aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
diff options
context:
space:
mode:
authorStephen Li <stephen.li@arm.com>2018-01-04 14:13:22 +0800
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:43:42 +0000
commite855c237a5b61c4ed5a5ab79dd4af27385cf72f5 (patch)
treeeb81a77c6c588c8d25937c27249552524791b4d0 /src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
parent81ce008ebbc6dc19b22034794d12124b58ee334b (diff)
downloadComputeLibrary-e855c237a5b61c4ed5a5ab79dd4af27385cf72f5.tar.gz
APPBROWSER-377: GCConvoutionLayer support for FP16
Change-Id: I801b5e393a16a9f92c062826e6fcfd5982ca7bb3 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/116584 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs')
-rw-r--r--[-rwxr-xr-x]src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs518
1 files changed, 472 insertions, 46 deletions
diff --git a/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs b/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
index 4bfac282e2..2648db08b3 100755..100644
--- a/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
+++ b/src/core/GLES_COMPUTE/cs_shaders/convolution_layer.cs
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017, 2018 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -30,32 +30,163 @@ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z =
precision mediump float;
#endif // DATA_TYPE_FP16
+#ifdef RESHAPE_TO_COLUMNS
+
+/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
+ *
+ * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32"
+ * @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
+ * @param[in] src_attrs The attributes of the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_attrs The attributes of the destination tensor
+ * @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
+ * @param[in] biases_attrs The attributes of the biases tensor
+ * @param[in] width The width of the input tensor
+ * @param[in] height The height of the input tensor
+ * @param[in] depth The depth of the input tensor
+ * @param[in] total_filters Total number of filters. 4th dimension of the weights matrix
+ */
+
+SHADER_PARAMS_DECLARATION
+{
+ Tensor3DAttributes src_attrs;
+ ImageAttributes dst_attrs;
+#ifdef HAS_BIAS
+ VectorAttributes biases_attrs;
+#endif /* HAS_BIAS */
+ uint width;
+ uint height;
+ uint depth;
+ uint total_filters;
+};
+
+#if defined(DATA_TYPE_FP16)
+
+TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
+TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly);
+#ifdef HAS_BIAS
+TENSOR_DECLARATION(3, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly);
+#endif /* BIAS */
+
+void main()
+{
+ Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
+#ifdef HAS_BIAS
+ VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift);
+#endif /* BIAS */
+
+ bool is_last_thread = (((int(gl_GlobalInvocationID.x)) == (int(gl_NumWorkGroups.x * gl_WorkGroupSize.x) - 1)) && ((int(gl_GlobalInvocationID.y)) == (int(gl_NumWorkGroups.y * gl_WorkGroupSize.y) - 1))
+ && ((int(gl_GlobalInvocationID.z)) == (int(gl_NumWorkGroups.z * gl_WorkGroupSize.z) - 1)));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, ((uint(gl_GlobalInvocationID.x) * uint(dst_attrs.stride_y)) + (uint(gl_GlobalInvocationID.y) * uint(width) * uint(dst_attrs.stride_y)) + (uint(
+ gl_GlobalInvocationID.z)
+ * uint(width) * uint(height) * uint(dst_attrs.stride_y))));
+ // Linearize convolution elements
+ if(is_last_thread)
+ {
+ for(uint i = 0u; i < uint(total_filters); i = i + 2u)
+ {
+ vec2 s0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
+ vec2 s;
+ if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
+ {
+ s.x = s0.x;
+ }
+ else
+ {
+ s.x = s0.y;
+ }
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
+
+ vec2 s1 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
+ if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
+ {
+ s.y = s1.x;
+ }
+ else
+ {
+ s.y = s1.y;
+ }
+ STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
