 * kernel_stride_x);
-
- for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
- {
- auto in_0 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 0) * input_stride_y);
- auto in_1 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 1) * input_stride_y);
- auto in_2 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 2) * input_stride_y);
- auto in_3 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 3) * input_stride_y);
- auto in_4 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 4) * input_stride_y);
- auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
- for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
- in_0 += delta_input, in_1 += delta_input, in_2 += delta_input, in_3 += delta_input, in_4 += delta_input, p_out += num_elems_written_per_iteration)
- {
- auto vres = convolve_5x5<stridex>(in_0, in_1, in_2, in_3, in_4, ptr_k_r0, ptr_k_r1, ptr_k_r2, ptr_k_r3, ptr_k_r4);
- accumulate_results<stridex>(p_out, vres);
- }
- }
- }
- }
- },
- in, out);
- }
-};
-
-float vreduce(const float32x4_t &v)
-{
- auto v0 = wrapper::vgethigh(v);
- auto v1 = wrapper::vgetlow(v);
- auto v_out = wrapper::vadd(v0, v1);
-
- float a = wrapper::vgetlane(v_out, 0);
- float b = wrapper::vgetlane(v_out, 1);
- return a + b;
-}
-
-template <typename T1, typename T2>
-inline void convolve_1x1(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
-{
- const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
- switch(conv_stride_x)
- {
- case 1:
- convolver_1x1<T1, T2, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 2:
- convolver_1x1<T1, T2, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 3:
- convolver_1x1<T1, T2, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
-}
-
-template <>
-inline void convolve_1x1<float, float>(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
-{
- const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
- if(run_optim_small_tensor(input))
- {
- switch(conv_stride_x)
- {
- case 1:
- convolver_w1x1_i8x8_f32<1>::convolve(window, input, weights, output, conv_info);
- break;
- case 2:
- convolver_w1x1_i8x8_f32<2>::convolve(window, input, weights, output, conv_info);
- break;
- case 3:
- convolver_w1x1_i8x8_f32<3>::convolve(window, input, weights, output, conv_info);
- break;
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
- }
- else
- {
- switch(conv_stride_x)
- {
- case 1:
- convolver_1x1<float, float, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 2:
- convolver_1x1<float, float, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 3:
- convolver_1x1<float, float, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
- }
-}
-
-template <typename T1, typename T2>
-inline void convolve_3x3(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
-{
- const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
- switch(conv_stride_x)
- {
- case 1:
- convolver_3x3<T1, T2, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 2:
- convolver_3x3<T1, T2, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 3:
- convolver_3x3<T1, T2, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
-}
-
-template <typename T1, typename T2>
-inline void convolve_5x5(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
- const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
-{
- const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
- switch(conv_stride_x)
- {
- case 1:
- convolver_5x5<T1, T2, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 2:
- convolver_5x5<T1, T2, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- case 3:
- convolver_5x5<T1, T2, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, input, weights, output, conv_info);
- break;
- default:
- ARM_COMPUTE_ERROR("Not implemented");
- }
-}
-
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
- ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
-
- const DataLayout data_layout = input->data_layout();
- const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
- const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(std::get<0>(conv_info.stride()) > 3, "Strides larger than 3 not supported.");
- ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(channel_idx) != input->dimension(channel_idx));
- ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx));
- ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
- ARM_COMPUTE_RETURN_ERROR_ON(data_layout == DataLayout::NHWC && input->data_type() != DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(width_idx) > 3) && (input->data_type() == DataType::F16));
-
- // Checks performed when output is configured
- if(output->total_size() != 0)
- {
- TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*input, *weights, conv_info);
-
- DataType data_type = input->data_type();
-
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
- ARM_COMPUTE_RETURN_ERROR_ON(output->data_type() != data_type);
- }
-
- return Status{};
-}
-
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int &num_weight_elems_read_per_row,
- unsigned int &num_elems_read_per_iteration, unsigned int &num_elems_written_per_iteration, BorderSize &border_size)
-{
- ARM_COMPUTE_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
-
- const DataLayout data_layout = input->data_layout();
- const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
-
- // Calculate right and bottom border
- unsigned int kernel_size = weights->dimension(width_idx);
- const int conv_stride_x = std::get<0>(conv_info.stride());
- const int conv_stride_y = std::get<1>(conv_info.stride());
- const int input_width = input->dimension(width_idx);
-
- Window win{};
- bool window_changed = false;
-
- if(data_layout == DataLayout::NCHW)
- {
- switch(kernel_size)
- {
- case 1:
- {
- switch(input->data_type())
