aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/hog.cl
diff options
context:
space:
mode:
authorAnthony Barbier <anthony.barbier@arm.com>2017-09-04 18:44:23 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-09-17 13:03:09 +0100
commit6ff3b19ee6120edf015fad8caab2991faa3070af (patch)
treea7a6dcd16dfd56d79fa1b56a313caeebcc939b68 /src/core/CL/cl_kernels/hog.cl
downloadComputeLibrary-6ff3b19ee6120edf015fad8caab2991faa3070af.tar.gz
COMPMID-344 Updated doxygen
Change-Id: I32f7b84daa560e460b77216add529c8fa8b327ae
Diffstat (limited to 'src/core/CL/cl_kernels/hog.cl')
-rw-r--r--src/core/CL/cl_kernels/hog.cl455
1 files changed, 455 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/hog.cl b/src/core/CL/cl_kernels/hog.cl
new file mode 100644
index 0000000000..31dd57b767
--- /dev/null
+++ b/src/core/CL/cl_kernels/hog.cl
@@ -0,0 +1,455 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "types.h"
+
+#if(defined CELL_WIDTH && defined CELL_HEIGHT && defined NUM_BINS && defined PHASE_SCALE)
+
+/** This OpenCL kernel computes the HOG orientation binning
+ *
+ * @attention The following variables must be passed at compile time:
+ *
+ * -# -DCELL_WIDTH = Width of the cell
+ * -# -DCELL_HEIGHT = height of the cell
+ * -# -DNUM_BINS = Number of bins for each cell
+ * -# -DPHASE_SCALE = Scale factor used to evaluate the index of the local HOG
+ *
+ * @note Each work-item computes a single cell
+ *
+ * @param[in] mag_ptr Pointer to the source image which stores the magnitude of the gradient for each pixel. Supported data types: S16
+ * @param[in] mag_stride_x Stride of the magnitude image in X dimension (in bytes)
+ * @param[in] mag_step_x mag_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mag_stride_y Stride of the magnitude image in Y dimension (in bytes)
+ * @param[in] mag_step_y mag_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mag_offset_first_element_in_bytes The offset of the first element in the magnitude image
+ * @param[in] phase_ptr Pointer to the source image which stores the phase of the gradient for each pixel. Supported data types: U8
+ * @param[in] phase_stride_x Stride of the phase image in X dimension (in bytes)
+ * @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] phase_stride_y Stride of the the phase image in Y dimension (in bytes)
+ * @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] phase_offset_first_element_in_bytes The offset of the first element in the the phase image
+ * @param[out] dst_ptr Pointer to the destination image which stores the local HOG for each cell Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
+ * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+__kernel void hog_orientation_binning(IMAGE_DECLARATION(mag),
+ IMAGE_DECLARATION(phase),
+ IMAGE_DECLARATION(dst))
+{
+ float bins[NUM_BINS] = { 0 };
+
+ // Compute address for the magnitude and phase images
+ Image mag = CONVERT_TO_IMAGE_STRUCT(mag);
+ Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
+
+ __global uchar *mag_row_ptr = mag.ptr;
+ __global uchar *phase_row_ptr = phase.ptr;
+
+ for(int yc = 0; yc < CELL_HEIGHT; ++yc)
+ {
+ int xc = 0;
+ for(; xc <= (CELL_WIDTH - 4); xc += 4)
+ {
+ // Load magnitude and phase values
+ const float4 mag_f32 = convert_float4(vload4(0, (__global short *)mag_row_ptr + xc));
+ float4 phase_f32 = convert_float4(vload4(0, phase_row_ptr + xc));
+
+ // Scale phase: phase * scale + 0.5f
+ phase_f32 = (float4)0.5f + phase_f32 * (float4)PHASE_SCALE;
+
+ // Compute histogram index.
