aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels
diff options
context:
space:
mode:
authorGunes Bayir <gunes.bayir@arm.com>2023-04-13 18:22:58 +0100
committerGunes Bayir <gunes.bayir@arm.com>2023-04-17 15:54:44 +0000
commit9d0c4deb760efc2ca07e5e0b8218995201ad8a1f (patch)
tree8f64b754d05768e2f69cfae387137140a6bb22b5 /src/core/CL/cl_kernels
parent99145f787e9e99b45522f16d861c8527583f2b4e (diff)
downloadComputeLibrary-9d0c4deb760efc2ca07e5e0b8218995201ad8a1f.tar.gz
Add quantized CL MatMul kernels for Lhs NT/T, Rhs NT
Implement OpenCL kernels for batched Matrix Multiplication for the quantized data types QASYMM8 and QASYMM8_SIGNED. Quantized MatMul is supported with the following MatMul attributes: * adj_x = false, adj_y = false * adj_x = true, adj_y = false We consider native format kernels only. In other words, no reshaping of the operand matrices is done. Resolves: COMPMID-5921, COMPMID-5922 Change-Id: I99e0f68054a2bd635c60ec2641acc2e7ff398473 Signed-off-by: Omar Al Khatib <omar.alkhatib@arm.com> Signed-off-by: Gunes Bayir <gunes.bayir@arm.com> Signed-off-by: Jakub Sujak <jakub.sujak@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/9435 Reviewed-by: SiCong Li <sicong.li@arm.com> Reviewed-by: Viet-Hoa Do <viet-hoa.do@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Benchmark: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels')
-rw-r--r--src/core/CL/cl_kernels/common/mat_mul_quantized.cl387
-rw-r--r--src/core/CL/cl_kernels/tile_helpers.h99
2 files changed, 486 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/common/mat_mul_quantized.cl b/src/core/CL/cl_kernels/common/mat_mul_quantized.cl
new file mode 100644
index 0000000000..c250b4b988
--- /dev/null
+++ b/src/core/CL/cl_kernels/common/mat_mul_quantized.cl
@@ -0,0 +1,387 @@
+/*
+ * Copyright (c) 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "tile_helpers.h"
+
+#if defined(MAT_MUL_NATIVE_QUANTIZED_NT_NT)
+/** This OpenCL kernel performs the batch matrix multiplication (BatchMatMul): LHS non-transposed, RHS non-transposed - buffer only
+ *
+ * @note the "batch" here expresses the number of matrix multiplications to run in parallel. However, it
+ * should NOT be confused with the batch size of the model. For NHWC the "batch" is the "H" dimension
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=uchar)
+ * @note The block's dimensions used for the LHS and RHS matrices (M0, N0 and K0) must be passed at compile time using -DN0, -DM0 and -DK0 (e.g. -DN0=8, -DM0=4, -DK0=4).
+ * @note The number of leftover outputs rows/columns must be passed using -DPARTIAL_STORE_N0 and -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_N0=2, -DPARTIAL_STORE_M0=3)
+ * @note The dimension K must be passed at compile time using -DK (e.g. -DK=6)
+ * @note The kernel name in uppercase must be passed at compile time (e.g. -DMAT_MUL_NATIVE_QUANTIZED_NT_NT)
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 > 0
+ * - N0 = 1, 2, 3, 4, 8, 16
+ * - K0 = 1, 2, 3, 4, 8, 16
+ * @note Values > 8 for M0 are not expected to be efficient
+ *
+ * @param[in] lhs_ptr Pointer to the lhs matrix. Supported data types: QASYMM8_SIGNED/QASYMM8
+ * @param[in] lhs_stride_y Stride of the lhs matrix in Y (2nd) dimension (in bytes)
+ * @param[in] lhs_stride_z Stride of the lhs tensor in Z (3rd) dimension (in bytes)
+ * @param[in] lhs_w The width of the lhs tensor
+ * @param[in] lhs_h The height of the lhs tensor
+ * @param[in] lhs_n Number of the matrices (buffers) in the batch