+#ifdef HAS_BIAS
+ vec2 b = LOAD_UNPACK2_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
+ STORE_PACK2_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_y), b);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(biases_iter, (2u * biases_attrs.stride_x));
+#endif /* HAS_BIAS */
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (2u * dst_attrs.stride_x));
+ }
+ }
+ else
+ {
+ for(uint i = 0u; i < uint(total_filters); i = i + 2u)
+ {
+ vec2 s0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
+ vec2 s;
+ if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
+ {
+ s.x = s0.x;
+ }
+ else
+ {
+ s.x = s0.y;
+ }
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
+
+ vec2 s1 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter);
+ if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0)
+ {
+ s.y = s1.x;
+ }
+ else
+ {
+ s.y = s1.y;
+ }
+ STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z));
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (2u * dst_attrs.stride_x));
+ }
+ }
+}
+
+#endif /* DATA_TYPE_FP16 */
+#endif // RESHAPE_TO_COLUMNS
+
#ifdef IM2COL_GENERIC
+
/** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
+ * @note PAD_LEFT/PAD_RIGHT/PAD_TOP/PAD_BOTTOM must be passed for padding info, e.g. "#define PAD_LEFT xxx"
+ * @note KERNEL_WIDTH/KERNEL_HEIGHT/KERNEL_DEPTH must be passed for kernel dimension, e.g. "#define KERNEL_WIDTH xxx"
+ * @note STRIDE_X/STRIDE_Y must be passed for stride info, e.g. "#define STRIDE_X xxx"
+ * @note CONVOLVED_WIDTH/CONVOLVED_HEIGHT must be passed for convolved dimension, e.g. "#define CONVOLVED_WIDTH xxx"
+ * @note SRC_WIDTH/SRC_HEIGHT must be passed for input dimension, e.g. "#define SRC_WIDTH xxx"
* @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row.
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_attrs The attributes of the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_attrs The attributes of the destination tensor
- * @param[in] filter_depth The depth of the used filter
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
*/
+
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
ImageAttributes dst_attrs;
- uint filter_depth;
uint src_stride_w;
uint dst_stride_w;
};
#ifdef DATA_TYPE_FP32
+
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
+
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
@@ -63,64 +194,315 @@ void main(void)
uint xc = gl_GlobalInvocationID.x; // x coordinate in the convolved tensor
uint yc = gl_GlobalInvocationID.y; // y coordinate in the convolved tensor
- uint ch = gl_GlobalInvocationID.z % filter_depth; // input feature map
- uint batch = gl_GlobalInvocationID.z / filter_depth; // the batch
+ uint ch = gl_GlobalInvocationID.z % KERNEL_DEPTH; // input feature map
+ uint batch = gl_GlobalInvocationID.z / KERNEL_DEPTH; // the batch
// Calculate input indeces
- uint xi = xc * uint(STRIDE_X) - uint(PAD_X);
- uint yi = yc * uint(STRIDE_Y) - uint(PAD_Y);
- uint input_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (ch * src_attrs.stride_z) + (batch * src_stride_w));
+ uint xi = xc * uint(STRIDE_X) - uint(PAD_LEFT);
+ uint yi = yc * uint(STRIDE_Y) - uint(PAD_TOP);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (ch * src_attrs.stride_z) + (batch * src_stride_w));
// Calculate output indeces
- uint xo = ch * uint(KERNEL_WIDTH) * uint(KERNEL_HEIGHT);
- uint yo = xc + yc * uint(CONVOLVED_WIDTH); // Index of the convolution
- uint output_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(dst_iter, (yo * dst_attrs.stride_y) + (batch * dst_stride_w) + xo);
+ uint xo = ch * uint(KERNEL_WIDTH) * uint(KERNEL_HEIGHT);
+ uint yo = xc + yc * uint(CONVOLVED_WIDTH); // Index of the convolution
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (yo * dst_attrs.stride_y) + (batch * dst_stride_w) + xo);
+
+ uint src_pos = 0u;
// Linearize convolution elements
for(uint y = yi, y_e = yi + uint(KERNEL_HEIGHT); y < y_e; ++y)
{
