aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
diff options
context:
space:
mode:
authorGian Marco <gianmarco.iodice@arm.com>2017-11-08 12:24:09 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:35:24 +0000
commite75a02b60736f37c34388c23c0ccee230f65da59 (patch)
treef8e9423e40589e99bd8be6c1e740b17792e2058e /src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
parent6c0348f4cbf6e30a715780f50aebf6dd0a2a8fc3 (diff)
downloadComputeLibrary-e75a02b60736f37c34388c23c0ccee230f65da59.tar.gz
COMPMID-675 - Reworked NEGEMMLowp interface/function
The new interface makes NEGEMMLowp able to work with ASYMM8 data types. Implemented 2 new functions: - NEGEMMLowpMatrixMultiplyCore - NEGEMMLowpOutputStage These functions should make the integration in android NN doable For more information about GEMMLowp: https://github.com/google/gemmlowp/blob/master/doc/low-precision.md Change-Id: Ie2c775f45234f68ca53dba644b3a912b997fd890 Reviewed-on: http://mpd-gerrit.cambridge.arm.com/95504 Tested-by: Kaizen <jeremy.johnson+kaizengerrit@arm.com> Reviewed-by: Pablo Tello <pablo.tello@arm.com>
Diffstat (limited to 'src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp338
1 files changed, 338 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
new file mode 100644
index 0000000000..bd550db54c
--- /dev/null
+++ b/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
@@ -0,0 +1,338 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
+
+#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include <arm_neon.h>
+#include <cstddef>
+#include <cstdint>
+
+using namespace arm_compute;
+
+namespace arm_compute
+{
+class Coordinates;
+} // namespace arm_compute
+
+NEGEMMLowpOffsetContributionKernel::NEGEMMLowpOffsetContributionKernel()
+ : _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true)
+{
+}
+
+void NEGEMMLowpOffsetContributionKernel::configure(ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset)
+{
+ ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if(a_offset != 0)
+ {
+ ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+ ARM_COMPUTE_ERROR_ON(vector_sum_col->info()->dimension(0) != mm_result->info()->dimension(0));
+
+ TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape();
+ vector_sum_col_shape.collapse(1);
+
+ // Check if vector_sum_col_shape should be slidden or not
+ // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
+ // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+ _slide_vector_sum_col = vector_sum_col_shape[1] != 1;
+ }
+
+ // If b_offset == 0, vector_sum_row can be a nullptr
+ if(b_offset != 0)
+ {
+ ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+ ARM_COMPUTE_ERROR_ON(vector_sum_row->info()->dimension(0) != mm_result->info()->dimension(1));
+
+ TensorShape output_shape = mm_result->info()->tensor_shape();
+ TensorShape vector_sum_row_shape = vector_sum_row->info()->tensor_shape();
+ vector_sum_row_shape.collapse(1);
+ output_shape.collapse(2);
+
+ ARM_COMPUTE_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[2], "mm_result tensor must have the same number of batches of output tensor");
+
+ if(a_offset != 0)
+ {
+ TensorShape vector_sum_col_shape = vector_sum_col->info()->tensor_shape();
+ vector_sum_col_shape.collapse(1);
+
+ ARM_COMPUTE_ERROR_ON_MSG(vector_sum_col_shape[1] != 1
+ && vector_sum_col_shape[1] != vector_sum_row_shape[1],
+ "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
+ }
+ }
+
+ _vector_sum_col = vector_sum_col;
+ _vector_sum_row = vector_sum_row;
+ _mm_result = mm_result;
+ _a_offset = a_offset;
+ _b_offset = b_offset;
+ _k_offset = a_offset * b_offset * k;
+
+ constexpr unsigned int num_elems_processed_per_iteration = 16;
+
+ // Configure kernel window
+ Window win = calculate_max_window(*mm_result->info(), Steps(num_elems_processed_per_iteration));
+
+ AccessWindowHorizontal mm_result_access(mm_result->info(), 0, num_elems_processed_per_iteration);
+
+ // Accordingly with a_offset and b_offset, we can have 4 cases:
+ // a_offset != 0 && b_offset != 0
+ // a_offset = 0 && b_offset != 0
+ // a_offset != 0 && b_offset = 0
+ // a_offset = 0 && b_offset = 0
+ if(a_offset != 0 && b_offset != 0)
+ {
+ AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0);
+ AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration);
+
+ update_window_and_padding(win,
+ vector_sum_col_access,
+ vector_sum_row_access,
+ mm_result_access);
+ }
+ else if(a_offset == 0 && b_offset != 0)
+ {
+ AccessWindowStatic vector_sum_row_access(vector_sum_row->info(), 0, 0, vector_sum_row->info()->dimension(0), 0);
+
+ update_window_and_padding(win,
+ vector_sum_row_access,
+ mm_result_access);
+ }
+ else if(a_offset != 0 && b_offset == 0)
+ {
+ AccessWindowHorizontal vector_sum_col_access(vector_sum_col->info(), 0, num_elems_processed_per_iteration);
+
+ update_window_and_padding(win,
+ vector_sum_col_access,
+ mm_result_access);
+ }
