aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/winograd_input_transform.cl
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2018-07-06 12:59:28 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:54:10 +0000
commitd28b751cf2ba9fcf4ccf294b31bf9d2ec5dfd8bb (patch)
tree111a96797e6b1cd20a2db7088e5fc4cd1903ff02 /src/core/CL/cl_kernels/winograd_input_transform.cl
parent98f085bf87d55bff3866963e8220cfcb4872709f (diff)
downloadComputeLibrary-d28b751cf2ba9fcf4ccf294b31bf9d2ec5dfd8bb.tar.gz
COMPMID-1340 - Implementing Winograd Convolution Layer 1x5/5x1 on OpenCL NHWC
Change-Id: Id5e0795238f77c049df9c109dafc5ef878c1897d Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/139234 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Giorgio Arena <giorgio.arena@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/winograd_input_transform.cl')
-rw-r--r--src/core/CL/cl_kernels/winograd_input_transform.cl822
1 files changed, 492 insertions, 330 deletions
diff --git a/src/core/CL/cl_kernels/winograd_input_transform.cl b/src/core/CL/cl_kernels/winograd_input_transform.cl
index 01cbc84ff3..fcd1b3b9ce 100644
--- a/src/core/CL/cl_kernels/winograd_input_transform.cl
+++ b/src/core/CL/cl_kernels/winograd_input_transform.cl
@@ -23,6 +23,26 @@
*/
#include "helpers.h"
+#define OUTPUT_ROW_4x4_5x5(out, tmp, comm_fact) \
+ ({ \
+ comm_fact.s0 = tmp.s2 - 4.25f * tmp.s4 + tmp.s6; \
+ comm_fact.s1 = tmp.s1 - 4.25f * tmp.s3 + tmp.s5; \
+ comm_fact.s2 = 2.5f * tmp.s3; \
+ comm_fact.s3 = 0.5f * tmp.s1 + 2.f * tmp.s5 - comm_fact.s2; \
+ comm_fact.s4 = 0.25f * tmp.s2 - 1.25f * tmp.s4 + tmp.s6; \
+ comm_fact.s5 = 4.f * tmp.s2 + tmp.s6 - 5.f * tmp.s4; \
+ comm_fact.s6 = 2.f * tmp.s1 + 0.5f * tmp.s5 - comm_fact.s2; \
+ \
+ out.s0 = tmp.s0 - tmp.s6 + 5.25f * tmp.s4 - 5.25f * tmp.s2; \
+ out.s1 = comm_fact.s0 + comm_fact.s1; \
+ out.s2 = comm_fact.s0 - comm_fact.s1; \
+ out.s3 = comm_fact.s3 + comm_fact.s4; \
+ out.s4 = comm_fact.s4 - comm_fact.s3; \
+ out.s5 = comm_fact.s5 + comm_fact.s6; \
+ out.s6 = comm_fact.s5 - comm_fact.s6; \
+ out.s7 = tmp.s7 - tmp.s1 + 5.25f * tmp.s3 - 5.25f * tmp.s5; \
+ })
+
#if defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H)
/** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3 and the output tile is 2x2/2x1 or 1x2
*
@@ -936,63 +956,16 @@ __kernel void winograd_input_transform_4x4_3x3_stepz1_nhwc(
#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
}
-#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
-/** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 4x1 for data layout NHWC
+/** This OpenCL kernel computes the input transform when the kernel size is 5x5/5x1 or 1x5 and the output tile is 4x4/4x1 or 1x4 when the data layout is NHWC
*
* @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
* @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112)
+ * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
* @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
- * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
- * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
- *
- * @param[in] src_ptr Pointer to the source image. Supported data types: F32
- * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
-__kernel void winograd_input_transform_4x1_3x1_stepz1_nhwc(
- TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- winograd_input_transform_4x4_3x3_stepz1_nhwc(src_ptr,
- src_stride_x,
- src_step_x,
- src_stride_y,
- src_step_y,
- src_stride_z,
- src_step_z,
- src_offset_first_element_in_bytes,
- dst_ptr,
- dst_stride_x,
- dst_step_x,
- dst_stride_y,
- dst_step_y,
- dst_stride_z,
- dst_step_z,
- dst_offset_first_element_in_bytes);
-}
-#endif // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
-
-#if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
-/** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x4 for data layout NHWC
- *
- * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
- * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
- * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
* @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
- * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ * @note If this kernel is used to perform Winograd input transform 5x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ * @note If this kernel is used to perform Winograd input transform 1x5, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source image. Supported data types: F32
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
@@ -1011,50 +984,308 @@ __kernel void winograd_input_transform_4x1_3x1_stepz1_nhwc(
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
-__kernel void winograd_input_transform_1x4_1x3_stepz1_nhwc(
+__kernel void winograd_input_transform_4x4_5x5_stepz1_nhwc(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
- winograd_input_transform_4x4_3x3_stepz1_nhwc(src_ptr,
- src_stride_x,
- src_step_x,
- src_stride_y,
- src_step_y,
- src_stride_z,
- src_step_z,
- src_offset_first_element_in_bytes,
- dst_ptr,
- dst_stride_x,
- dst_step_x,
- dst_stride_y,
- dst_step_y,
- dst_stride_z,
- dst_step_z,
- dst_offset_first_element_in_bytes);
-}
-#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
-#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2)
+ // Compute input address
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(float);
-#define OUTPUT_ROW_4x4_5x5(out, tmp, comm_fact) \
- ({ \
- comm_fact.s0 = tmp.s2 - 4.25f * tmp.s4 + tmp.s6; \
- comm_fact.s1 = tmp.s1 - 4.25f * tmp.s3 + tmp.s5; \
- comm_fact.s2 = 2.5f * tmp.s3; \
- comm_fact.s3 = 0.5f * tmp.s1 + 2.f * tmp.s5 - comm_fact.s2; \
- comm_fact.s4 = 0.25f * tmp.s2 - 1.25f * tmp.s4 + tmp.s6; \
- comm_fact.s5 = 4.f * tmp.s2 + tmp.s6 - 5.f * tmp.s4; \
- comm_fact.s6 = 2.f * tmp.s1 + 0.5f * tmp.s5 - comm_fact.s2; \
- \
- out.s0 = tmp.s0 - tmp.s6 + 5.25f * tmp.s4 - 5.25f * tmp.s2; \
- out.s1 = comm_fact.s0 + comm_fact.s1; \
- out.s2 = comm_fact.s0 - comm_fact.s1; \
- out.s3 = comm_fact.s3 + comm_fact.s4; \
- out.s4 = comm_fact.s4 - comm_fact.s3; \
- out.s5 = comm_fact.s5 + comm_fact.s6; \
- out.s6 = comm_fact.s5 - comm_fact.s6; \
- out.s7 = tmp.s7 - tmp.s1 + 5.25f * tmp.s3 - 5.25f * tmp.s5; \
- })
+#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+ // Clamp coordinates. This clamp is valid for all rows
+ int8 y_coord = (int8)(y * OUTPUT_TILE_W) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_LEFT;
+ y_coord = clamp(y_coord, -1, SRC_DIM_1);
+
+ // Row0
+ // We can skip the border clamping along the z dimension as we cannot read out-of-bound in case of 5x1 kernels
+ int z_coord = z * OUTPUT_TILE_H;
+
+ // Load the input tile
+ float8 in_row0;