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the lhs matrix
+ * @param[in] rhs_ptr Pointer to the rhs matrix. Supported data types: same as @p lhs_ptr
+ * @param[in] rhs_stride_y Stride of the rhs matrix in Y (2nd) dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the rhs tensor in Z (3rd) dimension (in bytes)
+ * @param[in] rhs_w The width of the rhs tensor
+ * @param[in] rhs_h The height of the rhs tensor
+ * @param[in] rhs_n Number of the matrices (buffers) in the batch
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the rhs matrix
+ * @param[out] dst_ptr Pointer to the dst matrix. Supported data types: same as @p lhs_ptr
+ * @param[in] dst_stride_y Stride of the dst matrix in Y (2nd) dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the dst tensor in Z (3rd) dimension (in bytes)
+ * @param[in] dst_w The width of the dst tensor
+ * @param[in] dst_h The height of the dst tensor
+ * @param[in] dst_n Number of the matrices (buffers) in the batch
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the dst matrix
+ */
+__kernel void mat_mul_native_quantized_nt_nt(
+ TENSOR3D_T(lhs, BUFFER),
+ TENSOR3D_T(rhs, BUFFER),
+ TENSOR3D_T(dst, BUFFER))
+{
+ const uint x = GET_SPATIAL_IDX(0, N0, PARTIAL_STORE_N0);
+ const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0);
+ const uint z = GET_SPATIAL_IDX(2, 1, 0);
+
+ // Compute LHS/RHS/DST matrix address
+ lhs_offset_first_element_in_bytes += y * lhs_stride_y + z * lhs_stride_z;
+ rhs_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + z * rhs_stride_z;
+ dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_z;
+
+ // Initialize the accumulators
+ TILE(int, M0, N0, acc);
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ acc[i].v = K * ((int)LHS_OFFSET) * ((int)RHS_OFFSET);
+ })
+
+ TILE(int, 1, N0, b_sum);
+ b_sum[0].v = 0;
+
+ TILE(int, 1, M0, a_sum);
+ a_sum[0].v = 0;
+
+ int k;
+ for(k = 0; k <= K - K0; k += K0)
+ {
+ TILE(DATA_TYPE, M0, K0, a);
+ TILE(DATA_TYPE, N0, K0, b);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ a[i].v = 0;
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, N0,
+ {
+ b[i].v = 0;
+ })
+
+ // Load tile from the lhs tensor
+ T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
+
+ // Load tile from the rhs tensor in a transposed fashion
+ // in order to use T_MMUL_NT_T macro because only this macro
+ // can utilize dot product instruction for Int8/UInt8 by
+ // directly multiplying the rows of Lhs and Rhs tensors.
+ T_LOAD_TRANSPOSED(DATA_TYPE, K0, N0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);
+
+ T_MMUL(DATA_TYPE, DATA_TYPE, int, M0, N0, K0, NT, T, a, b, acc);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, K0,
+ {
+ a_sum[0].s[i] += (int)a[i].s[j];
+ })
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, K0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, N0,
+ {
+ b_sum[0].s[j] += (int)b[j].s[i];
+ })
+ })
+
+ lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE);
+ rhs_offset_first_element_in_bytes += K0 * rhs_stride_y;
+ }
+
+#if((K % K0) != 0)
+ /* Leftover Loop */
+ for(; k < K; ++k)
+ {
+ TILE(DATA_TYPE, M0, 1, a);
+ TILE(DATA_TYPE, N0, 1, b);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ a[i].v = 0;
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, N0,
+ {
+ b[i].v = 0;
+ })
+
+ // Load tile from the lhs tensor
+ T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
+
+ // Load tile from the rhs tensor in a transposed fashion.
