aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
diff options
context:
space:
mode:
authorAnthony Barbier <anthony.barbier@arm.com>2017-10-26 15:23:08 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:35:24 +0000
commit7068f9900d136312318ff430aef588b14e0c87ad (patch)
treeb57ca81231860f1d8755e6f18e5be7c959fb60c6 /src/core/GLES_COMPUTE/cs_shaders/gemm.cs
parentd60737592736715dcfd0520535c48190d4ac77d2 (diff)
downloadComputeLibrary-7068f9900d136312318ff430aef588b14e0c87ad.tar.gz
COMPMID-631: Merge branches/gles_compute branch
Last commit: commit b25c5f68042b0c81bf611d59a1bb8535e1c42497 Author: Xinghang Zhou <xinghang.zhou@arm.com> Date: Wed Oct 25 18:48:10 2017 +0800 Synced validation's tolerances of GCSoftmax from cl side Change-Id: Ibe72054205c1c8721845d679a31af7ed0a7c5cf6 Reviewed-on: http://mpd-gerrit.cambridge.arm.com/93283 Reviewed-by: Anthony Barbier <anthony.barbier@arm.com> Tested-by: Kaizen <jeremy.johnson+kaizengerrit@arm.com>
Diffstat (limited to 'src/core/GLES_COMPUTE/cs_shaders/gemm.cs')
-rwxr-xr-xsrc/core/GLES_COMPUTE/cs_shaders/gemm.cs623
1 files changed, 623 insertions, 0 deletions
diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
new file mode 100755
index 0000000000..3313b88718
--- /dev/null
+++ b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
@@ -0,0 +1,623 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
+#include "helpers.h"
+
+#if defined(DATA_TYPE_FP32)
+#define LOAD8(r, name, offset) \
+ r.x = LOAD4(name, offset); \
+ r.y = LOAD4(name, offset + uint(1))
+
+#define LOAD16(r, name, offset) \
+ r.x = LOAD4(name, offset); \
+ r.y = LOAD4(name, offset + uint(1)); \
+ r.z = LOAD4(name, offset + uint(2)); \
+ r.w = LOAD4(name, offset + uint(3))
+
+#define STORE16(name, offset, r) \
+ STORE4(name, offset, r.x); \
+ STORE4(name, offset + uint(1), r.y); \
+ STORE4(name, offset + uint(2), r.z); \
+ STORE4(name, offset + uint(3), r.w)
+
+#ifdef GEMM_TRANSPOSE1xW
+BUFFER_DECLARATION(src, 1, float, readonly);
+BUFFER_DECLARATION(dst, 2, float, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main(void)
+{
+ /* Compute address for Matrix B - source */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Compute address for Matrix B transposed - destination. X and Y are swapped */
+ uint dst_addr_in_bytes = (gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst.stride_y + dst.offset_first_element_in_bytes) >> 2;
+ vec4 b0;
+ LOAD16(b0, src, offset(src, 0, 0));
+ STORE16(dst, dst_addr_in_bytes, b0);
+}
+#endif /* GEMM_TRANSPOSE1xW */
+
+#ifdef GEMM_INTERLEAVE4x4
+BUFFER_DECLARATION(src, 1, float, readonly);
+BUFFER_DECLARATION(dst, 2, float, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGLES kernel reshapes the input matrix interleaving the values
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main(void)
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int i;
+ int j;
+
+ for(i = 0; i < 4; ++i)
+ {
+ for(j = 0; j < 4; ++j)
+ {
+ float res = LOAD4(src, offset(src, i, j));
+ uint ofset0 = CURRENT_OFFSET(dst) + uint(i * 4 + j);
+ STORE4(dst, ofset0, res);
+ }
+ }
+}
+#endif /* GEMM_INTERLEAVE4x4 */
+
+#ifdef GEMM_ACCUMULATE_BIASES
+BUFFER_DECLARATION(accum, 1, float, restrict);
+BUFFER_DECLARATION(biases, 2, float, readonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(accum);
+ VECTOR_PARAM_DECLARATION(biases);
+};
+
+/** This kernel accumulates each row with the biases vector
+ *
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
+ * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
+ * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
+ * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
+ * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+void main(void)
+{
+ Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
+ Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
+
+ for(int i = 0; i < 16; ++i)
+ {
+ float accum_value = LOAD4(accum, CURRENT_OFFSET(accum) + uint(i));
+ float biases_value = LOAD4(biases, CURRENT_OFFSET(biases) + uint(i));
+ accum_value = biases_value + accum_value;
+
+ // Store result in the accummulate buffer
+ STORE4(accum, CURRENT_OFFSET(accum) + uint(i), accum_value);
+ }
+}
+#endif /* GEMM_ACCUMULATE_BIASES */
+
+#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */
+BUFFER_DECLARATION(src0, 1, float, readonly);
+BUFFER_DECLARATION(src1, 2, float, readonly);
+BUFFER_DECLARATION(dst, 3, float, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Compute address for matrix A and B */
+ src0.current_offset = (src0.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.y) * uint(src0.stride_y))) >> uint(2);
+ src1.current_offset = (src1.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.x) * uint(src1.stride_y))) >> uint(2);
+
+ /* Compute end row address for matrix B */
+ int end_row_mtx_b = int(src1.current_offset) + int(COLS_B);
+
+ /* Reset accumulators */
+ vec4 c00 = vec4(0.0f);
+ vec4 c10 = vec4(0.0f);
+ vec4 c20 = vec4(0.0f);
+ vec4 c30 = vec4(0.0f);
+
+ // FIXME: loop unrolling really needed for GLES?