- {
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- num_elems_written_per_iteration = 8;
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- if(run_optim_small_tensor_info(input))
- {
- num_elems_written_per_iteration = 8;
- }
- else
- {
- num_elems_written_per_iteration = 4;
- }
- break;
- default:
- ARM_COMPUTE_ERROR("Data type not supported.");
- break;
- }
- num_weight_elems_read_per_row = kernel_size;
- num_elems_read_per_iteration = conv_stride_x * num_elems_written_per_iteration;
- break;
- }
- case 3:
- switch(input->data_type())
- {
- case DataType::F32:
- num_weight_elems_read_per_row = 4 + kernel_size - 1;
- num_elems_read_per_iteration = 12;
- num_elems_written_per_iteration = 16 >> conv_stride_x;
- break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- num_weight_elems_read_per_row = 8 + kernel_size - 1;
- num_elems_read_per_iteration = 24;
- num_elems_written_per_iteration = 32 >> conv_stride_x;
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- default:
- ARM_COMPUTE_ERROR("Data type not supported.");
- break;
- }
- break;
- case 5:
- {
- switch(input->data_type())
- {
- case DataType::F32:
- num_weight_elems_read_per_row = 4 + kernel_size - 1;
- num_elems_read_per_iteration = 12;
- num_elems_written_per_iteration = 16 >> conv_stride_x;
- break;
- default:
- ARM_COMPUTE_ERROR("Data type not supported.");
- break;
- }
- }
- break;
- default:
- {
- ARM_COMPUTE_ERROR("Not implemented");
- break;
- }
- }
-
- // Calculate right pad
- int start_x = kernel_size / 2 - static_cast<int>(conv_info.pad_left());
- int end_x = ceil_to_multiple(static_cast<int>(output->dimension(0)), num_elems_written_per_iteration) * conv_stride_x;
- int upper_bound_w = ceil_to_multiple(start_x + end_x, num_elems_read_per_iteration) - input_width;
-
- // Calculate border
- const unsigned int conv_pad_left = conv_info.pad_left();
- const unsigned int conv_pad_top = conv_info.pad_top();
- const unsigned int conv_pad_right = std::max(upper_bound_w, 0);
- const unsigned int conv_pad_bottom = conv_info.pad_bottom();
-
- border_size.left = conv_pad_left;
- border_size.top = conv_pad_top;
- border_size.right = conv_pad_right;
- border_size.bottom = conv_pad_bottom;
-
- // Configure window
- win = calculate_max_window(*output, Steps(num_elems_written_per_iteration));
-
- AccessWindowRectangle input_access(input, -conv_pad_left, -conv_pad_top,
- num_elems_read_per_iteration, kernel_size,
- conv_stride_x, conv_stride_y);
- AccessWindowStatic weights_access(weights, 0, 0, num_weight_elems_read_per_row, kernel_size);
- AccessWindowHorizontal output_access(output, 0, num_elems_written_per_iteration);
- window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
- output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
- }
- else
- {
- // Configure window NHWC without any padding
- win = calculate_max_window(*output, Steps());
- }
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
-}
-
-bool have_zero_x_internal_padding(ITensorInfo *input, ITensorInfo *weights)
-{
- return (input->padding().left == 0 && weights->padding().left == 0 && input->padding().right == 0 && weights->padding().right == 0);
-}
-
-} // namespace
-
-template <typename T>
-void NEDirectConvolutionLayerKernel::convolve_nhwc_optimized(const Window &window)
-{
- // This function assumes that input and weights have not padding in channel
-
- // Declare useful types
- using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
- using vector_type = typename vtype::type;
- using tag_type = typename vtype::tag_type;
-
- // Scalar quantities
- const int element_size = _input->info()->element_size();
- const int input_stride_w = _input->info()->strides_in_bytes().y() / element_size;
- const int input_stride_h = _input->info()->strides_in_bytes().z() / element_size;
- const int input_stride_n = _input->info()->strides_in_bytes()[3] / element_size;
- const int input_dim_w = _input->info()->dimension(1);
- const int input_dim_h = _input->info()->dimension(2);
-
- const int output_stride_c = _output->info()->strides_in_bytes().x();
-
- const unsigned int kernel_stride_w = _weights->info()->strides_in_bytes().y() / element_size;
- const unsigned int kernel_stride_h = _weights->info()->strides_in_bytes().z() / element_size;
- const int kernel_dim_w = _weights->info()->dimension(1);
- const int kernel_dim_h = _weights->info()->dimension(2);
-
- const int conv_pad_top = _conv_info.pad_top();
- const int conv_pad_left = _conv_info.pad_left();
- const int conv_stride_w = std::get<0>(_conv_info.stride());
- const int conv_stride_h = std::get<1>(_conv_info.stride());
-
- // Setup input window for the output iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- // Setup input window for the weights iterator
- Window window_w = calculate_max_window(*_weights->info(), Steps());
- window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
-
- Iterator out(_output, window_out);
- Iterator wei(_weights, window_w);
-
- constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
- /*
- * This implementation parallelize the full WC plane of input and weights by
- * treating them as series of elements. So for example, a 3x3 weights and
- * floating point vector operations of 4 elements per time, the first 3
- * channel elements of the first row would be taken and additionally the first
- * element of the second row. The 9 elements in each single WC weight plane
- * would require 2 4-element vector operations and a last single element operation.
- *
- * This works since when we create the input vector to multiply with the weights,
- * the exact required elements are loaded in the same order. Therefore the
- * multiplication works on the correct input/weight elements.