+ in_row0.s0 = *(__global float *)(src_addr + y_coord.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s1 = *(__global float *)(src_addr + y_coord.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s2 = *(__global float *)(src_addr + y_coord.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s3 = *(__global float *)(src_addr + y_coord.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s4 = *(__global float *)(src_addr + y_coord.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s5 = *(__global float *)(src_addr + y_coord.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s6 = *(__global float *)(src_addr + y_coord.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s7 = *(__global float *)(src_addr + y_coord.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Calculate common factors for intermediate tensor
+ float8 comm_fact0 = 0.0f;
+ float8 tmp0 = in_row0;
+
+ float8 out0 = (float8)0.0f;
+
+ OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
+
+#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+ // We can skip the border clamping along the y dimension as we cannot read out-of-bound in case of 1x5 kernels
+ int y_coord = y * OUTPUT_TILE_W;
+
+ // Row0
+ // We can skip the border clamping along the z dimension as we cannot read out-of-bound in case of 5x1 kernels
+ int8 z_coord = (int8)(z * OUTPUT_TILE_H) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_TOP;
+ int8 valid_y = select((int8)y_coord, (int8) - 1, z_coord < (int8)0); // If z < 0, set y to -1
+ valid_y = select(valid_y, SRC_DIM_1, z_coord >= (int8)SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); // Clamp z coordinate
+
+ // Load the input tile
+ float8 in_row0;
+ in_row0.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord.s0 * src_stride_z);
+ in_row0.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord.s1 * src_stride_z);
+ in_row0.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord.s2 * src_stride_z);
+ in_row0.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord.s3 * src_stride_z);
+ in_row0.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord.s4 * src_stride_z);
+ in_row0.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord.s5 * src_stride_z);
+ in_row0.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord.s6 * src_stride_z);
+ in_row0.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord.s7 * src_stride_z);
+
+ // Calculate common factors for intermediate tensor
+ float8 comm_fact0 = 0.0f;
+ float8 tmp0 = in_row0;
+
+ float8 out0 = (float8)0.0f;
+
+ OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
+#else // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+ float8 in_row0, in_row1, in_row2, in_row3, in_row4, in_row5, in_row6, in_row7;
+
+ // Clamp coordinates. This clamp is valid for all rows
+ int8 y_coord = (int8)(y * OUTPUT_TILE_W) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_LEFT;
+ y_coord = clamp(y_coord, -1, SRC_DIM_1);
+
+ // Row0
+ int z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 0;
+ int8 valid_y = select(y_coord, -1, (int8)z_coord < 0); // If z < 0, set y to -1
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); // Clamp z coordinate
+
+ // Load the input tile
+ in_row0.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row1
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 1;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row1.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row2
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 2;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row2.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row3
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 3;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row3.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row4
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 4;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row4.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row5
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 5;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row5.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row6
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 6;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row6.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row7
+ z_coord = (z * OUTPUT_TILE_H) - PAD_TOP + 7;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row7.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4;
+ float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3;
+ float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6;
+
+ // Calculate intermediate tensor and reuse common factor vectors
+ const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2;
+ const float8 tmp1 = comm_fact0 + comm_fact1;
+ const float8 tmp2 = comm_fact0 - comm_fact1;
+
+ comm_fact0 = 2.5f * in_row3;
+ comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5;
+
+ const float8 tmp3 = comm_fact1 + comm_fact2;
+ const float8 tmp4 = comm_fact2 - comm_fact1;
+
+ comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5;
+ comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6;
+
+ const float8 tmp5 = comm_fact1 + comm_fact2;
+ const float8 tmp6 = comm_fact2 - comm_fact1;
+ const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5;
+
+ // Calculate output rows (reuse comm_fact0 vector)
+ float8 out0, out1, out2, out3, out4, out5, out6, out7;
+ OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0);
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ // Store values across the channels
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(float) + (y + z * (int)NUM_TILES_X) * dst_stride_y;
+
+ *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0;
+ *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1;
+ *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2;
+ *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3;
+ *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4;
+ *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5;
+ *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6;
+ *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0;
+ *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1;
+ *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2;
+ *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3;
+ *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4;
+ *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5;
+ *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6;
+ *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7;
+ *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0;
+ *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1;
+ *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2;
+ *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3;
