aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp
diff options
context:
space:
mode:
authorGeorgios Pinitas <georgios.pinitas@arm.com>2019-01-09 18:35:17 +0000
committerGeorgios Pinitas <georgios.pinitas@arm.com>2019-01-18 13:41:40 +0000
commit7cd26d4a1b14bc4bf7c61496803416ab3d84791f (patch)
tree12cc4a27d7ecebc69a43e96b1f46c7eb05437978 /src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp
parent3ac2f3a1d9297220d1b0ce920dd13fdd4edcc187 (diff)
downloadComputeLibrary-7cd26d4a1b14bc4bf7c61496803416ab3d84791f.tar.gz
COMPMID-1867: Add NEON/SVE GEMM Hybrid kernels.
Change-Id: Ib40a9921e7f9a6a8be6c38872d6b3a0f24ed0cd3 Reviewed-on: https://review.mlplatform.org/515 Reviewed-by: Anthony Barbier <Anthony.barbier@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp')
-rw-r--r--src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp303
1 files changed, 303 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp b/src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp
new file mode 100644
index 0000000000..09f03c6332
--- /dev/null
+++ b/src/core/NEON/kernels/arm_gemm/gemm_hybrid.hpp
@@ -0,0 +1,303 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#pragma once
+
+#include <assert.h>
+
+#include <algorithm>
+
+#include "arm_gemm.hpp"
+#include "utils.hpp"
+
+#include "mergeresults.hpp"
+#include "transform.hpp"
+
+#ifdef CYCLE_PROFILING
+#include "profiler.hpp"
+#endif
+
+namespace arm_gemm {
+
+// Implementation of the GemmCommon abstract class.
+template<typename strategy, typename To, typename Tr>
+class GemmHybrid : public GemmCommon<To, Tr> {
+ typedef typename strategy::operand_type Toi;
+ typedef typename strategy::result_type Tri;
+
+ /* const properties set by constructor */
+ const CPUInfo * const _ci;
+
+ const unsigned int _Msize;
+ const unsigned int _Nsize;
+ const unsigned int _Ksize;
+
+ const unsigned int _nbatches;
+ const unsigned int _nmulti;
+
+ const bool _trB;
+
+ const Tr _beta;
+
+ /* Blocking info */
+ unsigned int _k_block=0;
+ unsigned int _x_block=0;
+ unsigned int _Mround=0;
+
+ /* Pretransposed buffer. */
+ const Toi *_B_transposed=nullptr;
+
+ unsigned int _B_per_multi = 0;
+
+ /* We will need to walk through the blocks of B in a few contexts, so
+ * factor that out. */
+ class blockwalker {
+ private:
+ /* Size loops, etc. based on our parent's configuration */
+ const GemmHybrid<strategy, To, Tr> &_parent;
+
+ /* K, X and multi parameters for current iteration. */
+ unsigned int _k0=0, _x0=0;
+
+ unsigned int _index=0;
+ bool _done=false;
+ bool _newkblock=true;
+
+ public:
+ blockwalker(const GemmHybrid<strategy, To, Tr> &parent) : _parent(parent) { }
+
+ unsigned int xmax() {
+ return std::min(_x0 + _parent._x_block, _parent._Nsize);
+ }
+
+ unsigned int kmax() {
+ return std::min(_k0 + _parent._k_block, _parent._Ksize);
+ }
+
+ /* Advance to the next block, return false at the end. */
+ bool advance(void) {
+ if (_done) {
+ return false;
+ }
+
+ _newkblock=false;
+ _x0 += _parent._x_block;
+ if (_x0 >= _parent._Nsize) {
+ _x0=0;
+ _k0 += _parent._k_block;
+ if (_k0 >= _parent._Ksize) {
+ _done=true;
+ return false;
+ }
+ _newkblock=true;
+ }
+ _index++;
+
+ return true;
+ }
+
+ unsigned int k0(void) { return _k0; }
+ unsigned int x0(void) { return _x0; }
+ unsigned int index(void) { return _index; }
+ bool done(void) { return _done; }
+ bool newkblock(void) { return _newkblock; }
+ };
+
+
+public:
+ GemmHybrid(GemmHybrid &) = delete;
+ GemmHybrid & operator= (GemmHybrid &) = delete;
+
+ /* Constructor */
+ GemmHybrid(const GemmArgs<Tr> &args)
+ : _ci(args._ci), _Msize(args._Msize), _Nsize(args._Nsize), _Ksize(args._Ksize), _nbatches(args._nbatches),
+ _nmulti(args._nmulti), _trB(args._trB), _beta(args._beta) {
+ const unsigned int L1_size = _ci->get_L1_cache_size();
+ const unsigned int L2_size = _ci->get_L2_cache_size();
+
+ _B_per_multi = (iceildiv(_Nsize, strategy::out_width()) * strategy::out_width()) *
+ (iceildiv(_Ksize, strategy::k_unroll()) * strategy::k_unroll());
+
+ // Work out blocking parameters, or override from config.