+ int4 hidx_s32 = convert_int4(phase_f32);
+
+ // Compute magnitude weights (w0 and w1)
+ const float4 hidx_f32 = convert_float4(hidx_s32);
+
+ // w1 = phase_f32 - hidx_s32
+ const float4 w1_f32 = phase_f32 - hidx_f32;
+
+ // w0 = 1.0 - w1
+ const float4 w0_f32 = (float4)1.0f - w1_f32;
+
+ // Calculate the weights for splitting vote
+ const float4 mag_w0_f32 = mag_f32 * w0_f32;
+ const float4 mag_w1_f32 = mag_f32 * w1_f32;
+
+ // Weighted vote between 2 bins
+
+ // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
+ hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
+
+ // Bin 0
+ bins[hidx_s32.s0] += mag_w0_f32.s0;
+ bins[hidx_s32.s1] += mag_w0_f32.s1;
+ bins[hidx_s32.s2] += mag_w0_f32.s2;
+ bins[hidx_s32.s3] += mag_w0_f32.s3;
+
+ hidx_s32 += (int4)1;
+
+ // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
+ hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
+
+ // Bin1
+ bins[hidx_s32.s0] += mag_w1_f32.s0;
+ bins[hidx_s32.s1] += mag_w1_f32.s1;
+ bins[hidx_s32.s2] += mag_w1_f32.s2;
+ bins[hidx_s32.s3] += mag_w1_f32.s3;
+ }
+
+ // Left over computation
+ for(; xc < CELL_WIDTH; xc++)
+ {
+ const float mag_value = *((__global short *)mag_row_ptr + xc);
+ const float phase_value = *(mag_row_ptr + xc) * (float)PHASE_SCALE + 0.5f;
+ const float w1 = phase_value - floor(phase_value);
+
+ // The quantised phase is the histogram index [0, NUM_BINS - 1]
+ // Check limit of histogram index. If hidx == NUM_BINS, hidx = 0
+ const uint hidx = (uint)(phase_value) % NUM_BINS;
+
+ // Weighted vote between 2 bins
+ bins[hidx] += mag_value * (1.0f - w1);
+ bins[(hidx + 1) % NUM_BINS] += mag_value * w1;
+ }
+
+ // Point to the next row of magnitude and phase images
+ mag_row_ptr += mag_stride_y;
+ phase_row_ptr += phase_stride_y;
+ }
+
+ // Compute address for the destination image
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Store the local HOG in the global memory
+ int xc = 0;
+ for(; xc <= (NUM_BINS - 4); xc += 4)
+ {
+ float4 values = vload4(0, bins + xc);
+
+ vstore4(values, 0, ((__global float *)dst.ptr) + xc);
+ }
+
+ // Left over stores
+ for(; xc < NUM_BINS; ++xc)
+ {
+ ((__global float *)dst.ptr)[xc] = bins[xc];
+ }
+}
+#endif // (defined CELL_WIDTH && defined CELL_HEIGHT && defined NUM_BINS && defined PHASE_SCALE)
+
+#if(defined NUM_CELLS_PER_BLOCK_HEIGHT && defined NUM_BINS_PER_BLOCK_X && defined NUM_BINS_PER_BLOCK && HOG_NORM_TYPE && defined L2_HYST_THRESHOLD)
+
+#ifndef L2_NORM
+#error The value of enum class HOGNormType::L2_NORM has not be passed to the OpenCL kernel
+#endif
+
+#ifndef L2HYS_NORM
+#error The value of enum class HOGNormType::L2HYS_NORM has not be passed to the OpenCL kernel
+#endif
+
+#ifndef L1_NORM
+#error The value of enum class HOGNormType::L1_NORM has not be passed to the OpenCL kernel
+#endif
+
+/** This OpenCL kernel computes the HOG block normalization
+ *
+ * @attention The following variables must be passed at compile time:
+ *
+ * -# -DNUM_CELLS_PER_BLOCK_HEIGHT = Number of cells for each block
+ * -# -DNUM_BINS_PER_BLOCK_X = Number of bins for each block along the X direction
