aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/softmax_layer.cl
diff options
context:
space:
mode:
authorChunosov <N.Chunosov@yandex.ru>2017-11-06 22:09:45 +0700
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:35:24 +0000
commitd6afedc775220f17317f1835a4d18b72a54525de (patch)
tree54aed8322a4a286ba376d74bbee61c85a588cc9b /src/core/CL/cl_kernels/softmax_layer.cl
parent6ff12a0f7765f62b8d0fa8554021e1cac2789f19 (diff)
downloadComputeLibrary-d6afedc775220f17317f1835a4d18b72a54525de.tar.gz
COMPMID-661: softmax-fp32 optimisation (#14)
Change-Id: I2007af1ed9dcf68065cf412aa50f73a2025b31a6 Reviewed-on: http://mpd-gerrit.cambridge.arm.com/94605 Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Tested-by: Kaizen <jeremy.johnson+kaizengerrit@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/softmax_layer.cl')
-rw-r--r--src/core/CL/cl_kernels/softmax_layer.cl487
1 files changed, 487 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/softmax_layer.cl b/src/core/CL/cl_kernels/softmax_layer.cl
index 010135eb7b..5bc43ef144 100644
--- a/src/core/CL/cl_kernels/softmax_layer.cl
+++ b/src/core/CL/cl_kernels/softmax_layer.cl
@@ -57,8 +57,36 @@
#endif /* FIXED_POINT_POSITION */
+/* Number of workitems in dimension 0. */
+#if !defined(GRID_SIZE)
+#define GRID_SIZE 1
+#endif /* !defined(GRID_SIZE) */
+
+/* Vector size, i.e. number of vector elements. */
+#if VECTOR_SIZE == 2
+__constant VEC_DATA_TYPE(DATA_TYPE, 2) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 2))(MINVAL);
+__constant uint2 idx__ = (uint2)(0, 1);
+
+#elif VECTOR_SIZE == 4
+__constant VEC_DATA_TYPE(DATA_TYPE, 4) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 4))(MINVAL);
+__constant uint4 idx__ = (uint4)(0, 1, 2, 3);
+
+#elif VECTOR_SIZE == 8
+__constant VEC_DATA_TYPE(DATA_TYPE, 8) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 8))(MINVAL);
+__constant uint8 idx__ = (uint8)(0, 1, 2, 3, 4, 5, 6, 7);
+
+#else /* VECTOR_SIZE DEFAULT */
+#define VECTOR_SIZE 16
+#define LOG_VECTOR_SIZE 4
+__constant VEC_DATA_TYPE(DATA_TYPE, 16) type_min_ = (VEC_DATA_TYPE(DATA_TYPE, 16))(MINVAL);
+__constant uint16 idx__ = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
+
+#endif /* VECTOR_SIZE END */
+
+// TODO (COMPMID-661): Remove if the non-fused kernels are removed
__constant VEC_DATA_TYPE(DATA_TYPE, 16) type_min = (VEC_DATA_TYPE(DATA_TYPE, 16))(MINVAL);
__constant uint16 idx16 = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
+__constant uint4 idx4 = (uint4)(0, 1, 2, 3);
/** Identifies the maximum value across the 1st dimension.
*
@@ -277,3 +305,462 @@ __kernel void softmax_layer_norm(
data = vload16(0, (__global DATA_TYPE *)offset(&src, 0, 0));
vstore16(DIV_OP(data, sum_val, DATA_TYPE, 16), 0, (__global DATA_TYPE *)offset(&dst, 0, 0));
}
+
+/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,
+ * then gets the exponent of each element as sums all elements across each row.
+ *
+ * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
+ * @note Fixed point position must be given as a preprocessor argument using -DFIXED_POINT_POSITION=pos. e.g. DFIXED_POINT_POSITION=4
+ * @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.
+ * @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).