+ else
+ {
+ update_window_and_padding(win,
+ mm_result_access);
+ }
+
+ INEKernel::configure(win);
+}
+
+void NEGEMMLowpOffsetContributionKernel::run(const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
+
+ Window collapsed_window = window.collapse_if_possible(IKernel::window(), Window::DimZ);
+
+ if(_a_offset != 0 && _b_offset != 0) // true, true
+ {
+ // Set window for vector_sum_col
+ Window win_vector_sum_col(collapsed_window);
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ if(!_slide_vector_sum_col)
+ {
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ }
+
+ // Set window for vector_sum_row
+ Window win_vector_sum_row(collapsed_window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col);
+ Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row);
+ Iterator mm_result(_mm_result, window);
+
+ execute_window_loop(window, [&](const Coordinates & id)
+ {
+ // Compute the leftover term due to a_offset.
+ int32x4x4_t a_offset_term_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 12)
+ }
+ };
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset);
+
+ // Compute the leftover term due to b_offset.
+ int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row.ptr()) + id.y());
+ b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset);
+
+ // Add a_offset_term_s32 and b_offset_term_s32
+ int32x4x4_t offset_term_s32 =
+ {
+ {
+ vdupq_n_s32(_k_offset),
+ vdupq_n_s32(_k_offset),
+ vdupq_n_s32(_k_offset),
+ vdupq_n_s32(_k_offset)
+ }
+ };
+
+ offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32));
+ offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32));
+ offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32));
+ offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32));
+
+ int32x4x4_t in_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
+ }
+ };
+
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
+
+ // Store the result with the offset contribution
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 0, in_s32.val[0]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 4, in_s32.val[1]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 8, in_s32.val[2]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 12, in_s32.val[3]);
+ },
+ vector_sum_col, vector_sum_row, mm_result);
+ }
+ else if((_a_offset == 0) && (_b_offset != 0)) // false, true
+ {
+ // Set window for vector_sum_row
+ Window win_vector_sum_row(collapsed_window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_row(_vector_sum_row, win_vector_sum_row);
+ Iterator mm_result(_mm_result, window);
+
+ execute_window_loop(window, [&](const Coordinates & id)
+ {
+ // Compute the leftover term due to b_offset.
+ int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row.ptr()) + id.y());
+ b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, _b_offset);
+
+ int32x4x4_t in_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
+ }
+ };
+
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32);
+
+ // Store the result with the offset contribution
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 0, in_s32.val[0]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 4, in_s32.val[1]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 8, in_s32.val[2]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 12, in_s32.val[3]);
+ },
+ vector_sum_row, mm_result);
+ }
+ else if((_a_offset != 0) && (_b_offset == 0)) // true, false
+ {
+ // Set window for vector_sum_col
+ Window win_vector_sum_col(collapsed_window);
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ if(!_slide_vector_sum_col)
+ {
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ }
+
+ Iterator vector_sum_col(_vector_sum_col, win_vector_sum_col);
+ Iterator mm_result(_mm_result, window);
+
+ execute_window_loop(window, [&](const Coordinates & id)
+ {
+ // Compute the leftover term due to a_offset.
+ int32x4x4_t a_offset_term_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(vector_sum_col.ptr()) + 12)
+ }
+ };
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], _a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], _a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], _a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], _a_offset);
+
+ int32x4x4_t in_s32 =
+ {
+ {
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result.ptr()) + 12)
+ }
+ };
+
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]);
+
+ // Store the result with the offset contribution
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 0, in_s32.val[0]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 4, in_s32.val[1]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 8, in_s32.val[2]);
+ vst1q_s32(reinterpret_cast<int32_t *>(mm_result.ptr()) + 12, in_s32.val[3]);
+ },
+ vector_sum_col, mm_result);
+ }
+ else // false, false
+ {
+ // No offset contribution from matrix A and matrix B
+ return;
+ }
+}