- for(uint x = xi, x_e = xi + uint(KERNEL_WIDTH); x < x_e; ++x)
+ for(uint x = xi, x_e = xi + uint(KERNEL_WIDTH); x < x_e; ++x, TENSOR_OFFSET_ADVANCE(dst_iter, 1u))
{
-#if PAD_X == 0 && PAD_Y == 0
- output_offset = input_offset + ((x * src_attrs.stride_x + y * src_attrs.stride_y) >> uint(2));
- STORE(dst_ptr, output_offset, LOAD(src_ptr, input_offset));
-
-#else // PAD_X == 0 && PAD_Y == 0
+#if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
+ src_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.stride_x + y * src_attrs.stride_y);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, src_pos));
+#else /* PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 */
if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
{
- STORE(dst_ptr, output_offset, 0.0f);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, 0.0f);
}
else
{
- output_offset = input_offset + (x * srcs_attrs.stride_x + y * src_attrs.stride_y) >> uint(2));
- STORE(dst_ptr, output_offset, LOAD(src_ptr, input_offset));
+ src_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.stride_x + y * src_attrs.stride_y);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, src_pos));
}
-#endif // PAD_X == 0 && PAD_Y == 0
+#endif /* PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 */
}
}
#ifdef HAS_BIAS
if(ch == (uint(KERNEL_DEPTH) - 1))
{
- STORE(dst_ptr, output_offset, 1.0f);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, 1.0f);
}
-#endif // HAS_BIAS
+#endif /* HAS_BIAS */
}
#elif defined(DATA_TYPE_FP16)
+
TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly);
+#ifdef KERNEL_1x1
+
+void main(void)
+{
+ Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
+
+ uint xc = gl_GlobalInvocationID.x;
+ uint yc = gl_GlobalInvocationID.y;
+ uint zc = gl_GlobalInvocationID.z;
+ uint ch = zc % uint(KERNEL_DEPTH); // input feature map
+ uint batch = zc / uint(KERNEL_DEPTH); // the batch
+
+ // Calculate input indeces
+ uint xi = xc;
+ uint yi = yc;
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, batch * src_stride_w + ch * src_attrs.step_z);
+
+ // Calculate output indeces
+ uint dst_element_count = dst_attrs.step_x / dst_attrs.stride_x;
+ uint xo = ch * dst_element_count;
+ uint yo = xc + yc * uint(CONVOLVED_WIDTH);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, batch * dst_stride_w + yo * dst_attrs.stride_y + xo);
+
+ bool x_start_even = ((xc % 2u) == 0u);
+ bool z_depth_even = ((uint(KERNEL_DEPTH) % 2u) == 0u);
+ uint input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.stride_x + yi * src_attrs.stride_y);
+ uint tmp_left = 0u;
+ uint tmp_right = 0u;
+
+ if(ch % 2u != 0u)
+ {
+ return;
+ }
+
+ if(z_depth_even || (!z_depth_even && (int(ch) < (KERNEL_DEPTH - 1))))
+ {
+ tmp_left = LOAD(src_ptr, input_pos);
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.stride_x + yi * src_attrs.stride_y + src_attrs.stride_z);
+ tmp_right = LOAD(src_ptr, input_pos);
+ if(x_start_even)
+ {
+ tmp_right = (tmp_left & 0xffffu) + (tmp_right << 16u);
+ }
+ else
+ {
+ tmp_right = (tmp_left >> 16u) + (tmp_right & 0xffff0000u);
+ }
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
+
+#ifdef HAS_BIAS
+ if(ch == (uint(KERNEL_DEPTH) - 2u))
+ {
+ mediump vec2 bias_vec = vec2(1.f, 0.f);
+ uint bias_u = packHalf2x16(bias_vec);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, bias_u);
+ }
+#endif /* HAS_BIAS */
+ }
+ else
+ {
+ tmp_left = LOAD(src_ptr, input_pos);
+ if(x_start_even)
+ {
+ tmp_right = (tmp_left & 0xffffu);
+ }
+ else
+ {
+ tmp_right = (tmp_left >> 16u);
+ }
+
+#ifdef HAS_BIAS
+ mediump vec2 bias_vec = vec2(0.f, 1.f);
+ uint bias_u = packHalf2x16(bias_vec);
+ tmp_right += (bias_u & 0xffff0000u);
+#endif /* HAS_BIAS */
+
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ }
+}
+
+#else /* KERNEL_1x1 */
+
void main(void)
{
+ uint xc = gl_GlobalInvocationID.x;
+ uint yc = gl_GlobalInvocationID.y;
+ uint zc = gl_GlobalInvocationID.z;
+ uint ch = zc % uint(KERNEL_DEPTH); // input feature map
