aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
diff options
context:
space:
mode:
authorAnthony Barbier <anthony.barbier@arm.com>2017-09-04 18:44:23 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-09-17 13:03:09 +0100
commit6ff3b19ee6120edf015fad8caab2991faa3070af (patch)
treea7a6dcd16dfd56d79fa1b56a313caeebcc939b68 /src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
downloadComputeLibrary-6ff3b19ee6120edf015fad8caab2991faa3070af.tar.gz
COMPMID-344 Updated doxygen
Change-Id: I32f7b84daa560e460b77216add529c8fa8b327ae
Diffstat (limited to 'src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp524
1 files changed, 524 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp b/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
new file mode 100644
index 0000000000..aa8c7a1847
--- /dev/null
+++ b/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
@@ -0,0 +1,524 @@
+/*
+ * Copyright (c) 2016, 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/IAccessWindow.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/NEON/NEFixedPoint.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/runtime/NEON/functions/NEPixelWiseMultiplication.h"
+
+#include <arm_neon.h>
+#include <climits>
+#include <cmath>
+#include <cstdint>
+#include <cstdlib>
+
+using namespace arm_compute;
+
+namespace arm_compute
+{
+class Coordinates;
+} // namespace arm_compute
+
+namespace
+{
+const float scale255_constant = 1.f / 255.f;
+const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
+const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f);
+
+/* Scales a given vector by 1/255.
+ *
+ * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
+ *
+ * @param in Input vector to scale.
+ * @return Scaled output rounded to nearest (round half up).
+ */
+inline int32x4_t scale255_S32_S32(int32x4_t in)
+{
+ // Scale
+ const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
+ // Round to nearest (round half up)
+ // Add +0.5 for all values
+ // Afterwards vcvt rounds toward zero
+ return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
+}
+
+inline uint16x8_t scale255_U16_U16(uint16x8_t in)
+{
+ const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
+ const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
+ return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_U8_U8_U8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
+{
+ const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
+ const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
+ const auto output = static_cast<uint8_t *__restrict>(output_ptr);
+
+ const uint8x16_t ta1 = vld1q_u8(input1);
+ const uint8x16_t ta2 = vld1q_u8(input2);
+
+ uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1));
+ const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
+ uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1));
+ const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2));
+
+ tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
+ tmp1_low = vmulq_u16(tmp1_low, tmp2_low);
+
+ if(is_scale255)
+ {
+ tmp1_high = scale255_U16_U16(tmp1_high);
+ tmp1_low = scale255_U16_U16(tmp1_low);
+ }
+ else
+ {
+ const int16x8_t vn = vdupq_n_s16(-n);
+
+ if(is_sat)
+ {
+ tmp1_high = vqshlq_u16(tmp1_high, vn);
+ tmp1_low = vqshlq_u16(tmp1_low, vn);
+ }
+ else
+ {
+ tmp1_high = vshlq_u16(tmp1_high, vn);
+ tmp1_low = vshlq_u16(tmp1_low, vn);
+ }
+ }
+
+ if(is_sat)
+ {
+ vst1q_u8(output, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
+ }
+ else
+ {
+ vst1q_u8(output, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
+ }
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_QS8_QS8_QS8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n, int fixed_point_position)
+{
+ // n is the exponent of the scaling factor, that is scale = 1/2^n. Currently, we only support scaling factor equal to 1 => n = 0.
+ ARM_COMPUTE_ERROR_ON_MSG(n != 0, "Scaling factor different than 1 not supported for 8-bit fixed-point pixel-wise multiplication");
+ ARM_COMPUTE_UNUSED(n);
+
+ const auto input1 = static_cast<const qint8_t *__restrict>(input1_ptr);
+ const auto input2 = static_cast<const qint8_t *__restrict>(input2_ptr);
+ const auto output = static_cast<qint8_t *__restrict>(output_ptr);
+
+ const qint8x16_t ta1 = vld1q_qs8(input1);
+ const qint8x16_t ta2 = vld1q_qs8(input2);
+
+ qint8x16_t res = (is_sat) ? vqmulq_qs8(ta1, ta2, fixed_point_position) : vmulq_qs8(ta1, ta2, fixed_point_position);
+
+ vst1q_s8(output, res);
+}
+
+template <bool is_scale255, bool is_sat>
+inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &input1, const int16x8_t &input2, int n)
+{
+ int32x4_t tmp1_high = vmovl_s16(vget_high_s16(input1));
+ const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(input2));
+ int32x4_t tmp1_low = vmovl_s16(vget_low_s16(input1));
+ const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(input2));
+
+ tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
+ tmp1_low = vmulq_s32(tmp1_low, tmp2_low);
+
+ if(is_scale255)
+ {
+ tmp1_high = scale255_S32_S32(tmp1_high);
+ tmp1_low = scale255_S32_S32(tmp1_low);
+ }
+ else
+ {
+ // Right shift amount
+ const int32x4_t vn = vdupq_n_s32(-n);
+ // Left shift amount
+ const int32x4_t vnl = vdupq_n_s32(n);
+ // Calculate conversion bit
+ const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high);