+ *
+ * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: QS8/QS16/F16/F32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] maxo_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr
+ * @param[in] maxo_stride_x Stride of the max values tensor in X dimension (in bytes)
+ * @param[in] maxo_step_x max_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] maxo_stride_y Stride of the max values tensor in Y dimension (in bytes)
+ * @param[in] maxo_step_y max_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] maxo_stride_z Stride of the max values tensor in Z dimension (in bytes)
+ * @param[in] maxo_step_z max_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor
+ * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
+ * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
+ * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
+ * @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
+ * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
+ * @param[in] width Input image width
+ */
+__kernel void softmax_layer_max_shift_exp_sum_serial(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(maxo),
+ TENSOR3D_DECLARATION(dst),
+ TENSOR3D_DECLARATION(sum),
+ uint width)
+{
+ Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
+ Image maxo = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(maxo);
+ Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum);
+
+#ifdef BETA
+ // Initialize beta
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ beta = (VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE))BETA_VAL;
+#endif /* BETA */
+
+ // Initialize local maximum
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ max_val_vec = (VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE))type_min_;
+
+ // Calculate max of row
+ const uint width_ = width >> LOG_VECTOR_SIZE;
+ for(uint i = 0; i < width_; i++)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, i << LOG_VECTOR_SIZE, 0));
+ max_val_vec = MAX_OP(data_max, max_val_vec, DATA_TYPE, VECTOR_SIZE);
+ }
+
+#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, width_ << LOG_VECTOR_SIZE, 0));
+ VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE)
+ widx = CONVERT((EXPAND((CL_VEC_DATA_TYPE(uint, VECTOR_SIZE)))(width_ << LOG_VECTOR_SIZE) + idx__) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE));
+ max_val_vec = MAX_OP(max_val_vec, select(type_min_, data_max, widx), DATA_TYPE, VECTOR_SIZE);
+#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
+
+ // Perform max reduction
+#if VECTOR_SIZE == 16
+ max_val_vec.s01234567 = MAX_OP(max_val_vec.s01234567, max_val_vec.s89ABCDEF, DATA_TYPE, 8);
+#endif /* VECTOR SIZE 16 END */
+#if VECTOR_SIZE >= 8
+ max_val_vec.s0123 = MAX_OP(max_val_vec.s0123, max_val_vec.s4567, DATA_TYPE, 4);
+#endif /* VECTOR SIZE 8 END */
+#if VECTOR_SIZE >= 4
+ max_val_vec.s01 = MAX_OP(max_val_vec.s01, max_val_vec.s23, DATA_TYPE, 2);
+#endif /* VECTOR SIZE 4 END */
+ max_val_vec.s0 = MAX_OP(max_val_vec.s0, max_val_vec.s1, DATA_TYPE, 1);
+ // Store result
+ *((__global DATA_TYPE *)maxo.ptr) = max_val_vec.s0;
+
+ /* Second section */
+
+ // Load max value of 1D logits vector (row)
+ DATA_TYPE max_val = *((__global DATA_TYPE *)offset(&maxo, 0, 0));
+
+ // Set sum vector
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ sum1D = 0;
+
+ // Shift values, exp and sum
+ for(uint i = 0; i < width_; i++)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, i << LOG_VECTOR_SIZE, 0));
+ data = SUB_OP(data, max_val, DATA_TYPE, VECTOR_SIZE);
+#ifdef BETA
+ data = MUL_OP(data, beta, DATA_TYPE, VECTOR_SIZE);
+#endif /* BETA */
+ data = EXP_OP(data, DATA_TYPE, VECTOR_SIZE);
+ VSTORE(VECTOR_SIZE)
+ (data, 0, (__global DATA_TYPE *)offset(&dst, i << LOG_VECTOR_SIZE, 0));
+ sum1D = ADD_OP(sum1D, data, DATA_TYPE, VECTOR_SIZE);
+ }
+
+#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
+ VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
+ data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)offset(&src, width_ << LOG_VECTOR_SIZE, 0));
+ data = SUB_OP(data, max_val, DATA_TYPE, VECTOR_SIZE);
+#ifdef BETA
+ data = MUL_OP(data, beta, DATA_TYPE, VECTOR_SIZE);
+#endif /* BETA */
+ data = EXP_OP(data, DATA_TYPE, VECTOR_SIZE);
+ widx = CONVERT((EXPAND((CL_VEC_DATA_TYPE(uint, VECTOR_SIZE)))(width_ << LOG_VECTOR_SIZE) + idx__) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, VECTOR_SIZE));
+ data = select(0, data, widx);
+ VSTORE(VECTOR_SIZE)
+ (data, 0, (__global DATA_TYPE *)offset(&dst, width_ << LOG_VECTOR_SIZE, 0));
+ sum1D = ADD_OP(sum1D, data, DATA_TYPE, VECTOR_SIZE);
+#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
+
+ // Perform sum reduction
+#if VECTOR_SIZE == 16
+ sum1D.s01234567 = ADD_OP(sum1D.s01234567, sum1D.s89ABCDEF, DATA_TYPE, 8);
+#endif /* VECTOR SIZE 16 END */
+#if VECTOR_SIZE >= 8
+ sum1D.s0123 = ADD_OP(sum1D.s0123, sum1D.s4567, DATA_TYPE, 4);
+#endif /* VECTOR SIZE 8 END */
+#if VECTOR_SIZE >= 4
+ sum1D.s01 = ADD_OP(sum1D.s01, sum1D.s23, DATA_TYPE, 2);
+#endif /* VECTOR SIZE 4 END */
+ sum1D.s0 = ADD_OP(sum1D.s0, sum1D.s1, DATA_TYPE, 1);
+
+ // Calculate and store result
+ *((__global DATA_TYPE *)sum.ptr) = sum1D.s0;
+}
+
+/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,
+ * then gets the exponent of each element as sums all elements across each row.