- */
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- /*
- * In here we create theoretical indexes which then we validate for both
- * inputs and weights.
- * As a reminder, this loop take each output point in NHW, C is treated
- * in the weights loop.
- */
- // We are computing the theoretical starting input starting points
- const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
- const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
- const int in_w_end_t = in_w_start_t + kernel_dim_w;
- const int in_h_end_t = in_h_start_t + kernel_dim_h;
-
- // We are computing the valid initial and ending input points by checking the borders
- const int in_w_start = std::max(in_w_start_t, 0);
- const int in_h_start = std::max(in_h_start_t, 0);
- const int in_w_end = std::min(in_w_end_t, input_dim_w);
- const int in_h_end = std::min(in_h_end_t, input_dim_h);
-
- // We use the input points to select the valid weight points to use
- const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w;
- const int index_h_start = in_h_start - in_h_start_t;
- const int index_wc_end = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w;
- const int index_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
-
- execute_window_loop(window_w, [&](const Coordinates & id_w)
- {
- /*
- * This is the loop in the weights, and it goes along N (the batches)
- * As a reminder, the batches of the weights are translated into the
- * channels of the output
- */
- const T *in_ptr_row = reinterpret_cast<const T *>(_input->buffer() + _input->info()->offset_first_element_in_bytes())
- + id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h;
- const T *weights_ptr_row = reinterpret_cast<const T *>(wei.ptr()) + index_h_start * kernel_stride_h;
- uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
-
- T out_temp = static_cast<T>(0);
- for(int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h)
- {
- const T *in_ptr_mover = in_ptr_row;
- int index_wc = index_wc_start;
- vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
- for(; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
- {
- const auto src_vec = wrapper::vloadq(in_ptr_mover);
- const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wc);
- out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
- }
- out_temp += vreduce(out_temp_vec);
- for(; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover)
- {
- const auto src_val = *(in_ptr_mover);
- const auto w_val = *(weights_ptr_row + index_wc);
- out_temp += src_val * w_val;
- }
- }
- *(reinterpret_cast<T *>(out_ptr)) = out_temp;
- },
- wei);
- },
- out);
-}
-
-template <typename T>
-void NEDirectConvolutionLayerKernel::convolve_nhwc(const Window &window)
-{
- // Declare useful types
- using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
- using vector_type = typename vtype::type;
- using tag_type = typename vtype::tag_type;
-
- // Scalar quantities
- const int element_size = _input->info()->element_size();
- const int input_stride_w = _input->info()->strides_in_bytes().y() / element_size;
- const int input_stride_h = _input->info()->strides_in_bytes().z() / element_size;
- const int input_stride_n = _input->info()->strides_in_bytes()[3] / element_size;
- const int input_dim_w = _input->info()->dimension(1);
- const int input_dim_h = _input->info()->dimension(2);
-
- const int output_stride_c = _output->info()->strides_in_bytes().x();
-
- const unsigned int kernel_stride_w = _weights->info()->strides_in_bytes().y() / element_size;
- const unsigned int kernel_stride_h = _weights->info()->strides_in_bytes().z() / element_size;
- const int kernel_dim_w = _weights->info()->dimension(1);
- const int kernel_dim_h = _weights->info()->dimension(2);
-
- const int conv_pad_top = _conv_info.pad_top();
- const int conv_pad_left = _conv_info.pad_left();
- const int conv_stride_w = std::get<0>(_conv_info.stride());
- const int conv_stride_h = std::get<1>(_conv_info.stride());
-
- // Setup input window for the output iterator
- Window window_out = window;
- window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- // Setup input window for the weights iterator
- Window window_w = calculate_max_window(*_weights->info(), Steps());
- window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
- window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
-
- Iterator out(_output, window_out);
- Iterator wei(_weights, window_w);
-
- constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
-
- execute_window_loop(window_out, [&](const Coordinates & id)
- {
- // We are computing the theoretical starting input starting points
- const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
- const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
- const int in_w_end_t = in_w_start_t + kernel_dim_w;
- const int in_h_end_t = in_h_start_t + kernel_dim_h;
-
- // We are computing the valid initial and ending input points by checking the borders
- const int in_w_start = std::max(in_w_start_t, 0);
- const int in_h_start = std::max(in_h_start_t, 0);
- const int in_w_end = std::min(in_w_end_t, input_dim_w);
- const int in_h_end = std::min(in_h_end_t, input_dim_h);
-
- // We use the input points to select the valid weight points to use
- const int wei_w_start = in_w_start - in_w_start_t;
- const int wei_h_start = in_h_start - in_h_start_t;
- const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end);
- const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
-
- const int index_c_end = _weights->info()->dimension(0);
- const T *const in_ptr_start = reinterpret_cast<const T *>(_input->buffer() + _input->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
-
- execute_window_loop(window_w, [&](const Coordinates & id_w)
- {
- const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
- uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
-
- T out_temp = static_cast<T>(0);
- for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
- {
- const T *const in_ptr_row = in_ptr_start + index_in_h * input_stride_h;
- const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h;
- for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
- {
- const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w;
- const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
- int index_c = 0;
- vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