+ // See the main loop for more explanation
+ T_LOAD_TRANSPOSED(DATA_TYPE, 1, N0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);
+
+ T_MMUL(DATA_TYPE, DATA_TYPE, int, M0, N0, 1, NT, T, a, b, acc);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, 1,
+ {
+ a_sum[0].s[i] += (int)a[i].s[j];
+ })
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, 1,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, N0,
+ {
+ b_sum[0].s[j] += (int)b[j].s[i];
+ })
+ })
+
+ lhs_offset_first_element_in_bytes += 1 * sizeof(DATA_TYPE);
+ rhs_offset_first_element_in_bytes += 1 * rhs_stride_y;
+ }
+#endif // ((K % K0) != 0)
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, N0,
+ {
+ acc[i].s[j] += ((int)RHS_OFFSET) * a_sum[0].s[i] + ((int)(LHS_OFFSET)) * b_sum[0].s[j];
+ })
+ })
+
+ const bool x_cond = PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0;
+ const bool y_cond = PARTIAL_STORE_M0 != 0 && get_global_id(1) == 0;
+
+ // Quantize the tile
+ TILE(DATA_TYPE, M0, N0, accq);
+ T_QUANTIZE8_ASYMMETRIC(int, DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, acc, accq);
+
+ TILE(int, M0, 1, indirect_buffer);
+ LOOP_UNROLLING(int, _i, 0, 1, M0,
+ {
+ indirect_buffer[_i].v = min(_i, select(M0 - 1, PARTIAL_STORE_M0 - 1, y_cond));
+ });
+
+ T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, accq, indirect_buffer);
+}
+#endif // defined(MAT_MUL_NATIVE_QUANTIZED_NT_NT)
+
+#if defined(MAT_MUL_NATIVE_QUANTIZED_T_NT)
+/** This OpenCL kernel performs the batch matrix multiplication (BatchMatMul): LHS transposed, RHS non-transposed
+ *
+ * @note the "batch" here expresses the number of matrix multiplications to run in parallel. However, it
+ * should NOT be confused with the batch size of the model. For NHWC the "batch" is the "H" dimension
+ * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=uchar)
+ * @note The block's dimensions used for the LHS and RHS matrices (M0, N0 and K0) must be passed at compile time using -DN0, -DM0 and -DK0 (e.g. -DN0=8, -DM0=4, -DK0=4).
+ * @note The number of leftover outputs rows/columns must be passed using -DPARTIAL_STORE_N0 and -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_N0=2, -DPARTIAL_STORE_M0=3)
+ * @note The dimension K must be passed at compile time using -DK (e.g. -DK=6)
+ * @note The kernel name in uppercase must be passed at compile time (e.g. -DMAT_MUL_NATIVE_QUANTIZED_T_NT)
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 > 0
+ * - N0 = 1, 2, 3, 4, 8, 16
+ * - K0 = 1, 2, 3, 4, 8, 16
+ * @note Values > 8 for M0, N0 and K0 are not expected to be efficient
+ *
+ * @param[in] lhs_ptr Pointer to the lhs matrix. Supported data types: QASYMM8/QASYMM8_SIGNED
+ * @param[in] lhs_stride_y Stride of the lhs matrix in Y (2nd) dimension (in bytes)
+ * @param[in] lhs_stride_z Stride of the lhs tensor in Z (3rd) dimension (in bytes)
+ * @param[in] lhs_w The width of the lhs tensor
+ * @param[in] lhs_h The height of the lhs tensor
+ * @param[in] lhs_n Number of the matrices (buffers) in the batch
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the lhs matrix
+ * @param[in] rhs_ptr Pointer to the rhs matrix. Supported data types: same as @p lhs_ptr
+ * @param[in] rhs_stride_y Stride of the rhs matrix in Y (2nd) dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the rhs tensor in Z (3rd) dimension (in bytes)
+ * @param[in] rhs_w The width of the rhs tensor
+ * @param[in] rhs_h The height of the rhs tensor
+ * @param[in] rhs_n Number of the matrices (buffers) in the batch
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the rhs matrix
+ * @param[out] dst_ptr Pointer to the dst matrix. Supported data types: same as @p lhs_ptr
+ * @param[in] dst_stride_y Stride of the dst matrix in Y (2nd) dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the dst tensor in Z (3rd) dimension (in bytes)
+ * @param[in] dst_w The width of the dst tensor
+ * @param[in] dst_h The height of the dst tensor
+ * @param[in] dst_n Number of the matrices (buffers) in the batch