+ * -# -DNUM_BINS_PER_BLOCK = Number of bins for each block
+ * -# -DHOG_NORM_TYPE = Normalization type
+ * -# -DL2_HYST_THRESHOLD = Threshold used for L2HYS_NORM normalization method
+ * -# -DL2_NORM = Value of the enum class HOGNormType::L2_NORM
+ * -# -DL2HYS_NORM = Value of the enum class HOGNormType::L2HYS_NORM
+ * -# -DL1_NORM = Value of the enum class HOGNormType::L1_NORM
+ *
+ * @note Each work-item computes a single block
+ *
+ * @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[out] dst_ptr Pointer to the destination image which stores the normlized HOG Supported data types: F32. Number of channels supported: equal to the number of histogram bins per block
+ * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+__kernel void hog_block_normalization(IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ float sum = 0.0f;
+ float4 sum_f32 = (float4)(0.0f);
+
+ // Compute address for the source and destination tensor
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ for(size_t yc = 0; yc < NUM_CELLS_PER_BLOCK_HEIGHT; ++yc)
+ {
+ const __global float *hist_ptr = (__global float *)(src.ptr + yc * src_stride_y);
+
+ int xc = 0;
+ for(; xc <= (NUM_BINS_PER_BLOCK_X - 16); xc += 16)
+ {
+ const float4 val0 = vload4(0, hist_ptr + xc + 0);
+ const float4 val1 = vload4(0, hist_ptr + xc + 4);
+ const float4 val2 = vload4(0, hist_ptr + xc + 8);
+ const float4 val3 = vload4(0, hist_ptr + xc + 12);
+
+#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
+ // Compute val^2 for L2_NORM or L2HYS_NORM
+ sum_f32 += val0 * val0;
+ sum_f32 += val1 * val1;
+ sum_f32 += val2 * val2;
+ sum_f32 += val3 * val3;
+#else
+ // Compute |val| for L1_NORM
+ sum_f32 += fabs(val0);
+ sum_f32 += fabs(val1);
+ sum_f32 += fabs(val2);
+ sum_f32 += fabs(val3);
+#endif // (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
+
+ // Store linearly the input values un-normalized in the output image. These values will be reused for the normalization.
+ // This approach will help us to be cache friendly in the next for loop where the normalization will be done because all the values
+ // will be accessed consecutively
+ vstore4(val0, 0, ((__global float *)dst.ptr) + xc + 0 + yc * NUM_BINS_PER_BLOCK_X);
+ vstore4(val1, 0, ((__global float *)dst.ptr) + xc + 4 + yc * NUM_BINS_PER_BLOCK_X);
+ vstore4(val2, 0, ((__global float *)dst.ptr) + xc + 8 + yc * NUM_BINS_PER_BLOCK_X);
+ vstore4(val3, 0, ((__global float *)dst.ptr) + xc + 12 + yc * NUM_BINS_PER_BLOCK_X);
+ }
+
+ // Compute left over
+ for(; xc < NUM_BINS_PER_BLOCK_X; ++xc)
+ {
+ const float val = hist_ptr[xc];
+
+#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
+ sum += val * val;
+#else
+ sum += fabs(val);
+#endif // (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
+
+ ((__global float *)dst.ptr)[xc + 0 + yc * NUM_BINS_PER_BLOCK_X] = val;
+ }
+ }
+
+ sum += dot(sum_f32, (float4)1.0f);
+
+ float scale = 1.0f / (sqrt(sum) + NUM_BINS_PER_BLOCK * 0.1f);
+
+#if(HOG_NORM_TYPE == L2HYS_NORM)
+ // Reset sum
+ sum_f32 = (float4)0.0f;