- for(; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration)
- {
- const auto src_vec = wrapper::vloadq(in_ptr_mover);
- const auto w_vec = wrapper::vloadq(weights_ptr_mover);
- out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
- }
- out_temp += vreduce(out_temp_vec);
- for(; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover)
- {
- const auto src_val = *(in_ptr_mover);
- const auto w_val = *(weights_ptr_mover);
- out_temp += src_val * w_val;
- }
- }
- }
- *(reinterpret_cast<T *>(out_ptr)) = out_temp;
- },
- wei);
- },
- out);
-}
-
-NEDirectConvolutionLayerKernel::NEDirectConvolutionLayerKernel()
- : _input(nullptr), _weights(nullptr), _output(nullptr), _conv_info(), _border_size(0), _kernel_size(0), _num_weight_elems_read_per_row(0), _num_elems_read_per_iteration(0),
- _num_elems_written_per_iteration(0), _data_layout()
-{
-}
-
-BorderSize NEDirectConvolutionLayerKernel::border_size() const
-{
- return _border_size;
-}
-
-void NEDirectConvolutionLayerKernel::configure(const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
-
- _input = input;
- _weights = weights;
- _output = output;
- _conv_info = conv_info;
- _data_layout = _input->info()->data_layout();
- _kernel_size = weights->info()->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH));
-
- const unsigned int conv_pad_left = conv_info.pad_left();
- const unsigned int conv_pad_top = conv_info.pad_top();
- const unsigned int conv_pad_right = conv_info.pad_right();
- const unsigned int conv_pad_bottom = conv_info.pad_bottom();
- if(_data_layout == DataLayout::NCHW)
- {
- _border_size = BorderSize(conv_pad_top, conv_pad_right, conv_pad_bottom, conv_pad_left);
- }
- else
- {
- _border_size = BorderSize(0);
- }
-
- // Get convolved dimensions
- TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*input->info(), *weights->info(), conv_info);
-
- DataType data_type = input->info()->data_type();
-
- // Output auto inizialitation if not yet initialized
- auto_init_if_empty(*output->info(), output_shape, 1, data_type);
-
- // Perform validation step
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), output->info(), conv_info));
-
- // Configure kernel window
- auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, _num_weight_elems_read_per_row,
- _num_elems_read_per_iteration, _num_elems_written_per_iteration, _border_size);
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
- INEKernel::configure(win_config.second);
-}
-
-Status NEDirectConvolutionLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info)
-{
- unsigned int num_weight_elems_read_per_row = 0;
- unsigned int num_elems_read_per_iteration = 0;
- unsigned int num_elems_written_per_iteration = 0;
- BorderSize border_size = {};
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, output, conv_info));
- ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
- weights->clone().get(),
- output->clone().get(),
- conv_info,
- num_weight_elems_read_per_row,
- num_elems_read_per_iteration,
- num_elems_written_per_iteration,
- border_size)
- .first);
-
- return Status{};
-}
-
-void NEDirectConvolutionLayerKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
- ARM_COMPUTE_ERROR_ON(_input->buffer() == nullptr);
-
- const int kernel_size = _weights->info()->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH));
-
- if(_data_layout == DataLayout::NCHW)
- {
- switch(kernel_size)
- {
- case 1:
- {
- switch(_input->info()->data_type())
- {
- case DataType::F32:
- convolve_1x1<float, float>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
- break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- convolve_1x1<float16_t, float16_t>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- default:
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- break;
- }
- case 3:
- {
- switch(_input->info()->data_type())
- {
- case DataType::F32:
- convolve_3x3<float, float>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
- break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- convolve_3x3<float16_t, float16_t>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- default:
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- break;
- }
- case 5:
- {
- switch(_input->info()->data_type())
- {
- case DataType::F32:
- convolve_5x5<float, float>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
- break;
- default:
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- break;
- }
- default:
- {
- ARM_COMPUTE_ERROR("Only kernel sizes 1x1, 3x3 and 5x5 are supported.");
- break;
- }
- }
- }
- else
- {
- switch(_input->info()->data_type())
- {
- case DataType::F32:
- {
- if(have_zero_x_internal_padding(_input->info(), _weights->info()))
- {
- convolve_nhwc_optimized<float>(window);
- }
- else
- {
- convolve_nhwc<float>(window);
- }
- break;
- }
- default:
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- }
-}
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/NEDirectConvolutionLayerKernel.h b/src/core/NEON/kernels/NEDirectConvolutionLayerKernel.h
deleted file mode 100644
index 259eb683f6..0000000000
--- a/src/core/NEON/kernels/NEDirectConvolutionLayerKernel.h
+++ /dev/null
@@ -1,109 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NEDIRECTCONVOLUTIONLAYERKERNEL_H
-#define ARM_COMPUTE_NEDIRECTCONVOLUTIONLAYERKERNEL_H
-
-#include "src/core/NEON/INEKernel.h"
-
-namespace arm_compute
-{
-class ITensor;
-
-/** Interface for the kernel to perform Direct Convolution Layer. */
-class NEDirectConvolutionLayerKernel : public INEKernel
-{
-public:
- const char *name() const override
- {
- return "NEDirectConvolutionLayerKernel";
- }
- /** Default constructor */
- NEDirectConvolutionLayerKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEDirectConvolutionLayerKernel(const NEDirectConvolutionLayerKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEDirectConvolutionLayerKernel &operator=(const NEDirectConvolutionLayerKernel &) = delete;
- /** Allow instances of this class to be moved */
- NEDirectConvolutionLayerKernel(NEDirectConvolutionLayerKernel &&) = default;
- /** Allow instances of this class to be moved */
- NEDirectConvolutionLayerKernel &operator=(NEDirectConvolutionLayerKernel &&) = default;
- /** Default destructor */
- ~NEDirectConvolutionLayerKernel() = default;
- /** Set the input, weights, and output tensors.