+ *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4;
+ *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5;
+ *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6;
+ *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7;
+ *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0;
+ *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1;
+ *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2;
+ *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3;
+ *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4;
+ *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5;
+ *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6;
+ *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7;
+ *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0;
+ *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1;
+ *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2;
+ *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3;
+ *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4;
+ *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5;
+ *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6;
+ *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7;
+ *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0;
+ *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1;
+ *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2;
+ *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3;
+ *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4;
+ *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5;
+ *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6;
+ *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7;
+ *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0;
+ *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1;
+ *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2;
+ *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3;
+ *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4;
+ *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5;
+ *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6;
+ *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7;
+ *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0;
+ *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1;
+ *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2;
+ *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3;
+ *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4;
+ *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5;
+ *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6;
+ *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7;
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+}
+#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2)
/** This OpenCL kernel computes the input transform when the kernel size is 5x5/5x1 or 1x5 and the output tile is 4x4/4x1 or 1x4 when the data layout is NCHW
*
@@ -1424,6 +1655,105 @@ __kernel void winograd_input_transform_4x1_5x1_stepz1_nchw(
dst_offset_first_element_in_bytes);
}
+#if defined(SRC_DIM_1) && defined(SRC_DIM_2)
+/** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 4x1 for data layout NHWC
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112)
+ * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
+ * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x1_3x1_stepz1_nhwc(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_4x4_3x3_stepz1_nhwc(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+
+/** This OpenCL kernel computes the input transform when the kernel size is 5x1 and the output tile is 4x1 for data layout NHWC
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112)
+ * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
+ * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x1_5x1_stepz1_nhwc(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_4x4_5x5_stepz1_nhwc(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2)
#endif // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
#if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
@@ -1614,15 +1944,17 @@ __kernel void winograd_input_transform_1x4_1x5_stepz1_nchw(
dst_step_z,
dst_offset_first_element_in_bytes);
}
-#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
#if defined(SRC_DIM_1) && defined(SRC_DIM_2)
-/** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NHWC
+/** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x4 for data layout NHWC
*
* @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112)
+ * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
* @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
- * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
* @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
+ * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source image. Supported data types: F32
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
@@ -1641,246 +1973,76 @@ __kernel void winograd_input_transform_1x4_1x5_stepz1_nchw(
* @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
-__kernel void winograd_input_transform_4x4_5x5_stepz1_nhwc(
+__kernel void winograd_input_transform_1x4_1x3_stepz1_nhwc(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
- int x = get_global_id(0);
- int y = get_global_id(1);
- int z = get_global_id(2);
-
- // Compute input address
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(float);
-
- // Clamp coordinates. This clamp is valid for all rows
- int8 y_coord = (int8)(y * 4) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_LEFT;
- y_coord = clamp(y_coord, -1, SRC_DIM_1);
-
- // Load 8x8 input tile
- float8 in_row0, in_row1, in_row2, in_row3, in_row4, in_row5, in_row6, in_row7;
-
- // Row0
- int z_coord = (z * 4) - PAD_TOP + 0;
- int8 valid_y = select(y_coord, -1, (int8)z_coord < 0); // If z < 0, set y to -1
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); // Clamp z coordinate
-
- in_row0.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row0.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row1
- z_coord = (z * 4) - PAD_TOP + 1;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row1.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row1.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row2
- z_coord = (z * 4) - PAD_TOP + 2;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row2.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row2.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row3
- z_coord = (z * 4) - PAD_TOP + 3;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row3.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row3.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row4
- z_coord = (z * 4) - PAD_TOP + 4;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row4.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row4.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row5