+ sum = 0.0f;
+
+ int k = 0;
+ for(; k <= NUM_BINS_PER_BLOCK - 16; k += 16)
+ {
+ float4 val0 = vload4(0, ((__global float *)dst.ptr) + k + 0);
+ float4 val1 = vload4(0, ((__global float *)dst.ptr) + k + 4);
+ float4 val2 = vload4(0, ((__global float *)dst.ptr) + k + 8);
+ float4 val3 = vload4(0, ((__global float *)dst.ptr) + k + 12);
+
+ // Scale val
+ val0 = val0 * (float4)scale;
+ val1 = val1 * (float4)scale;
+ val2 = val2 * (float4)scale;
+ val3 = val3 * (float4)scale;
+
+ // Clip val if over _threshold_l2hys
+ val0 = fmin(val0, (float4)L2_HYST_THRESHOLD);
+ val1 = fmin(val1, (float4)L2_HYST_THRESHOLD);
+ val2 = fmin(val2, (float4)L2_HYST_THRESHOLD);
+ val3 = fmin(val3, (float4)L2_HYST_THRESHOLD);
+
+ // Compute val^2
+ sum_f32 += val0 * val0;
+ sum_f32 += val1 * val1;
+ sum_f32 += val2 * val2;
+ sum_f32 += val3 * val3;
+
+ vstore4(val0, 0, ((__global float *)dst.ptr) + k + 0);
+ vstore4(val1, 0, ((__global float *)dst.ptr) + k + 4);
+ vstore4(val2, 0, ((__global float *)dst.ptr) + k + 8);
+ vstore4(val3, 0, ((__global float *)dst.ptr) + k + 12);
+ }
+
+ // Compute left over
+ for(; k < NUM_BINS_PER_BLOCK; ++k)
+ {
+ float val = ((__global float *)dst.ptr)[k] * scale;
+
+ // Clip scaled input_value if over L2_HYST_THRESHOLD
+ val = fmin(val, (float)L2_HYST_THRESHOLD);
+
+ sum += val * val;
+
+ ((__global float *)dst.ptr)[k] = val;
+ }
+
+ sum += dot(sum_f32, (float4)1.0f);
+
+ // We use the same constants of OpenCV
+ scale = 1.0f / (sqrt(sum) + 1e-3f);
+
+#endif // (HOG_NORM_TYPE == L2HYS_NORM)
+
+ int i = 0;
+ for(; i <= (NUM_BINS_PER_BLOCK - 16); i += 16)
+ {
+ float4 val0 = vload4(0, ((__global float *)dst.ptr) + i + 0);
+ float4 val1 = vload4(0, ((__global float *)dst.ptr) + i + 4);
+ float4 val2 = vload4(0, ((__global float *)dst.ptr) + i + 8);
+ float4 val3 = vload4(0, ((__global float *)dst.ptr) + i + 12);
+
+ // Multiply val by the normalization scale factor
+ val0 = val0 * (float4)scale;
+ val1 = val1 * (float4)scale;
+ val2 = val2 * (float4)scale;
+ val3 = val3 * (float4)scale;
+
+ vstore4(val0, 0, ((__global float *)dst.ptr) + i + 0);
+ vstore4(val1, 0, ((__global float *)dst.ptr) + i + 4);
+ vstore4(val2, 0, ((__global float *)dst.ptr) + i + 8);
+ vstore4(val3, 0, ((__global float *)dst.ptr) + i + 12);
+ }
+
+ for(; i < NUM_BINS_PER_BLOCK; ++i)
+ {
+ ((__global float *)dst.ptr)[i] *= scale;
+ }
+}
+#endif // (defined NUM_CELLS_PER_BLOCK_HEIGHT && defined NUM_BINS_PER_BLOCK_X && defined NUM_BINS_PER_BLOCK && HOG_NORM_TYPE && defined L2_HYST_THRESHOLD)
+
+#if(defined NUM_BLOCKS_PER_DESCRIPTOR_Y && defined NUM_BINS_PER_DESCRIPTOR_X && defined THRESHOLD && defined MAX_NUM_DETECTION_WINDOWS && defined IDX_CLASS && defined BLOCK_STRIDE_WIDTH && defined BLOCK_STRIDE_HEIGHT && defined DETECTION_WINDOW_WIDTH && defined DETECTION_WINDOW_HEIGHT)
+
+/** This OpenCL kernel computes the HOG detector using linear SVM
+ *
+ * @attention The following variables must be passed at compile time:
+ *
+ * -# -DNUM_BLOCKS_PER_DESCRIPTOR_Y = Number of blocks per descriptor along the Y direction