- *
- * @note: DirectConvolution only works in the following configurations:
- * 1x1 convolution with stride_x = 1/2/3, stride_y = 1/2/3
- * 3x3 convolution with stride_x = 1/2/3, stride_y = 1/2/3
- *
- * @param[in] input The input tensor to convolve. 3 lower dimensions represent a single input [width, height, IFM],
- * while every optional dimension from 4 and above represent a batch of inputs. Data types supported: F16/F32.
- * @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
- * The 3rd dimension must be the same as the input's volume 3rd dimension.
- * Data type supported:Same as @p input.
- * @param[out] output Output tensor.
- * The 3rd dimensions must be equal to the 4th dimension of the @p kernels tensor. Data types supported: F16/F32
- * @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
- */
- void configure(const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info);
- /** Static function to check if given info will lead to a valid configuration of @ref NEDirectConvolutionLayerKernel
- *
- * @param[in] input The input tensor to convolve. 3 lower dimensions represent a single input [width, height, IFM],
- * while every optional dimension from 4 and above represent a batch of inputs. Data types supported: F16/F32.
- * @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
- * The 3rd dimension must be the same as the input's volume 3rd dimension.
- * Data type supported:Same as @p input.
- * @param[in] output Output tensor.
- * The 3rd dimensions must be equal to the 4th dimension of the @p kernels tensor. Data types supported: F16/F32
- * @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info);
-
- // Inherited methods overridden:
- void run(const Window &window, const ThreadInfo &info) override;
- BorderSize border_size() const override;
-
-private:
- /* Template function for optimized convolution NHWC */
- template <typename T>
- void convolve_nhwc_optimized(const Window &window);
-
- /* Template function for convolution NHWC */
- template <typename T>
- void convolve_nhwc(const Window &window);
-
- const ITensor *_input;
- const ITensor *_weights;
- ITensor *_output;
- PadStrideInfo _conv_info;
- BorderSize _border_size;
- unsigned int _kernel_size;
- unsigned int _num_weight_elems_read_per_row;
- unsigned int _num_elems_read_per_iteration;
- unsigned int _num_elems_written_per_iteration;
- DataLayout _data_layout;
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_NEDIRECTCONVOLUTIONLAYERKERNEL_H */
diff --git a/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.cpp b/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.cpp
deleted file mode 100644
index 3597045bd5..0000000000
--- a/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.cpp
+++ /dev/null
@@ -1,504 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/AccessWindowStatic.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/NEON/NEAsymm.h"
-#include "src/core/NEON/NEFixedPoint.h"
-#include "src/core/NEON/wrapper/wrapper.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include <arm_neon.h>
-#include <cstddef>
-#include <cstdint>
-
-namespace arm_compute
-{
-namespace
-{
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
- const DirectConvolutionLayerOutputStageKernelInfo &info)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
- ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::S32, DataType::F32);
-
- if(bias != nullptr)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
- ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)));
- ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
- }
-
- if(input->data_type() == DataType::S32)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(output == nullptr, "In-place computation not allowed for quantized output");
- }
-
- // Checks performed when output is configured
- if((output != nullptr) && (output->total_size() != 0))
- {
- if(is_data_type_float(input->data_type()))
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
- }
- else
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
- }
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
- }
- else if(input->data_type() == DataType::S32)
- {
- // In case of quantized computation and unconfigured output, the output data type must be provided through DirectConvolutionLayerOutputStageKernelInfo
- ARM_COMPUTE_RETURN_ERROR_ON((info.output_data_type != DataType::QASYMM8) && (info.output_data_type != DataType::QASYMM8_SIGNED));
- }
-
- return Status{};
-}
-
-template <typename T>
-typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
-output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
- int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
-{
- /** SIMD vector tag type. */
- using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
-
- ARM_COMPUTE_ERROR_ON(input->info()->data_layout() == DataLayout::UNKNOWN);
- ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
- ARM_COMPUTE_UNUSED(result_shift);
- ARM_COMPUTE_UNUSED(result_offset_after_shift);
-
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 16 / input->info()->element_size();
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator in(input, win);
- Iterator out(output, win);
- execute_window_loop(win, [&](const Coordinates & id)
- {
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- // Get bias and pointer to input
- const auto in_ptr = reinterpret_cast<const T *>(in.ptr()) + x;
- auto v_in = wrapper::vloadq(in_ptr);
-
- // Accumulate bias
- if(has_bias)
- {