+ for(; int(src1.current_offset) <= (end_row_mtx_b - 8); src0.current_offset += uint(8), src1.current_offset += uint(8))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ vec4 a0;
+ vec4 b0;
+ LOAD16(a0, src0, src0.current_offset);
+ LOAD16(b0, src1, src1.current_offset);
+
+ c00 += vec4(a0.x) * b0;
+ c10 += vec4(a0.y) * b0;
+ c20 += vec4(a0.z) * b0;
+ c30 += vec4(a0.w) * b0;
+
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ LOAD16(a0, src0, src0.current_offset + uint(4));
+ LOAD16(b0, src1, src1.current_offset + uint(4));
+
+ c00 += vec4(a0.x) * b0;
+ c10 += vec4(a0.y) * b0;
+ c20 += vec4(a0.z) * b0;
+ c30 += vec4(a0.w) * b0;
+ }
+
+ for(; int(src1.current_offset) < end_row_mtx_b; src0.current_offset += uint(4), src1.current_offset += uint(4))
+ {
+ /* Load values from matrix A (interleaved) and matrix B (transposed) */
+ vec4 a0;
+ vec4 b0;
+ LOAD16(a0, src0, src0.current_offset);
+ LOAD16(b0, src1, src1.current_offset);
+
+ c00 += vec4(a0.x) * b0;
+ c10 += vec4(a0.y) * b0;
+ c20 += vec4(a0.z) * b0;
+ c30 += vec4(a0.w) * b0;
+ }
+
+ /* Multiply by the weight of matrix product */
+ c00 = c00 * vec4(ALPHA);
+ c10 = c10 * vec4(ALPHA);
+ c20 = c20 * vec4(ALPHA);
+ c30 = c30 * vec4(ALPHA);
+
+ /* Store 4x4 block */
+ STORE16(dst, offset(dst, 0, 0), c00);
+ STORE16(dst, offset(dst, 0, 1), c10);
+ STORE16(dst, offset(dst, 0, 2), c20);
+ STORE16(dst, offset(dst, 0, 3), c30);
+}
+#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
+
+#ifdef GEMM_MM_FLOATING_POINT
+BUFFER_DECLARATION(src0, 1, float, readonly);
+BUFFER_DECLARATION(src1, 2, float, readonly);
+BUFFER_DECLARATION(dst, 3, float, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
+ /* Compute the address for the vector A and matrix B */
+ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)) >> uint(2);
+ src1.current_offset = (src1_offset_first_element_in_bytes + uint(idx * 4)) >> uint(2);
+
+ /* Compute end row address for matrix A */
+ int end_row_vec_a = int(src0.current_offset) + ((COLS_A * 4) >> 2);
+
+ /* Reset accumulators */
+ vec4 acc0 = vec4(0.0f);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec4 acc1 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec4 acc2 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec4 acc3 = vec4(0.0f);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ for(; int(src0.current_offset) <= (end_row_vec_a - 2); src0.current_offset += uint(2), src1.current_offset += uint((2 * int(src1_stride_y)) >> 2))
+ {
+ vec2 a0;
+ LOAD8(a0, src0, src0.current_offset);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vec2 a1;
+ LOAD8(a1, src0, src0.current_offset + (src0_stride_y >> uint(2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vec2 a2;
+ LOAD8(a2, src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vec2 a3;
+ LOAD8(a3, src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ vec4 b0;
+ vec4 b1;
+ LOAD16(b0, src1, src1.current_offset);
+ LOAD16(b1, src1, src1.current_offset + (src1_stride_y >> uint(2)));
+
+ acc0 += b0 * vec4(a0.x);
+ acc0 += b1 * vec4(a0.y);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b0 * vec4(a1.x);
+ acc1 += b1 * vec4(a1.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b0 * vec4(a2.x);
+ acc2 += b1 * vec4(a2.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b0 * vec4(a3.x);
+ acc3 += b1 * vec4(a3.y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+
+ for(; int(src0.current_offset) < end_row_vec_a; src0.current_offset += uint(1), src1.current_offset += uint(int(src1_stride_y) >> 2))
+ {
+ // Load values from matrix A
+ float a0;
+ a0 = LOAD4(src0, src0.current_offset);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ float a1;
+ a1 = LOAD4(src0, src0.current_offset + ((uint(1) * src0_stride_y) >> uint(2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ float a2;
+ a2 = LOAD4(src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ float a3;
+ a3 = LOAD4(src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ vec4 b0;
+ LOAD16(b0, src1, src1.current_offset);
+
+ acc0 += b0 * vec4(a0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += b0 * vec4(a1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += b0 * vec4(a2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += b0 * vec4(a3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+
+ /* Multiply by the weight of vector-matrix product */
+ acc0 = acc0 * vec4(ALPHA);
+ STORE16(dst, offset(dst, 0, 0), acc0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 = acc1 * vec4(ALPHA);
+ STORE16(dst, offset(dst, 0, 1), acc1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 = acc2 * vec4(ALPHA);