+ uint batch = zc / uint(KERNEL_DEPTH); // the batch
+
+ Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
+ Tensor3DIterator src_iter_b = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
+ ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
+
+ // Calculate input indeces
+ uint src_element_count = src_attrs.step_x / src_attrs.stride_x;
+ uint xi = (xc * uint(STRIDE_X)) / src_element_count;
+ uint yi = yc * uint(STRIDE_Y);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, batch * src_stride_w + ch * src_attrs.stride_z);
+
+ // Calculate output indeces
+ uint dst_element_count = dst_attrs.step_x / dst_attrs.stride_x;
+ uint xo = (ch * uint(KERNEL_WIDTH) * uint(KERNEL_HEIGHT)) * dst_element_count;
+ uint yo = xc + yc * uint(CONVOLVED_WIDTH);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, batch * dst_stride_w + yo * dst_attrs.stride_y + xo);
+
+ bool x_start_even = ((xc * uint(STRIDE_X)) % 2u == 0u);
+ bool z_start_even = ((ch % 2u) == 0u);
+ uint input_pos = 0u;
+ uint tmp = 0u;
+ uint tmp_left = 0u;
+ uint tmp_right = 0u;
+
+ // Linearize convolution elements
+ for(uint y = yi, y_e = yi + uint(KERNEL_HEIGHT); y < y_e; ++y)
+ {
+ uint xstart = 0u;
+ uint xend = 0u;
+
+ // even col, even row
+ if(x_start_even)
+ {
+ if(((y - yi + ch) % 2u) == 0u)
+ {
+ for(uint x = xi, x_e = xi + (uint(KERNEL_WIDTH) / 2u); x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
+ {
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, input_pos));
+ }
+ }
+ else
+ {
+ // 1st pair
+ if(!z_start_even && (y == yi))
+ {
+ // cross 2d feature map
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter_b, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (yi + uint(KERNEL_HEIGHT) - 1u) * src_attrs.stride_y + batch * src_stride_w +
+ (ch - 1u) * src_attrs.stride_z);
+ }
+ else
+ {
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter,
+ (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (y - 1u) * src_attrs.stride_y);
+ }
+ tmp_right = LOAD(src_ptr, input_pos);
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_left = LOAD(src_ptr, input_pos);
+ tmp_right = (tmp_right & 0xffffu) + (tmp_left << 16u);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
+
+ // remaining
+ for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u) + 1u; x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
+ {
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (x - 1u) * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_left = LOAD(src_ptr, input_pos);
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_right = LOAD(src_ptr, input_pos);
+ tmp_right = (tmp_left >> 16u) + (tmp_right << 16u);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ }
+ }
+ }
+ else
+ {
+ if((((y - yi) % 2u) == 0u && !z_start_even) || (((y - yi) % 2u) != 0u && z_start_even))
+ {
+ // 1st pair
+ if(y == yi)
+ {
+ // cross 2d feature map
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter_b, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (yi + uint(KERNEL_HEIGHT) - 1u) * src_attrs.stride_y + batch * src_stride_w +
+ (ch - 1u) * src_attrs.stride_z);
+ }
+ else
+ {
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter,
+ (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (y - 1u) * src_attrs.stride_y);
+ }
+
+ tmp_right = LOAD(src_ptr, input_pos);
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_left = LOAD(src_ptr, input_pos);
+ tmp_right = (tmp_right >> 16u) + (tmp_left & 0xffff0000u);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
+
+ // remaining
+ for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u) + 1u; x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
+ {
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, input_pos));
+ }
+ }
+ else if((((y - yi) % 2u) == 0u && z_start_even) || (((y - yi) % 2u) != 0u && !z_start_even))
+ {
+ // 1st pair
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_right = LOAD(src_ptr, input_pos);