- const auto vb = wrapper::vdup_n(*reinterpret_cast<const T *>(bias->ptr_to_element(Coordinates(id.z()))), ExactTagType{});
- v_in = wrapper::vadd(v_in, vb);
- }
-
- const auto out_ptr = reinterpret_cast<T *>(out.ptr()) + x;
- wrapper::vstore(out_ptr, v_in);
- }
-
- // Left-overs loop
- for(; x < window_end_x; ++x)
- {
- // Get bias and pointer to input
- auto s_in = *(reinterpret_cast<const T *>(in.ptr()) + x);
-
- // Accumulate bias
- if(has_bias)
- {
- const auto b = *reinterpret_cast<const T *>(bias->ptr_to_element(Coordinates(id.z())));
- s_in += b;
- }
-
- *(reinterpret_cast<T *>(out.ptr()) + x) = s_in;
- }
-
- },
- in, out);
-}
-
-template <typename T>
-typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
-output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
- int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
-{
- ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
- ARM_COMPUTE_UNUSED(result_shift);
- ARM_COMPUTE_UNUSED(result_offset_after_shift);
-
- Window window_bias = window;
- window_bias.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
- window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
- window_bias.set(3, Window::Dimension(0, 0, 0));
-
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 16 / input->info()->element_size();
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator in(input, win);
- Iterator bi(bias, window_bias);
- Iterator out(output, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- // Get bias and pointer to input
- const auto in_ptr = reinterpret_cast<const T *>(in.ptr());
- auto v_in = wrapper::vloadq(in_ptr + x);
-
- // Accumulate bias
- if(has_bias)
- {
- const auto bias_ptr = reinterpret_cast<T *>(bi.ptr()) + x;
- v_in = wrapper::vadd(v_in, wrapper::vloadq(bias_ptr));
- }
-
- const auto out_ptr = reinterpret_cast<T *>(out.ptr());
- wrapper::vstore(out_ptr + x, v_in);
- }
-
- // Left-overs loop
- for(; x < window_end_x; ++x)
- {
- // Get bias and pointer to input
- auto s_in = *(reinterpret_cast<const T *>(in.ptr()) + x);
-
- // Accumulate bias
- if(has_bias)
- {
- const auto bias_ptr = reinterpret_cast<T *>(bi.ptr()) + x;
- s_in += *bias_ptr;
- }
-
- const auto out_ptr = reinterpret_cast<T *>(out.ptr());
- *(out_ptr + x) = s_in;
- }
- },
- in, bi, out);
-}
-
-// Quantized case
-template < typename TOut, typename std::enable_if < std::is_same<TOut, uint8_t>::value || std::is_same<TOut, int8_t>::value, int >::type = 0 >
-void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
- int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
-{
- using VectorType = typename wrapper::traits::neon_bitvector_t<TOut, wrapper::traits::BitWidth::W128>;
- using TagType = typename wrapper::traits::neon_bitvector_tag_t<TOut, wrapper::traits::BitWidth::W128>;
-
- const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
-
- const VectorType min = wrapper::vdup_n(std::numeric_limits<TOut>::lowest(), TagType{});
- const VectorType max = wrapper::vdup_n(std::numeric_limits<TOut>::max(), TagType{});
-
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 16 / input->info()->element_size();
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator in(input, win);
- Iterator out(output, win);
-
- execute_window_loop(win, [&](const Coordinates & id)
- {
-
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- // Get bias and pointer to input
- const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr()) + x;
- int32x4x4_t v_in =
- {
- {
- wrapper::vloadq(in_ptr),
- wrapper::vloadq(in_ptr + 4),
- wrapper::vloadq(in_ptr + 8),
- wrapper::vloadq(in_ptr + 12)
- }
- };
-
- // Accumulate bias
- if(has_bias)
- {
- const auto vb = wrapper::vdup_n(*reinterpret_cast<const int32_t *>(bias->ptr_to_element(Coordinates(id.z()))), TagType{});
- v_in =
- {
- {
- wrapper::vadd(v_in.val[0], vb),
- wrapper::vadd(v_in.val[1], vb),
- wrapper::vadd(v_in.val[2], vb),
- wrapper::vadd(v_in.val[3], vb)
- }
- };
- }
-
- const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
- wrapper::vstore(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32,
- min, max, false));
- }
-
- // Left-overs loop
- for(; x < window_end_x; ++x)
- {
- // Get bias and pointer to input
- int32_t s_in = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
-
- // Accumulate bias
- if(has_bias)
- {
- const auto b = *reinterpret_cast<const int32_t *>(bias->ptr_to_element(Coordinates(id.z())));
- s_in += b;
- }
-
- const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
- *out_ptr = finalize_quantization(s_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift,
- std::numeric_limits<TOut>::lowest(), std::numeric_limits<TOut>::max(), false);
- }
- },
- in, out);
-}
-template < typename TOut, typename std::enable_if < std::is_same<TOut, uint8_t>::value || std::is_same<TOut, int8_t>::value, int >::type = 0 >
-void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
- int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias)
-{
- using VectorType = typename wrapper::traits::neon_bitvector_t<TOut, wrapper::traits::BitWidth::W128>;
- using TagType = typename wrapper::traits::neon_bitvector_tag_t<TOut, wrapper::traits::BitWidth::W128>;
-
- const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);
-
- const VectorType min = wrapper::vdup_n(std::numeric_limits<TOut>::lowest(), TagType{});
- const VectorType max = wrapper::vdup_n(std::numeric_limits<TOut>::max(), TagType{});
-
- Window window_bias = window;
- window_bias.set(Window::DimX, Window::Dimension(0, 1, 1));
- window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