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the dst matrix
+ */
+__kernel void mat_mul_native_quantized_t_nt(
+ TENSOR3D_T(lhs, BUFFER),
+ TENSOR3D_T(rhs, BUFFER),
+ TENSOR3D_T(dst, BUFFER))
+{
+ const uint x = GET_SPATIAL_IDX(0, N0, PARTIAL_STORE_N0);
+ const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0);
+ const uint z = GET_SPATIAL_IDX(2, 1, 0);
+
+ // Compute LHS/RHS/DST matrix address
+ lhs_offset_first_element_in_bytes += y * sizeof(DATA_TYPE) + z * lhs_stride_z;
+ rhs_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + z * rhs_stride_z;
+ dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_z;
+
+ // Initialize the accumulators
+ TILE(int, M0, N0, acc);
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ acc[i].v = K * ((int)LHS_OFFSET) * ((int)RHS_OFFSET);
+ })
+
+ TILE(int, 1, N0, b_sum);
+ b_sum[0].v = 0;
+
+ TILE(int, 1, M0, a_sum);
+ a_sum[0].v = 0;
+
+ int k;
+ for(k = 0; k <= K - K0; k += K0)
+ {
+ TILE(DATA_TYPE, M0, K0, a);
+ TILE(DATA_TYPE, N0, K0, b);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ a[i].v = 0;
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, N0,
+ {
+ b[i].v = 0;
+ })
+
+ // Load tile from the lhs/rhs tensors in a transposed fashion
+ // see mat_mul_native_quantized_nt_nt main loop for more explanation
+ T_LOAD_TRANSPOSED(DATA_TYPE, K0, M0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
+ T_LOAD_TRANSPOSED(DATA_TYPE, K0, N0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);
+
+ T_MMUL(DATA_TYPE, DATA_TYPE, int, M0, N0, K0, NT, T, a, b, acc);
+
+ LOOP_UNROLLING(int, i, 0, 1, K0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, M0,
+ {
+ a_sum[0].s[j] += (int)a[j].s[i];
+ })
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, K0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, N0,
+ {
+ b_sum[0].s[j] += (int)b[j].s[i];
+ })
+ })
+
+ lhs_offset_first_element_in_bytes += K0 * lhs_stride_y;
+ rhs_offset_first_element_in_bytes += K0 * rhs_stride_y;
+ }
+
+#if((K % K0) != 0)
+ /* Leftover Loop */
+ for(; k < K; ++k)
+ {
+ TILE(DATA_TYPE, M0, 1, a);
+ TILE(DATA_TYPE, N0, 1, b);
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ a[i].v = 0;
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, N0,
+ {
+ b[i].v = 0;
+ })
+
+ // Load tile from the lhs/rhs tensors in a transposed fashion
+ // see mat_mul_native_quantized_nt_nt main loop for more explanation
+ T_LOAD_TRANSPOSED(DATA_TYPE, 1, M0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
+ T_LOAD_TRANSPOSED(DATA_TYPE, 1, N0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);
+
+ T_MMUL(DATA_TYPE, DATA_TYPE, int, M0, N0, 1, NT, T, a, b, acc);
+
+ LOOP_UNROLLING(int, i, 0, 1, 1,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, M0,
+ {
+ a_sum[0].s[j] += (int)a[j].s[i];
+ })
+ })
+
+ LOOP_UNROLLING(int, i, 0, 1, 1,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, N0,
+ {
+ b_sum[0].s[j] += (int)b[j].s[i];
+ })
+ })
+
+ lhs_offset_first_element_in_bytes += 1 * lhs_stride_y;
+ rhs_offset_first_element_in_bytes += 1 * rhs_stride_y;
+ }
+#endif // ((K % K0) != 0)
+
+ LOOP_UNROLLING(int, i, 0, 1, M0,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, N0,
+ {
+ acc[i].s[j] += ((int)(RHS_OFFSET)) * a_sum[0].s[i] + ((int)(LHS_OFFSET)) * b_sum[0].s[j];
+ })
+ })
+
+ const bool x_cond = PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0;
+ const bool y_cond = PARTIAL_STORE_M0 != 0 && get_global_id(1) == 0;
+
+ // Quantize the tile
+ TILE(DATA_TYPE, M0, N0, accq);
+ T_QUANTIZE8_ASYMMETRIC(int, DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, acc, accq);
+
+ TILE(int, M0, 1, indirect_buffer);
+ LOOP_UNROLLING(int, _i, 0, 1, M0,
+ {
+ indirect_buffer[_i].v = min(_i, select(M0 - 1, PARTIAL_STORE_M0 - 1, y_cond));
+ });
+
+ T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, accq, indirect_buffer);
+}
+#endif // defined(MAT_MUL_NATIVE_QUANTIZED_T_NT)
diff --git a/src/core/CL/cl_kernels/tile_helpers.h b/src/core/CL/cl_kernels/tile_helpers.h
index 872f4c0b57..c9b5370dea 100644
--- a/src/core/CL/cl_kernels/tile_helpers.h
