aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp
diff options
context:
space:
mode:
authorLuca Foschiani <luca.foschiani@arm.com>2020-02-13 15:07:36 +0000
committerLuca Foschiani <luca.foschiani@arm.com>2020-03-26 12:31:14 +0000
commit4b869532f8b2aa7f02aa55c4f4813e994ea2df68 (patch)
tree318506b8c5933165b1fe6d054fc7beec79c6a0f5 /src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp
parent1b14c75c0d591c4abe4d2d41b7e4e165fbf58382 (diff)
downloadComputeLibrary-4b869532f8b2aa7f02aa55c4f4813e994ea2df68.tar.gz
COMPMID-2966 Add support for QASYMM8_SIGNED in NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel
Signed-off-by: Luca Foschiani <luca.foschiani@arm.com> Change-Id: Ia8692f8fda16fa3b73f343e4b5b1b55e14403225 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/2750 Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp321
1 files changed, 321 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp
new file mode 100644
index 0000000000..80ba2aff93
--- /dev/null
+++ b/src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.cpp
@@ -0,0 +1,321 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h"
+
+#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/NEON/wrapper/wrapper.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+
+#include <arm_neon.h>
+#include <cstddef>
+#include <cstdint>
+
+namespace arm_compute
+{
+Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
+
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
+ || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
+
+ // Check biases if exist
+ if(bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
+ }
+
+ if(output->total_size() != 0)
+ {
+ if(output->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED))
+ {
+ ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
+ }
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
+ }
+
+ return Status{};
+}
+
+inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
+{
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
+
+ // Multiply by result_mult_int
+ in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
+ in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
+ in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
+ in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
+}
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, uint8_t>::value,
+ typename wrapper::traits::neon_vector<T, 16>::type>::type
+ convert_to_8bit(const int16x8x2_t in_s16)
+{
+ return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
+}
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, int8_t>::value,
+ typename wrapper::traits::neon_vector<T, 16>::type>::type
+ convert_to_8bit(const int16x8x2_t in_s16)
+{
+ return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
+}
+
+template <typename T>
+inline typename wrapper::traits::neon_vector<T, 16>::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector<T, 16>::type min,
+ typename wrapper::traits::neon_vector<T, 16>::type max)
+{
+ // Shift final result (negative value shift right)
+ in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+ in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+ in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+ in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+ // Convert S32 to S16
+ const int16x8x2_t in_s16 =
+ {
+ {
+ vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+ vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
+ }
+ };
+
+ // Convert S16 to S8 or U8
+ typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
+
+ out = wrapper::vmax(out, min);
+ out = wrapper::vmin(out, max);
+
+ return out;
+}
+
+class Coordinates;
+
+template <typename T>
+void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window)
+{
+ using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
+
+ const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
+ const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift);
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
+ const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
+
+ VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
+ VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
+
+ Window win(window);
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(_input, win);
+ Iterator out(_output, win);
+
+ if(_bias != nullptr)
+ {
+ Window win_biases;
+ win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
+ win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+ Iterator bias(_bias, win_biases);
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ // Compute 16 elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
+ }
+ };
+
+ const int32x4x4_t bias_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
+ }
+ };
+
+ // Add the bias to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
+
+ // Add the offset terms to GEMM's result and multiply by result_mult_int
+ scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
+
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const int bias_value = *(reinterpret_cast<const int *>(bias.ptr()) + x);
+ int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
+
+ // Quantize
+ in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
+
+ // Store the result
+ *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
+ }
+ },
+ in, bias, out);
+ }
+ else
+ {
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ // Compute 16 elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
+ }
+ };
+
+ // Add the offset terms to GEMM's result and multiply by result_mult_int
+ scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
+
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
+
+ // Quantize
+ in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
+
+ // Store the result
+ *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
+ }
+ },
+ in, out);
+ }
+}
+
+NEGEMMLowpQuantizeDownInt32ScaleKernel::NEGEMMLowpQuantizeDownInt32ScaleKernel()
+ : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr), _is_bounded_relu(false)
+{
+}
+
+void NEGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo *output_stage)
+{
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, output_stage);
+
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_stage->output_data_type));
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
+ (bias != nullptr) ? bias->info() : nullptr,
+ output->info(),
+ output_stage));
+
+ _input = input;
+ _bias = bias;
+ _output = output;
+ _output_stage = output_stage;
+
+ // Configure kernel window
+ Window win = calculate_max_window(*input->info(), Steps());
+ Coordinates coord;
+ coord.set_num_dimensions(output->info()->num_dimensions());
+ output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
+
+ INEKernel::configure(win);
+
+ // Check if we need to clamp the result using min and max
+ _is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound)
+ && !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
+ && _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
+ if(_output_stage->output_data_type == DataType::QASYMM8)
+ {
+ _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<uint8_t>;
+ }
+ else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
+ {
+ _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<int8_t>;
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Data type not supported");
+ }
+}
+
+Status NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage));
+
+ return Status{};
+}
+
+void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+
+ (this->*_func)(window);
+}
+} // namespace arm_compute \ No newline at end of file