- window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
- window_bias.set(3, Window::Dimension(0, 0, 0));
-
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_step_x = 16 / input->info()->element_size();
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator in(input, win);
- Iterator bi(bias, window_bias);
- Iterator out(output, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- // Get bias and pointer to input
- const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr()) + x;
- int32x4x4_t v_in =
- {
- {
- wrapper::vloadq(in_ptr),
- wrapper::vloadq(in_ptr + 4),
- wrapper::vloadq(in_ptr + 8),
- wrapper::vloadq(in_ptr + 12),
- }
- };
-
- // Accumulate bias
- if(has_bias)
- {
- const auto bias_ptr = reinterpret_cast<int32_t *>(bi.ptr()) + x;
-
- wrapper::vadd(v_in.val[0], wrapper::vloadq(bias_ptr));
- wrapper::vadd(v_in.val[1], wrapper::vloadq(bias_ptr + 4));
- wrapper::vadd(v_in.val[2], wrapper::vloadq(bias_ptr + 8));
- wrapper::vadd(v_in.val[3], wrapper::vloadq(bias_ptr + 12));
- }
-
- const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
- wrapper::vstore(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max, false));
- }
-
- // Left-overs loop
- for(; x < window_end_x; ++x)
- {
- // Get bias and pointer to input
- const auto in_ptr = reinterpret_cast<int32_t *>(in.ptr()) + x;
- int32_t s_in = *in_ptr;
-
- // Accumulate bias
- if(has_bias)
- {
- const auto bias_ptr = reinterpret_cast<int32_t *>(bi.ptr()) + x;
- s_in += *bias_ptr;
- }
-
- const auto out_ptr = reinterpret_cast<TOut *>(out.ptr()) + x;
- *out_ptr = finalize_quantization(s_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift,
- std::numeric_limits<TOut>::lowest(), std::numeric_limits<TOut>::max(), false);
- }
- },
- in, bi, out);
-}
-} // namespace
-
-NEDirectConvolutionLayerOutputStageKernel::NEDirectConvolutionLayerOutputStageKernel()
- : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0)
-{
-}
-
-void NEDirectConvolutionLayerOutputStageKernel::configure(ITensor *input, const ITensor *bias, ITensor *output,
- const DirectConvolutionLayerOutputStageKernelInfo &info)
-{
- // Perform validation step
- ARM_COMPUTE_ERROR_ON_NULLPTR(input);
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info(), info));
-
- _func = nullptr;
- _bias = bias;
- _input = input;
- _output = (output != nullptr) ? output : input;
- _result_fixedpoint_multiplier = info.result_fixedpoint_multiplier;
- _result_shift = info.result_shift;
- _result_offset_after_shift = info.result_offset_after_shift;
-
- // Auto-initialize output output if required
- if(output != nullptr && output->info() != nullptr)
- {
- // Work out expected output data type
- const DataType output_dt = (input->info()->data_type() == DataType::S32) ? info.output_data_type : DataType::S32;
- // Output tensor auto initialization if not yet initialized
- auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_dt));
- }
-
- Window win = calculate_max_window(*input->info(), Steps());
-
- INEKernel::configure(win);
-
- const bool is_qasymm8_signed = (output != nullptr) ? is_data_type_quantized_asymmetric_signed(output->info()->data_type()) : false;
-
- // Set appropriate function
- if(input->info()->data_layout() == DataLayout::NCHW)
- {
- switch(input->info()->data_type())
- {
- case DataType::S32:
- {
- if(is_qasymm8_signed)
- {
- _func = &output_stage_nchw<int8_t>;
- }
- else
- {
- _func = &output_stage_nchw<uint8_t>;
- }
- break;
- }
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- {
- _func = &output_stage_nchw<float16_t>;
- break;
- }
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- {
- _func = &output_stage_nchw<float>;
- break;
- }
- default:
- {
- ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
- }
- }
- }
- else
- {
- switch(input->info()->data_type())
- {
- case DataType::S32:
- {
- if(is_qasymm8_signed)
- {
- _func = &output_stage_nhwc<int8_t>;
- }
- else
- {
- _func = &output_stage_nhwc<uint8_t>;
- }
- break;
- }
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- {
- _func = &output_stage_nhwc<float16_t>;
- break;
- }
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- {
- _func = &output_stage_nhwc<float>;
- break;
- }
- default:
- {
- ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
- }
- }
- }
-}
-
-Status NEDirectConvolutionLayerOutputStageKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
- const DirectConvolutionLayerOutputStageKernelInfo &info)
-{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, info));
-
- return Status{};
-}
-
-void NEDirectConvolutionLayerOutputStageKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
- ARM_COMPUTE_ERROR_ON(_func == nullptr);
-
- const bool has_bias = _bias != nullptr;
- (*_func)(_input, _bias, window, _output, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift, has_bias);
-}
-} // namespace arm_compute
diff --git a/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h b/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h
deleted file mode 100644
index 8f7eeb05b2..0000000000
--- a/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h
+++ /dev/null
@@ -1,102 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_NEDIRECTCONVOLUTIONLAYEROUTPUTSTAGEKERNEL_H
-#define ARM_COMPUTE_NEDIRECTCONVOLUTIONLAYEROUTPUTSTAGEKERNEL_H
-
-#include "arm_compute/core/KernelDescriptors.h"
-#include "src/core/NEON/INEKernel.h"
-
-namespace arm_compute
-{
-class ITensor;
-/** Kernel to accumulate the biases, if provided, or downscale in case of quantized input.