+ *
+ * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
+ * @note Fixed point position must be given as a preprocessor argument using -DFIXED_POINT_POSITION=pos. e.g. DFIXED_POINT_POSITION=4
+ * @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.
+ * @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).
+ *
+ * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: QS8/QS16/F16/F32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] maxo_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr
+ * @param[in] maxo_stride_x Stride of the max values tensor in X dimension (in bytes)
+ * @param[in] maxo_step_x max_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] maxo_stride_y Stride of the max values tensor in Y dimension (in bytes)
+ * @param[in] maxo_step_y max_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] maxo_stride_z Stride of the max values tensor in Z dimension (in bytes)
+ * @param[in] maxo_step_z max_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor
+ * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
+ * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
+ * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
+ * @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
+ * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
+ * @param[in] width Input image width
+ */
+__kernel void softmax_layer_max_shift_exp_sum_parallel(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(maxo),
+ TENSOR3D_DECLARATION(dst),
+ TENSOR3D_DECLARATION(sum),
+ uint width)
+{
+ Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
+ Image maxo = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(maxo);
+ Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum);
+
+ const uint lid = get_local_id(0);
+
+#ifdef BETA
+ // Initialize beta
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ beta = (VEC_DATA_TYPE(DATA_TYPE, 4))BETA;
+#endif /* BETA */
+
+ // Define one temporary vector per work-item.
+ __local VEC_DATA_TYPE(DATA_TYPE, 4) tmp_local[GRID_SIZE];
+ __local DATA_TYPE max_local;
+
+ __constant VEC_DATA_TYPE(DATA_TYPE, 4) type_min4 = (VEC_DATA_TYPE(DATA_TYPE, 4))(MINVAL);
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ max_val_vec = (VEC_DATA_TYPE(DATA_TYPE, 4))type_min4;
+ // Number of elements per work-item.
+ const uint row = width / GRID_SIZE;
+ // Number of iterations per work-item.
+ const uint width_ = row >> 2;
+ // Calculate max of row
+ uint i = 0;
+ for(; i < width_; i++)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ data_max = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
+ max_val_vec = MAX_OP(data_max, max_val_vec, DATA_TYPE, 4);
+ }
+#ifdef NON_MULTIPLE_OF_GRID_SIZE
+ // How many work-items needed to complete the computation.
+ //TODO: Optimize this calculation (avoid %).
+ int boundary_workitems = (width % (GRID_SIZE * 4)) / 4;
+ if(lid < boundary_workitems)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ data_max = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
+ max_val_vec = MAX_OP(data_max, max_val_vec, DATA_TYPE, 4);
+ }
+#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
+ if(boundary_workitems == 0)
+ {
+ boundary_workitems = GRID_SIZE;
+ i--;
+ }
+ if(lid == (boundary_workitems - 1))
+ {
+ // Handle non multiple of 4
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ data_max = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, (GRID_SIZE * i * 4) + 4, 0));
+ VEC_DATA_TYPE(SELECT_DATA_TYPE, 4)
+ widx = CONVERT(((uint4)(GRID_SIZE * i * 4) + boundary_workitems * 4 + idx4) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 4));
+ max_val_vec = MAX_OP(max_val_vec, select(type_min_, data_max, widx), DATA_TYPE, 4);
+ }
+#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
+#endif /* NON_MULTIPLE_OF_GRID_SIZE */
+ tmp_local[lid] = max_val_vec;
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if(GRID_SIZE >= 256)
+ {
+ if(lid < 128)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 128], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 128)
+ {
+ if(lid < 64)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 64], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 64)
+ {
+ if(lid < 32)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 32], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 32)
+ {
+ if(lid < 16)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 16], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 16)
+ {
+ if(lid < 8)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 8], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 8)
+ {
+ if(lid < 4)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 4], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 4)
+ {
+ if(lid < 2)
+ {
+ tmp_local[lid] = MAX_OP(tmp_local[lid + 2], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(lid == 0)
+ {
+ max_val_vec = MAX_OP(tmp_local[lid + 1], tmp_local[lid], DATA_TYPE, 4);
+ max_val_vec.s01 = MAX_OP(max_val_vec.s01, max_val_vec.s23, DATA_TYPE, 2);
+ max_val_vec.s0 = MAX_OP(max_val_vec.s0, max_val_vec.s1, DATA_TYPE, 1);
+ max_local = max_val_vec.s0;
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ /* Second section */
+
+ // Set sum vector
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ sum1D = 0;
+ DATA_TYPE max_val = max_local;
+
+ // Shift values, exp and sum
+ for(i = 0; i < width_; i++)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ data = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
+ data = SUB_OP(data, max_val, DATA_TYPE, 4);
+#ifdef BETA
+ data = MUL_OP(data, beta, DATA_TYPE, 4);
+#endif /* BETA */
+ data = EXP_OP(data, DATA_TYPE, 4);
+ VSTORE(4)
+ (data, 0, (__global DATA_TYPE *)offset(&dst, i * GRID_SIZE * 4, 0));
+ sum1D = ADD_OP(sum1D, data, DATA_TYPE, 4);
+ }
+#ifdef NON_MULTIPLE_OF_GRID_SIZE
+ //TODO: Optimize the calculation (avoid %).