+ const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low);
+ const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31);
+ const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31);
+ const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high);
+ const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low);
+ const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
+ const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
+ if(is_sat)
+ {
+ tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
+ tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
+ }
+ else
+ {
+ tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
+ tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
+ }
+ }
+
+ if(is_sat)
+ {
+ return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
+ }
+ else
+ {
+ return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
+ }
+}
+
+template <bool is_scale255, bool is_sat>
+inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &input1, const int16x8x2_t &input2, int n)
+{
+ const int16x8x2_t result =
+ {
+ {
+ // First 8 elements
+ mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[0], input2.val[0], n),
+ // Second 8 elements
+ mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[1], input2.val[1], n)
+ }
+ };
+
+ return result;
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_S16_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
+{
+ const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
+ const auto input2 = static_cast<const int16_t *__restrict>(input2_ptr);
+ const auto output = static_cast<int16_t *__restrict>(output_ptr);
+
+ const int16x8x2_t ta1 = vld2q_s16(input1);
+ const int16x8x2_t ta2 = vld2q_s16(input2);
+ const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
+
+ vst2q_s16(output, result);
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
+{
+ const auto input1 = static_cast<const float *__restrict>(input1_ptr);
+ const auto input2 = static_cast<const float *__restrict>(input2_ptr);
+ const auto output = static_cast<float *__restrict>(output_ptr);
+
+ const float32x4x4_t ta1 = vld4q_f32(input1);
+ const float32x4x4_t ta2 = vld4q_f32(input2);
+ const float32x4_t scale_vec = vdupq_n_f32(scale);
+ const float32x4x4_t result =
+ {
+ {
+ vmulq_f32(vmulq_f32(ta1.val[0], ta2.val[0]), scale_vec),
+ vmulq_f32(vmulq_f32(ta1.val[1], ta2.val[1]), scale_vec),
+ vmulq_f32(vmulq_f32(ta1.val[2], ta2.val[2]), scale_vec),
+ vmulq_f32(vmulq_f32(ta1.val[3], ta2.val[3]), scale_vec)
+ }
+ };
+ vst4q_f32(output, result);
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_U8_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
+{
+ const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
+ const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
+ const auto output = static_cast<int16_t *__restrict>(output_ptr);
+
+ const uint8x16_t bv = vld1q_u8(input2);
+ const uint8x16_t av = vld1q_u8(input1);
+
+ uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av));
+ uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
+ tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
+ tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));
+
+ if(is_scale255)
+ {
+ tmp_low = scale255_U16_U16(tmp_low);
+ tmp_high = scale255_U16_U16(tmp_high);
+ }
+ else
+ {
+ const int16x8_t vn = vdupq_n_s16(-n);
+
+ if(is_sat)
+ {
+ tmp_low = vqshlq_u16(tmp_low, vn);
+ tmp_high = vqshlq_u16(tmp_high, vn);
+ }
+ else
+ {
+ tmp_low = vshlq_u16(tmp_low, vn);
+ tmp_high = vshlq_u16(tmp_high, vn);
+ }
+ }
+
+ if(is_sat)
+ {
+ static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);
+
+ tmp_low = vminq_u16(tmp_low, max);
+ tmp_high = vminq_u16(tmp_high, max);
+ }
+
+ vst1q_s16(output, vreinterpretq_s16_u16(tmp_low));
+ vst1q_s16(output + 8, vreinterpretq_s16_u16(tmp_high));
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_S16_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
+{
+ const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
+ const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
+ const auto output = static_cast<int16_t *__restrict>(output_ptr);
+
+ const int16x8x2_t ta1 = vld2q_s16(input1);
+ const uint8x8x2_t ta2u = vld2_u8(input2);
+ const int16x8x2_t ta2 =
+ {
+ {
+ vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])),
+ vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))
+ }
+ };
+
+ const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
+
+ vst2q_s16(output, result);
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_U8_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
+{
+ // Simply swap the two input buffers
+ mul_S16_U8_S16_n<is_scale255, is_sat>(input2_ptr, input1_ptr, output_ptr, n);
+}
+} // namespace
+
+NEPixelWiseMultiplicationKernel::NEPixelWiseMultiplicationKernel()
+ : _func_float(nullptr), _func_int(nullptr), _func_q_int(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _scale{ 0 }, _scale_exponent{ 0 }
+{
+}
+
+void NEPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QS8, DataType::S16, DataType::F32);
+ ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QS8, DataType::S16, DataType::F32);
+ ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QS8, DataType::S16, DataType::F32);
+ ARM_COMPUTE_ERROR_ON_MSG(output->info()->data_type() == DataType::U8 && (input1->info()->data_type() != DataType::U8 || input2->info()->data_type() != DataType::U8),