+ STORE16(dst, offset(dst, 0, 2), acc2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 = acc3 * vec4(ALPHA);
+ STORE16(dst, offset(dst, 0, 3), acc3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+}
+#endif /* GEMM_MM_FLOATING_POINT */
+
+#ifdef GEMM_MATRIXADDITION
+BUFFER_DECLARATION(src, 1, float, readonly);
+BUFFER_DECLARATION(dst, 2, float, restrict);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
+ *
+ * @attention The beta's value need to be passed at compile time using BETA
+ *
+ * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main(void)
+{
+ /* Compute source and destination addresses */
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ /* Load values from A x B */
+ vec4 alpha_ab;
+ vec4 c;
+ vec4 out1;
+
+ LOAD16(alpha_ab, dst, dst.current_offset);
+ LOAD16(c, src, src.current_offset);
+
+ /* Computes alpha * axb + beta * c */
+ out1 = alpha_ab + vec4(BETA * c);
+
+ /* Store final result in axb matrix */
+ STORE16(dst, dst.current_offset, out1);
+}
+#endif /* GEMM_MATRIXADDITION */
+#elif defined(DATA_TYPE_FP16)
+precision mediump float;
+#ifdef GEMM_MM_FLOATING_POINT
+BUFFER_DECLARATION(src0, 1, uint, readonly);
+BUFFER_DECLARATION(src1, 2, uvec2, readonly);
+BUFFER_DECLARATION(dst, 3, uvec2, writeonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(src0);
+ IMAGE_PARAM_DECLARATION(src1);
+ IMAGE_PARAM_DECLARATION(dst);
+};
+
+/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
+ *
+ * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+void main()
+{
+ Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0);
+ Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1);
+ Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst);
+
+ int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
+ /* Compute the address for the vector A and matrix B */
+ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
+ src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x;
+
+ /* Compute end row address for matrix A */
+ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1);
+
+ /* Reset accumulators */
+ vec4 acc0 = vec4(0.0f);
+
+ for(; src0.current_offset < (end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y)
+ {
+ uint packed_a0;
+ vec2 a0;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
+ a0 = vec2(unpackHalf2x16(packed_a0));
+
+ uvec2 packed_b0;
+ uvec2 packed_b1;
+ vec4 b0;
+ vec4 b1;
+
+ GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0);
+ GC_LOAD1_2D_OFFSET(packed_b1, src1, 0, 1);
+
+ b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
+ b1 = vec4(unpackHalf2x16(packed_b1.x), unpackHalf2x16(packed_b1.y));
+
+ acc0 += b0 * vec4(a0.x);
+ acc0 += b1 * vec4(a0.y);
+ }
+
+ for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y)
+ {
+ uint packed_a0;
+ vec2 a0;
+
+ GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0);
+ a0 = vec2(unpackHalf2x16(packed_a0));
+
+ uvec2 packed_b0;
+ vec4 b0;
+
+ GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0);
+
+ b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y));
+
+ acc0 += b0 * (a0.x);
+ }
+
+ /* Multiply by the weight of vector-matrix product */
+ acc0 = acc0 * vec4(ALPHA);
+
+ uvec2 packed_d;
+ packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw));
+ GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0);
+}
+#endif /* GEMM_MM_FLOATING_POINT */
+
+#ifdef GEMM_ACCUMULATE_BIASES
+BUFFER_DECLARATION(accum, 1, uvec2, restrict);
+BUFFER_DECLARATION(biases, 2, uvec2, readonly);
+
+layout(std140) uniform shader_params
+{
+ IMAGE_PARAM_DECLARATION(accum);
+ VECTOR_PARAM_DECLARATION(biases);
+};
+
+/** This kernel accumulates each row with the biases vector
+ *
+ * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
+ * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
+ * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
+ * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
+ * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
+ * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+void main(void)
+{
+ Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum);
+ Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases);
+
+ vec4 u[2];
+ uvec2 packed_s[2];
+ GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0);
+ GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0);
+ u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y));
+ u[1] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y));
+
+ vec4 tmp;
+ tmp = u[0] + u[1];
+ packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw));
+ GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0);
+}
+#endif /* GEMM_ACCUMULATE_BIASES */
+#else /* DATA_TYPE_F32 */
+#error Data type not supported
+#endif /* DATA_TYPE_F32 */