+
+ if (args._cfg && args._cfg->inner_block_size) {
+ _k_block = args._cfg->inner_block_size;
+ } else {
+ // k_block: Find out how much of the larger array can be loaded into half the cache.
+ // This should account for associative caches.
+ _k_block = (L1_size / 2) / (sizeof(Toi) * (std::max(strategy::out_width(), strategy::out_height())));
+
+ // Needs to be (at least a single) multiple of the K unroll level.
+ _k_block /= strategy::k_unroll();
+ _k_block = std::max(_k_block, 1U) * strategy::k_unroll();
+
+ // Now tune to presented problem size; this is how many blocks we need.
+ int num_k_blocks = iceildiv(_Ksize, _k_block);
+
+ // So divide the space equally into that many blocks.
+ _k_block = iceildiv(_Ksize, num_k_blocks);
+
+ // And round UP to the K unroll level required.
+ _k_block = iceildiv(_k_block, strategy::k_unroll());
+ _k_block *= strategy::k_unroll();
+ }
+
+ if (args._cfg && args._cfg->outer_block_size) {
+ _x_block = args._cfg->outer_block_size;
+ } else {
+ // x_block: Work out how many rows (of length k_block) will fit in the L2
+ // Don't allocate more than 90% of the L2 to allow for overheads, and subtract off the L1 contents.
+ _x_block = (((L2_size * 9) / 10) - (_k_block * sizeof(Toi) * (strategy::out_width() + strategy::out_height()))) /
+ (sizeof(Toi) * _k_block);
+
+ // Needs to be (at least a single) multiple of the kernel output width.
+ _x_block /= strategy::out_width();
+ _x_block = std::max(_x_block, 1U) * strategy::out_width();
+
+ // And tune to the presented problem size.
+ int num_x_blocks = iceildiv(_Nsize, _x_block);
+ _x_block = iceildiv(_Nsize, num_x_blocks);
+
+ _x_block = iceildiv(_x_block, strategy::out_width());
+ _x_block *= strategy::out_width();
+ }
+
+ // Work out the rounded size of M - needed for some buffers.
+ _Mround = iceildiv(_Msize, strategy::out_height());
+ _Mround *= strategy::out_height();
+ }
+
+ // Interface implementation - Compulsory functions
+
+ // Window size: Only the last thread should do a ragged block, so dole
+ // out work in units of out_height. Factor batches and multi into the
+ // window too.
+ unsigned int get_window_size() const override {
+ // _Mround is a multiple of out_height by definition.