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (xi + 1u) * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_left = LOAD(src_ptr, input_pos);
+ tmp_right = (tmp_right >> 16u) + (tmp_left << 16u);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x);
+
+ // remaining
+ for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u); x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x))
+ {
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_right = LOAD(src_ptr, input_pos);
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (x + 1u) * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp_left = LOAD(src_ptr, input_pos);
+ tmp_right = (tmp_right >> 16u) + (tmp_left << 16u);
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right);
+ }
+ }
+ }
+ }
+
+ // NOTE: must handle last element manually instead of in loops
+ // to avoid write conflict across 2d boundary
+ if(ch == uint(KERNEL_DEPTH) - 1u)
+ {
+ uint x = xi + (uint(KERNEL_WIDTH) / 2u);
+ uint y = yi + uint(KERNEL_HEIGHT) - 1u;
+ input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y);
+ tmp = LOAD(src_ptr, input_pos);
+ if(!x_start_even)
+ {
+ tmp = (tmp >> 16u) + (tmp << 16u);
+ }
+
+#ifdef HAS_BIAS
+ mediump vec2 bias_vec = vec2(1.f, 1.f);
+ uint bias_u = packHalf2x16(bias_vec);
+ if(z_start_even)
+ {
+ tmp = (tmp & 0xffffu) + (bias_u & 0xffff0000u);
+ }
+ else
+ {
+ tmp = (bias_u & 0xffffu);
+ }
+#endif /* HAS_BIAS */
+
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp);
+ }
}
-#else /* DATA_TYPE_FP32 */
+#endif /* KERNEL_1x1 */
+#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
#endif /* IM2COL_GENERIC */
#ifdef IM2COL_REDUCED
+
/** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP16"
@@ -133,6 +515,7 @@ void main(void)
* @param[in] width The width of the input tensor
* @param[in] height The height of the input tensor
*/
+
SHADER_PARAMS_DECLARATION
{
Tensor3DAttributes src_attrs;
@@ -142,6 +525,7 @@ SHADER_PARAMS_DECLARATION
};
#ifdef DATA_TYPE_FP32
+
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
@@ -181,6 +565,7 @@ TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, restrict);
#endif /* IM2COL_REDUCED_8X */
#if defined(IM2COL_REDUCED_GENERIC)
+
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
@@ -207,20 +592,20 @@ void main(void)
else
{
// special op
- uint tmpleft = uint(0);
- uint tmpright = uint(0);
- tmpright = LOAD_CURRENT_ITEM(src_ptr, src_iter); //right half
+ uint tmp_left = uint(0);
+ uint tmp_right = uint(0);
+ tmp_right = LOAD_CURRENT_ITEM(src_ptr, src_iter); //right half
if(pos.x == uint(0))
{
- tmpleft = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, int(width), int(pos.y) - 1, int(pos.z))); //left half
- tmpright = (tmpleft & uint(0xffff)) + (tmpright << uint(16));
+ tmp_left = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, int(width), int(pos.y) - 1, int(pos.z))); //left half
+ tmp_right = (tmp_left & uint(0xffff)) + (tmp_right << uint(16));
}
else
{
- tmpleft = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, (int(pos.x) - 1) * int(element_count), int(pos.y), int(pos.z)));
- tmpright = ((tmpleft >> uint(16)) + (tmpright << uint(16)));
+ tmp_left = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, (int(pos.x) - 1) * int(element_count), int(pos.y), int(pos.z)));
+ tmp_right = ((tmp_left >> uint(16)) + (tmp_right << uint(16)));
}
- STORE(dst_ptr, tmp_out_offset, tmpright);
+ STORE(dst_ptr, tmp_out_offset, tmp_right);
}
}
else
@@ -243,6 +628,7 @@ void main(void)
}
#else /* IM2COL_REDUCED_GENERIC */
+
void main(void)
{
Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift);
@@ -263,46 +649,86 @@ void main(void)
STORE(dst_ptr, tmp_out_offset, tmp);
#endif /* IM2COL_REDUCED_8X */
}
-#endif /* IM2COL_REDUCED_GENERIC */
-#else /* DATA_TYPE_FP32 */
+
+#endif /* IM2COL_REDUCED_GENERIC */
+#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */
#endif /* IM2COL_REDUCED */
-#ifdef COL2IM
+#ifdef WIDTH_OUTPUT
+
/** This kernel performs a reshaping of the output of the convolution layer.
