aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
diff options
context:
space:
mode:
authorGian Marco <gianmarco.iodice@arm.com>2017-12-07 09:26:56 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:42:17 +0000
commit7f0f790ae7f5dd044a5d7564492583b8df974a11 (patch)
treeb3d6b7bdb0c6efb1dc4b9547dcc0f1fbcf1b4ee3 /src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
parentf2ad401d1db79373f1c6d1167ae10c94d706cce8 (diff)
downloadComputeLibrary-7f0f790ae7f5dd044a5d7564492583b8df974a11.tar.gz
COMPMID-731 - Remove padding requirements for NEGEMMLowpOutputStage
Used a left-over for loop in: - NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel - NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel in order to remove the padding requirements for AndroidNN Change-Id: I8ef529fc3d1adecf15fbe42002d99bc0030f131f Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/112266 Reviewed-by: Anthony Barbier <anthony.barbier@arm.com> Tested-by: BSG Visual Compute Jenkins server to access repositories on http://mpd-gerrit.cambridge.arm.com <bsgcomp@arm.com>
Diffstat (limited to 'src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp143
1 files changed, 101 insertions, 42 deletions
diff --git a/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
index 7f351020b9..54513d8cdb 100644
--- a/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
+++ b/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp
@@ -65,7 +65,10 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, con
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output)
{
- constexpr unsigned int num_elems_processed_per_iteration = 16;
+ // Note: This kernel performs 16 elements per iteration.
+ // However, since we use a left-over for loop, we cannot have any read or write out of memory
+ // For this reason num_elems_processed_per_iteration is set to 1
+ constexpr unsigned int num_elems_processed_per_iteration = 1;
// Configure kernel window
Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
@@ -85,7 +88,7 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
if(bias != nullptr)
{
- AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->tensor_shape()[1]);
+ AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
window_changed = window_changed || update_window_and_padding(win, bias_access);
}
@@ -163,69 +166,125 @@ void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run(const Window &window)
ARM_COMPUTE_UNUSED(min_u8);
ARM_COMPUTE_UNUSED(max_u8);
- Iterator in(_input, window);
- Iterator out(_output, window);
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ Window win(window);
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(_input, win);
+ Iterator out(_output, win);
if(_bias != nullptr)
{
Window win_biases;
- win_biases.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), window.x().step()));
+ win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
Iterator bias(_bias, win_biases);
- execute_window_loop(window, [&](const Coordinates & id)
+ execute_window_loop(win, [&](const Coordinates & id)
{
- int32x4x4_t in_s32 =
+ // Compute 16 elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
+ int32x4x4_t in_s32 =
{
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 0),
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 4),
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 8),
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 12)
- }
- };
-
- const int32x4x4_t bias_s32 =
- {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
+ }
+ };
+
+ const int32x4x4_t bias_s32 =
{
- vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + 0),
- vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + 4),
- vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + 8),
- vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + 12)
- }
- };
-
- // Add the bias to GEMM's result
- in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
- in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
- in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
- in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
+ }
+ };
+
+ // Add the bias to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
+
+ // Add the offset terms to GEMM's result and multiply by result_mult_int
+ scale_input(in_s32, result_offset_s32, _result_mult_int);
+
+ vst1q_u8(out.ptr() + x, finalize_quantization<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const int32_t bias_value = *(reinterpret_cast<const int32_t *>(bias.ptr()) + x);
+ int32_t in_value = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
- // Add the offset terms to GEMM's result and multiply by result_mult_int
- scale_input(in_s32, result_offset_s32, _result_mult_int);
+ // Quantize
+ in_value = ((in_value + bias_value + _result_offset) * _result_mult_int) >> _result_shift;
- vst1q_u8(out.ptr(), finalize_quantization<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
+ // Finalize and store the result
+ if(is_bounded_relu)
+ {
+ *(out.ptr() + x) = static_cast<uint8_t>(std::max(_min, std::min(_max, in_value)));
+ }
+ else
+ {
+ *(out.ptr() + x) = static_cast<uint8_t>(std::max(0, std::min(255, in_value)));
+ }
+ }
},
in, bias, out);
}
else
{
- execute_window_loop(window, [&](const Coordinates & id)
+ execute_window_loop(win, [&](const Coordinates & id)
{
- int32x4x4_t in_s32 =
+ // Compute 16 elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
+ int32x4x4_t in_s32 =
{
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 0),
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 4),
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 8),
- vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + 12)
- }
- };
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
+ }
+ };
+
+ // Add the offset terms to GEMM's result and multiply by result_mult_int
+ scale_input(in_s32, result_offset_s32, _result_mult_int);
+
+ vst1q_u8(out.ptr() + x, finalize_quantization<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int32_t in_value = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
- // Add the offset terms to GEMM's result and multiply by result_mult_int
- scale_input(in_s32, result_offset_s32, _result_mult_int);
+ // Quantize
+ in_value = ((in_value + _result_offset) * _result_mult_int) >> _result_shift;
- vst1q_u8(out.ptr(), finalize_quantization<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
+ // Finalize and store the result
+ if(is_bounded_relu)
+ {
+ *(out.ptr() + x) = static_cast<uint8_t>(std::max(_min, std::min(_max, in_value)));
+ }
+ else
+ {
+ *(out.ptr() + x) = static_cast<uint8_t>(std::max(0, std::min(255, in_value)));
+ }
+ }
},
in, out);
}