+ * -# -DNUM_BINS_PER_DESCRIPTOR_X = Number of bins per descriptor along the X direction
+ * -# -DTHRESHOLD = Threshold for the distance between features and SVM classifying plane
+ * -# -DMAX_NUM_DETECTION_WINDOWS = Maximum number of possible detection windows. It is equal to the size of the DetectioWindow array
+ * -# -DIDX_CLASS = Index of the class to detect
+ * -# -DBLOCK_STRIDE_WIDTH = Block stride for the X direction
+ * -# -DBLOCK_STRIDE_HEIGHT = Block stride for the Y direction
+ * -# -DDETECTION_WINDOW_WIDTH = Width of the detection window
+ * -# -DDETECTION_WINDOW_HEIGHT = Height of the detection window
+ *
+ * @note Each work-item computes a single detection window
+ *
+ * @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] hog_descriptor Pointer to HOG descriptor. Supported data types: F32
+ * @param[out] dst Pointer to DetectionWindow array
+ * @param[out] num_detection_windows Number of objects detected
+ */
+__kernel void hog_detector(IMAGE_DECLARATION(src),
+ __global float *hog_descriptor,
+ __global DetectionWindow *dst,
+ __global uint *num_detection_windows)
+{
+ // Check if the DetectionWindow array is full
+ if(*num_detection_windows >= MAX_NUM_DETECTION_WINDOWS)
+ {
+ return;
+ }
+
+ Image src = CONVERT_TO_IMAGE_STRUCT(src);
+
+ const int src_step_y_f32 = src_stride_y / sizeof(float);
+
+ // Init score_f32 with 0
+ float4 score_f32 = (float4)0.0f;
+
+ // Init score with 0
+ float score = 0.0f;
+
+ __global float *src_row_ptr = (__global float *)src.ptr;
+
+ // Compute Linear SVM
+ for(int yb = 0; yb < NUM_BLOCKS_PER_DESCRIPTOR_Y; ++yb, src_row_ptr += src_step_y_f32)
+ {
+ int xb = 0;
+
+ const int offset_y = yb * NUM_BINS_PER_DESCRIPTOR_X;
+
+ for(; xb < (int)NUM_BINS_PER_DESCRIPTOR_X - 8; xb += 8)
+ {
+ // Load descriptor values
+ float4 a0_f32 = vload4(0, src_row_ptr + xb + 0);
+ float4 a1_f32 = vload4(0, src_row_ptr + xb + 4);
+
+ float4 b0_f32 = vload4(0, hog_descriptor + xb + 0 + offset_y);
+ float4 b1_f32 = vload4(0, hog_descriptor + xb + 4 + offset_y);
+
+ // Multiply accumulate
+ score_f32 += a0_f32 * b0_f32;
+ score_f32 += a1_f32 * b1_f32;
+ }
+
+ for(; xb < NUM_BINS_PER_DESCRIPTOR_X; ++xb)
+ {
+ const float a = src_row_ptr[xb];
+ const float b = hog_descriptor[xb + offset_y];
+
+ score += a * b;
+ }
+ }
+
+ score += dot(score_f32, (float4)1.0f);
+
+ // Add the bias. The bias is located at the position (descriptor_size() - 1)
+ // (descriptor_size - 1) = NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y
+ score += hog_descriptor[NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y];
+
+ if(score > (float)THRESHOLD)
+ {
+ int id = atomic_inc(num_detection_windows);
+ if(id < MAX_NUM_DETECTION_WINDOWS)
+ {
+ dst[id].x = get_global_id(0) * BLOCK_STRIDE_WIDTH;
+ dst[id].y = get_global_id(1) * BLOCK_STRIDE_HEIGHT;
+ dst[id].width = DETECTION_WINDOW_WIDTH;
+ dst[id].height = DETECTION_WINDOW_HEIGHT;
+ dst[id].idx_class = IDX_CLASS;
+ dst[id].score = score;
+ }
+ }
+}
+#endif // defined BIAS && defined NUM_BLOCKS_PER_DESCRIPTOR_Y && defined NUM_BINS_PER_DESCRIPTOR_X && ...