*
* @note The data type must be passed at compile time using "#define DATA_TYPE_FP32"
*
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
- * @param[in] src_attrs The attributes of the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_attrs The attributes of the destination tensor
- * @param[in] width The width of output convolved dimensions
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
+ * @param[in] src_attrs The attributes of the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_attrs The attributes of the destination tensor
+ * @param[in] dst_depth The length of the destination tensor in Z dimension
+ * @param[in] dst_strideZ The actual stride of the destination tensor in Z dimension
*/
+
SHADER_PARAMS_DECLARATION
{
- ImageAttributes src_attrs;
+ Tensor3DAttributes src_attrs;
Tensor3DAttributes dst_attrs;
- uint width;
+ uint dst_depth;
+ uint dst_strideZ;
};
#ifdef DATA_TYPE_FP32
+
TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
+
void main(void)
{
- ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
+ Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
- uvec2 pos = uvec2(gl_GlobalInvocationID.xy);
- uint tmp_out_offset = TENSOR3D_OFFSET(dst_iter, pos.y % width, pos.y / width, pos.x);
+ uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
+ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, pos.x * src_attrs.step_y + pos.y * WIDTH_OUTPUT * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * (src_attrs.stride_z));
- STORE(dst_ptr, tmp_out_offset, LOAD_CURRENT_ITEM(src_ptr, src_iter));
+ STORE_CURRENT_ITEM(dst_ptr, dst_iter,
+ LOAD_CURRENT_ITEM(src_ptr, src_iter));
}
#elif defined(DATA_TYPE_FP16)
+TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly);
+TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, restrict);
+
+void main(void)
+{
+ Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift);
+ Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift);
+
+ uvec3 pos = uvec3(gl_GlobalInvocationID.xyz);
+
+ if((pos.z % dst_depth) % 2u == 0u)
+ {
+ uint common_offset_in_bytes = pos.x * src_attrs.step_y * 2u + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ;
+ uint tmp1_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes);
+ uint tmp2_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes + src_attrs.step_y);
+ vec2 tmp1 = LOAD_UNPACK2_HALF(src_ptr, tmp1_in_offset);
+ vec2 tmp2 = LOAD_UNPACK2_HALF(src_ptr, tmp2_in_offset);
+ vec2 result = vec2(tmp1.x, tmp2.x);
+ STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
+ }
+ else
+ {
+ uint common_offset_in_bytes = pos.x * src_attrs.step_y * 2u + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ - 2u;
+ uint tmp1_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes);
+ uint tmp2_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes + src_attrs.step_y);
+ vec2 tmp1 = LOAD_UNPACK2_HALF(src_ptr, tmp1_in_offset);
+ vec2 tmp2 = LOAD_UNPACK2_HALF(src_ptr, tmp2_in_offset);
+ vec2 result = vec2(tmp1.y, tmp2.y);
+ STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result);
+ }
+}
+
#else /* DATA_TYPE_FP32 */
#error Data type not supported
#endif /* DATA_TYPE_FP32 */