+ "Output can only be U8 if both inputs are U8");
+ if(output->info()->data_type() == DataType::QS8 || input1->info()->data_type() == DataType::QS8 || output->info()->data_type() == DataType::QS8)
+ {
+ // All data types must be QS8
+ ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2, output);
+ ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input1, input2, output);
+ }
+
+ _input1 = input1;
+ _input2 = input2;
+ _output = output;
+ _scale = scale;
+ _scale_exponent = 0;
+ _func_int = nullptr;
+ _func_q_int = nullptr;
+ _func_float = nullptr;
+
+ bool is_scale_255 = false;
+ // Check and validate scaling factor
+ if(std::abs(scale - scale255_constant) < 0.00001f)
+ {
+ ARM_COMPUTE_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
+ ARM_COMPUTE_UNUSED(rounding_policy);
+
+ is_scale_255 = true;
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);
+ ARM_COMPUTE_UNUSED(rounding_policy);
+
+ int exponent = 0;
+ const float normalized_mantissa = std::frexp(scale, &exponent);
+
+ // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
+ // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
+ // Moreover, it will be negative as we deal with 1/2^n
+ if((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1))
+ {
+ // Store the positive exponent. We know that we compute 1/2^n
+ // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
+ _scale_exponent = std::abs(exponent - 1);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Scale value not supported (Should be 1/(2^n) or 1/255");
+ }
+ }
+
+ const DataType dt_input1 = input1->info()->data_type();
+ const DataType dt_input2 = input2->info()->data_type();
+ const DataType dt_output = output->info()->data_type();
+ const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE);
+
+ if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::U8 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_U8_U8_U8_n<true, true> : &mul_U8_U8_U8_n<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_U8_U8_U8_n<false, true> : &mul_U8_U8_U8_n<false, false>;
+ }
+ }
+ else if(DataType::S16 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_S16_S16_S16_n<true, true> : &mul_S16_S16_S16_n<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_S16_S16_S16_n<false, true> : &mul_S16_S16_S16_n<false, false>;
+ }
+ }
+ else if(DataType::S16 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_S16_U8_S16_n<true, true> : &mul_S16_U8_S16_n<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_S16_U8_S16_n<false, true> : &mul_S16_U8_S16_n<false, false>;
+ }
+ }
+ else if(DataType::U8 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_U8_S16_S16_n<true, true> : &mul_U8_S16_S16_n<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_U8_S16_S16_n<false, true> : &mul_U8_S16_S16_n<false, false>;
+ }
+ }
+ else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_U8_U8_S16_n<true, true> : &mul_U8_U8_S16_n<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_U8_U8_S16_n<false, true> : &mul_U8_U8_S16_n<false, false>;
+ }
+ }
+ else if(DataType::QS8 == dt_input1 && DataType::QS8 == dt_input2 && DataType::QS8 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_q_int = is_sat ? &mul_QS8_QS8_QS8_n<true, true> : &mul_QS8_QS8_QS8_n<true, false>;
+ }
+ else
+ {
+ _func_q_int = is_sat ? &mul_QS8_QS8_QS8_n<false, true> : &mul_QS8_QS8_QS8_n<false, false>;
+ }
+ }
+ else if(DataType::F32 == dt_input1 && DataType::F32 == dt_input2 && DataType::F32 == dt_output)
+ {
+ _func_float = &mul_F32_F32_F32_n<false, false>;
+ _func_int = nullptr;
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("You called with the wrong img formats");
+ }
+
+ constexpr unsigned int num_elems_processed_per_iteration = 16;
+
+ // Configure kernel window
+ Window win = calculate_max_window(*input1->info(), Steps(num_elems_processed_per_iteration));
+ AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);
+
+ update_window_and_padding(win,
+ AccessWindowHorizontal(input1->info(), 0, num_elems_processed_per_iteration),
+ AccessWindowHorizontal(input2->info(), 0, num_elems_processed_per_iteration),
+ output_access);
+
+ ValidRegion valid_region = intersect_valid_regions(input1->info()->valid_region(),
+ input2->info()->valid_region());
+
+ output_access.set_valid_region(win, valid_region);
+
+ INEKernel::configure(win);
+}
+
+void NEPixelWiseMultiplicationKernel::run(const Window &window)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+
+ Iterator input1(_input1, window);
+ Iterator input2(_input2, window);
+ Iterator output(_output, window);
+
+ if(_func_int != nullptr)
+ {
+ execute_window_loop(window, [&](const Coordinates & id)
+ {
+ (*_func_int)(input1.ptr(), input2.ptr(), output.ptr(), _scale_exponent);
+ },
+ input1, input2, output);
+ }
+ else if(_func_q_int != nullptr)
+ {
+ int fixed_point_position = _input1->info()->fixed_point_position();
+ execute_window_loop(window, [&](const Coordinates & id)
+ {
+ (*_func_q_int)(input1.ptr(), input2.ptr(), output.ptr(), _scale_exponent, fixed_point_position);
+ },
+ input1, input2, output);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
+ execute_window_loop(window, [&](const Coordinates & id)
+ {
+ (*_func_float)(input1.ptr(), input2.ptr(), output.ptr(), _scale);
+ },
+ input1, input2, output);
+ }
+}