+ boundary_workitems = (width % (GRID_SIZE * 4)) / 4;
+ if(lid < boundary_workitems)
+ {
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ data = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, i * GRID_SIZE * 4, 0));
+ data = SUB_OP(data, max_val, DATA_TYPE, 4);
+#ifdef BETA
+ data = MUL_OP(data, beta, DATA_TYPE, 4);
+#endif /* BETA */
+ data = EXP_OP(data, DATA_TYPE, 4);
+ VSTORE(4)
+ (data, 0, (__global DATA_TYPE *)offset(&dst, i * GRID_SIZE * 4, 0));
+ sum1D = ADD_OP(sum1D, data, DATA_TYPE, 4);
+ }
+#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
+ if(boundary_workitems == 0)
+ {
+ boundary_workitems = GRID_SIZE;
+ i--;
+ }
+ if(lid == (boundary_workitems - 1))
+ {
+ // Handle non multiple of vector size ((GRID_SIZE * i * 4) + 4, 0); move 4 float positions ahead, *4 is due to the stride
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ data = VLOAD(4)(0, (__global DATA_TYPE *)offset(&src, (GRID_SIZE * i * 4) + 4, 0));
+ data = SUB_OP(data, max_val, DATA_TYPE, 4);
+#ifdef BETA
+ data = MUL_OP(data, beta, DATA_TYPE, 4);
+#endif /* BETA */
+ data = EXP_OP(data, DATA_TYPE, 4);
+ VEC_DATA_TYPE(SELECT_DATA_TYPE, 4)
+ widx = CONVERT(((uint4)(GRID_SIZE * i * 4) + boundary_workitems * 4 + idx4) < width, VEC_DATA_TYPE(SELECT_DATA_TYPE, 4));
+ data = select(0, data, widx);
+ VSTORE(4)
+ (data, 0, (__global DATA_TYPE *)offset(&dst, (GRID_SIZE * i * 4) + 4, 0));
+ sum1D = ADD_OP(sum1D, data, DATA_TYPE, 4);
+ }
+#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
+#endif /* NON_MULTIPLE_OF_GRID_SIZE */
+ tmp_local[lid] = sum1D;
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if(GRID_SIZE >= 256)
+ {
+ if(lid < 128)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 128], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 128)
+ {
+ if(lid < 64)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 64], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 64)
+ {
+ if(lid < 32)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 32], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 32)
+ {
+ if(lid < 16)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 16], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 16)
+ {
+ if(lid < 8)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 8], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 8)
+ {
+ if(lid < 4)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 4], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(GRID_SIZE >= 4)
+ {
+ if(lid < 2)
+ {
+ tmp_local[lid] = ADD_OP(tmp_local[lid + 2], tmp_local[lid], DATA_TYPE, 4);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ if(lid == 0)
+ {
+ sum1D = ADD_OP(tmp_local[lid + 1], tmp_local[lid], DATA_TYPE, 4);
+ // Perform max reduction
+ sum1D.s01 = ADD_OP(sum1D.s01, sum1D.s23, DATA_TYPE, 2);
+ sum1D.s0 = ADD_OP(sum1D.s0, sum1D.s1, DATA_TYPE, 1);
+ *((__global DATA_TYPE *)sum.ptr) = sum1D.s0;
+ }
+}