+ return (_Mround / strategy::out_height()) * _nbatches * _nmulti;
+ }
+
+ // Execute
+ void execute(unsigned int start, unsigned int end, int threadid) override {
+#ifdef CYCLE_PROFILING
+ profiler prof;
+#endif
+ strategy strat(_ci);
+
+ /* Make sure we've been set up correctly. */
+ assert(_B_transposed);
+
+ const unsigned int window_per_batch = iceildiv(_Msize, strategy::out_height());
+ const unsigned int window_per_multi = window_per_batch * _nbatches;
+
+ const unsigned int first_multi = start / window_per_multi;
+ const unsigned int last_multi = end / window_per_multi;
+
+ const unsigned int first_batch = (start - (first_multi * window_per_multi)) / window_per_batch;
+ const unsigned int last_batch = (end - (last_multi * window_per_multi)) / window_per_batch;
+
+ const unsigned int first_row = ((start - (first_multi * window_per_multi)) % window_per_batch) * strategy::out_height();
+ const unsigned int last_row = ((end - (last_multi * window_per_multi)) % window_per_batch) * strategy::out_height();
+
+ static_assert(std::is_same<To, Toi>::value, "gemm_native: Operand types must be the same.");
+ static_assert(std::is_same<Tr, Tri>::value, "gemm_native: Result types must be the same.");
+
+ for (unsigned int multi = first_multi; multi <= last_multi; multi++) {
+ const unsigned int batch_0 = (multi == first_multi) ? first_batch : 0;
+ const unsigned int batch_max = (multi == last_multi) ? last_batch : (_nbatches - 1);
+
+ const Toi *b_panel = _B_transposed + (multi * _B_per_multi);
+
+ for (blockwalker current(*this); !current.done(); current.advance()) {
+ int kern_k = iceildiv(current.kmax() - current.k0(), strategy::k_unroll());
+ kern_k *= strat.k_unroll();
+
+ int bblocks = iceildiv(current.xmax() - current.x0(), strategy::out_width());
+
+ for (unsigned int batch = batch_0; batch <= batch_max; batch++) {
+ const unsigned int m_start = ((multi == first_multi) && (batch == first_batch)) ? first_row : 0;
+ const unsigned int m_end = ((multi == last_multi) && (batch == last_batch) ) ? last_row : _Msize;
+#ifdef CYCLE_PROFILING
+ auto p = prof.ScopedProfiler(PROFILE_KERNEL, (m_end - m_start) * kern_k * bblocks * strategy::out_width());
+#endif
+
+ strat.kernel(this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (m_start * this->_lda) + current.k0(), this->_lda,
+ b_panel,
+ this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (m_start * this->_ldc) + current.x0(), this->_ldc,
+ (current.k0() == 0) ? _beta : static_cast<Tr>(1),
+ (m_end - m_start), (current.xmax() - current.x0()), kern_k);
+ }
+
+ b_panel += (bblocks * strat.out_width() * kern_k);
+ }
+ }
+ }
+
+ // Interface implementation - pretransposed
+ bool B_is_pretransposed() const override {
+ return true;
+ }
+
+ bool B_pretranspose_required() const override {
+ return (_B_transposed==nullptr);
+ }
+
+ size_t get_B_pretransposed_array_size() const override {
+ return _B_per_multi * _nmulti * sizeof(Toi);
+ }
+
+ void pretranspose_B_array(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
+ Toi *buffer = reinterpret_cast<Toi *>(in_buffer);
+ _B_transposed = buffer;
+ strategy strat(_ci);
+
+ for (unsigned int multi=0; multi < _nmulti; multi++) {
+ blockwalker current(*this);
+
+ do {
+ /* Figure out the size of each block. */
+ size_t x_size = (current.xmax() - current.x0());
+ size_t k_size = (current.kmax() - current.k0());
+
+ /* Round sizes up as needed. */
+ x_size = iceildiv(x_size, strategy::out_width());
+ x_size *= strategy::out_width();
+
+ k_size = iceildiv(k_size, strategy::k_unroll());
+ k_size *= strategy::k_unroll();
+
+ strat.transforms.PrepareB(
+ buffer, B + (multi * B_multi_stride), ldb,
+ current.x0(), current.xmax(), current.k0(), current.kmax(), _trB);
+
+ buffer += (x_size * k_size);
+ } while (current.advance());
+ }
+ }
+
+ void set_pretransposed_B_data(void *in_buffer) override {
+ _B_transposed = reinterpret_cast<Toi *>(in_buffer);
+ }
+};
+
+} // namespace arm_gemm