- z_coord = (z * 4) - PAD_TOP + 5;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row5.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row5.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row6
- z_coord = (z * 4) - PAD_TOP + 6;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row6.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row6.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Row7
- z_coord = (z * 4) - PAD_TOP + 7;
- valid_y = select(y_coord, -1, (int8)z_coord < 0);
- valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
- z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
-
- in_row7.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
- in_row7.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
-
- // Calculate common factors for intermediate tensor
- float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4;
- float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3;
- float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6;
-
- // Calculate intermediate tensor and reuse common factor vectors
- const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2;
- const float8 tmp1 = comm_fact0 + comm_fact1;
- const float8 tmp2 = comm_fact0 - comm_fact1;
-
- comm_fact0 = 2.5f * in_row3;
- comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5;
-
- const float8 tmp3 = comm_fact1 + comm_fact2;
- const float8 tmp4 = comm_fact2 - comm_fact1;
-
- comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5;
- comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6;
-
- const float8 tmp5 = comm_fact1 + comm_fact2;
- const float8 tmp6 = comm_fact2 - comm_fact1;
- const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5;
-
- // Calculate output rows (reuse comm_fact0 vector)
- float8 out0, out1, out2, out3, out4, out5, out6, out7;
-
- OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0);
- OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0);
-
- // Store values across the 64 channels
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(float) + (y + z * (int)NUM_TILES_X) * dst_stride_y;
+ winograd_input_transform_4x4_3x3_stepz1_nhwc(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
- *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0;
- *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1;
- *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2;
- *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3;
- *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4;
- *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5;
- *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6;
- *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7;
- *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0;
- *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1;
- *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2;
- *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3;
- *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4;
- *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5;
- *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6;
- *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7;
- *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0;
- *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1;
- *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2;
- *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3;
- *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4;
- *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5;
- *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6;
- *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7;
- *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0;
- *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1;
- *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2;
- *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3;
- *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4;
- *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5;
- *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6;
- *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7;
- *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0;
- *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1;
- *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2;
- *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3;
- *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4;
- *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5;
- *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6;
- *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7;
- *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0;
- *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1;
- *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2;
- *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3;
- *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4;
- *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5;
- *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6;
- *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7;
- *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0;
- *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1;
- *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2;
- *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3;
- *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4;
- *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5;
- *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6;
- *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7;
- *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0;
- *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1;
- *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2;
- *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3;
- *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4;
- *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5;
- *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6;
- *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7;
+/** This OpenCL kernel computes the input transform when the kernel size is 1x5 and the output tile is 1x4 for data layout NHWC
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112)
+ * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
+ * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_1x4_1x5_stepz1_nhwc(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_4x4_5x5_stepz1_nhwc(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
}
#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2)
+#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
#endif // defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H) \ No newline at end of file