- *
- * @note We assume bias to be shared
- * @note For quantized computations (i.e. @p input of S32 type) the output data type for auto-initialization must be passed as part
- * of the @ref DirectConvolutionLayerOutputStageKernelInfo.
- */
-class NEDirectConvolutionLayerOutputStageKernel : public INEKernel
-{
-public:
- const char *name() const override
- {
- return "NEDirectConvolutionLayerOutputStageKernel";
- }
- /** Default constructor */
- NEDirectConvolutionLayerOutputStageKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEDirectConvolutionLayerOutputStageKernel(const NEDirectConvolutionLayerOutputStageKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- NEDirectConvolutionLayerOutputStageKernel &operator=(const NEDirectConvolutionLayerOutputStageKernel &) = delete;
- /** Allow instances of this class to be moved */
- NEDirectConvolutionLayerOutputStageKernel(NEDirectConvolutionLayerOutputStageKernel &&) = default;
- /** Allow instances of this class to be moved */
- NEDirectConvolutionLayerOutputStageKernel &operator=(NEDirectConvolutionLayerOutputStageKernel &&) = default;
- /** Default destructor */
- ~NEDirectConvolutionLayerOutputStageKernel() = default;
- /** Set the accumulate buffer and the biases of the kernel.
- *
- * @param[in, out] input Input to add the bias to. If @p output is not specified then accumulation is done in-place.
- * Data type supported: F16/F32/S32
- * @param[in] bias (Optional) The shared bias tensor to add. It must be 1D Tensor. Data type supported: Same as @p input
- * @param[out] output (Optional) If the output tensor is specified the accumulation is done out-of-place. (Defaults to nullptr)
- * Note that in-place computation is only supported for F16/F32. For S32 this must not be nullptr.
- * Data type supported: F16/F32 or QASYMM8/QASYMM8_SIGNED if @p input is S32
- * @param[in] info (Optional) DirectConvolutionLayerOutputStageKernel descriptor metadata
- */
- void configure(ITensor *input, const ITensor *bias = nullptr, ITensor *output = nullptr,
- const DirectConvolutionLayerOutputStageKernelInfo &info = DirectConvolutionLayerOutputStageKernelInfo());
- /** Static function to check if given info will lead to a valid configuration of @ref NEDirectConvolutionLayerOutputStageKernel
- *
- * @param[in] input Input to add the bias to. If @p output is not specified then accumulation is done in-place.
- * Data type supported: F16/F32/S32
- * @param[in] bias (Optional) The shared bias tensor to add. It must be 1D Tensor. Data type supported: Same as @p input
- * @param[in] output (Optional) If the output tensor is specified the accumulation is done out-of-place. (Defaults to nullptr)
- * Note that in-place computation is only supported for F16/F32. For S32 this must not be nullptr.
- * Data type supported: F16/F32 or QASYMM8/QASYMM8_SIGNED if @p input is S32
- * @param[in] info (Optional) DirectConvolutionLayerOutputStageKernel descriptor metadata
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *bias = nullptr, const ITensorInfo *output = nullptr,
- const DirectConvolutionLayerOutputStageKernelInfo &info = DirectConvolutionLayerOutputStageKernelInfo());
-
- // Inherited methods overridden:
- void run(const Window &window, const ThreadInfo &info) override;
-
-private:
- using OutputStageKernel = void(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
- int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift, bool has_bias);
-
-private:
- OutputStageKernel *_func;
- ITensor *_input;
- const ITensor *_bias;
- ITensor *_output;
- int _result_fixedpoint_multiplier;
- int _result_shift;
- int _result_offset_after_shift;
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_NEDIRECTCONVOLUTIONLAYEROUTPUTSTAGEKERNEL_H */