+++ b/src/core/CL/cl_kernels/tile_helpers.h
@@ -536,6 +536,100 @@
}) \
})
+/** Store a VECTOR variable (e.g. int4, int8, char2 etc.) to a specified column in the TILE object
+ *
+ * @param[in] VECTOR Vector variable to store
+ * @param[in, out] TILE Tile variable to store to
+ * @param[in] WIDTH Width of the vector variable, also height of the tile (e.g. 2 if char2)
+ * @param[in] COLUMN Column index of the tile
+ */
+#define COPY_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, WIDTH, COLUMN) COPY_VECTOR_TO_TILE_COLUMN_STR(VECTOR, TILE, WIDTH, COLUMN)
+#define COPY_VECTOR_TO_TILE_COLUMN_STR(VECTOR, TILE, WIDTH, COLUMN) COPY_##WIDTH##_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN)
+#define COPY_1_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR; \
+ })
+
+#define COPY_2_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ })
+
+#define COPY_3_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ })
+
+#define COPY_4_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ TILE[3].s[COLUMN] = VECTOR.s3; \
+ })
+
+#define COPY_8_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ TILE[3].s[COLUMN] = VECTOR.s3; \
+ TILE[4].s[COLUMN] = VECTOR.s4; \
+ TILE[5].s[COLUMN] = VECTOR.s5; \
+ TILE[6].s[COLUMN] = VECTOR.s6; \
+ TILE[7].s[COLUMN] = VECTOR.s7; \
+ })
+
+#define COPY_16_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ TILE[3].s[COLUMN] = VECTOR.s3; \
+ TILE[4].s[COLUMN] = VECTOR.s4; \
+ TILE[5].s[COLUMN] = VECTOR.s5; \
+ TILE[6].s[COLUMN] = VECTOR.s6; \
+ TILE[7].s[COLUMN] = VECTOR.s7; \
+ TILE[8].s[COLUMN] = VECTOR.s8; \
+ TILE[9].s[COLUMN] = VECTOR.s9; \
+ TILE[10].s[COLUMN] = VECTOR.sA; \
+ TILE[11].s[COLUMN] = VECTOR.sB; \
+ TILE[12].s[COLUMN] = VECTOR.sC; \
+ TILE[13].s[COLUMN] = VECTOR.sD; \
+ TILE[14].s[COLUMN] = VECTOR.sE; \
+ TILE[15].s[COLUMN] = VECTOR.sF; \
+ })
+
+/** Load SRC_HEIGHT x SRC_WIDTH elements from global memory (tensor), and store them in a SRC_WIDTH x SRC_HEIGHT tile
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] SRC_HEIGHT Number of source rows, or number of columns of the output tile
+ * @param[in] SRC_WIDTH Number of source columns, or number of tile rows
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image).
+ * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] X Starting X position
+ * @param[in] Y Starting Y position
+ * @param[in] YI_MULTIPLIER Parameter used to multiply the internal row increment (_i).
+ * In common cases should be 1 but it becomes useful when we want to load rows which are multiple of STRIDE_Y.
+ * (e.g. loading the weights of convolution layer).
+ * In this case the address calculation is performed as: (Y + _i * Y_MULTIPLIER) * STRIDE_Y
+ * @param[in] STRIDE_Y Stride Y (in bytes) used to load each row.
+ * @param[out] dst Output tile
+ */
+#define T_LOAD_TRANSPOSED(DATA_TYPE, SRC_HEIGHT, SRC_WIDTH, TENSOR_TYPE, TENSOR, X, Y, YI_MULTIPLIER, STRIDE_Y, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _i, 0, 1, SRC_HEIGHT, \
+ { \
+ VEC_DATA_TYPE(DATA_TYPE, SRC_WIDTH) \
+ tmp = V_LOAD(DATA_TYPE, SRC_WIDTH, TENSOR_TYPE, TENSOR, X, ((Y) + _i * (int)(YI_MULTIPLIER)), STRIDE_Y); \
+ COPY_VECTOR_TO_TILE_COLUMN(tmp, dst, SRC_WIDTH, _i); \
+ }) \
+ })
+
/** Load a tile from global memory (tensor) using an indirect Y index tile
*
* @param[in] DATA_TYPE Data type
@@ -1259,6 +1353,11 @@
* @param[in] lhs LHS tile
* @param[in] rhs RHS tile
* @param[in, out] dst DST tile
+ *
+ * @note For Int8/UInt8 multiplications, we only have T_MMUL_NT_T because we need
+ * the multiply the rows of Lhs and Rhs tensors to utilize dot product extension.
+ * Addition of other versions requires dealing with on the fly transposition of
+ * these tile elements and therefore is not favored.
*/
#define T_MMUL(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, LHS_LAYOUT, RHS_LAYOUT, lhs, rhs, dst) T_MMUL_##LHS_LAYOUT##_##RHS_LAYOUT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
#define T_MMUL_NT_T(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)