aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
authorVidhya Sudhan Loganathan <vidhyasudhan.loganathan@arm.com>2018-11-16 11:33:12 +0000
committerGeorgios Pinitas <georgios.pinitas@arm.com>2018-11-16 17:37:40 +0000
commita25d16c86f0d870408bc8b941aa755093417b0f0 (patch)
treeb62d145a4e5009d894262a7ffa66cdba8260bb03 /src/core/CL/cl_kernels/gemm.cl
parenta7b54f44e2bf133179f24a34007bc93237dd2265 (diff)
downloadComputeLibrary-a25d16c86f0d870408bc8b941aa755093417b0f0.tar.gz
COMPMID-1266 : Add support for FP16 in CLWinogradConvolutionLayer: 5x5 kernels
Introduced F32 accumulation for F16 winograd gemm and output transform WinogradConvolution will be available for F16 only if fast math flag is enabled Change-Id: I215593c205236a0f9669218437bb40b184ec6a4f
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl348
1 files changed, 348 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index d24f014f11..5d5cab6578 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -2299,6 +2299,354 @@ __kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
+ * @note This OpenCL kernel works with the 16-bit floating point data type (half) and accumulating the result in a 32 floating point variable.
+ * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
+ * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
+ * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
+ * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (i.e. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (i.e. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx * sizeof(half);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ float8 acc0 = 0.0h;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ float8 acc1 = 0.0h;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ float8 acc2 = 0.0h;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ float8 acc3 = 0.0h;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ int i = 0;
+ for(; i <= ((int)COLS_A - 4); i += 4)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+
+ // Accumulate
+ acc0 = fma(b0, (float8)a0.s0, acc0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 = fma(b0, (float8)a1.s0, acc1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 = fma(b0, (float8)a2.s0, acc2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 = fma(b0, (float8)a3.s0, acc3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (float8)a0.s1, acc0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 = fma(b0, (float8)a1.s1, acc1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 = fma(b0, (float8)a2.s1, acc2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 = fma(b0, (float8)a3.s1, acc3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (float8)a0.s2, acc0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 = fma(b0, (float8)a1.s2, acc1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 = fma(b0, (float8)a2.s2, acc2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 = fma(b0, (float8)a3.s2, acc3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (float8)a0.s3, acc0);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 = fma(b0, (float8)a1.s3, acc1);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 = fma(b0, (float8)a2.s3, acc2);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 = fma(b0, (float8)a3.s3, acc3);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ src_addr.s0 += 4 * sizeof(half);
+ }
+
+ for(; i < (int)COLS_A; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+
+ src_addr += (int2)(sizeof(half), src1_stride_y);
+
+ // Accumulate
+ acc0 = fma(b0, (float8)a0, acc0); // b0 * (half8)a0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 = fma(b0, (float8)a1, acc1); // b0 * (half8)a1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 = fma(b0, (float8)a2, acc2); // b0 * (half8)a2;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 = fma(b0, (float8)a3, acc3); // b0 * (half8)a3;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ half8 hacc0 = convert_half8(acc0) * (half8)ALPHA;
+#else //defined(ALPHA)
+ half8 hacc0 = convert_half8(acc0);
+#endif // defined(ALPHA)
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if defined(ALPHA)
+ half8 hacc1 = convert_half8(acc1) * (half8)ALPHA;
+#else //defined(ALPHA)
+ half8 hacc1 = convert_half8(acc1);
+#endif //defined(ALPHA)
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if defined(ALPHA)
+ half8 hacc2 = convert_half8(acc2) * (half8)ALPHA;
+#else //defined(ALPHA)
+ half8 hacc2 = convert_half8(acc2);
+#endif //defined(ALPHA)
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#if defined(ALPHA)
+ half8 hacc3 = convert_half8(acc3) * (half8)ALPHA;
+#else //defined(ALPHA)
+ half8 hacc3 = convert_half8(acc3);
+#endif // defined(ALPHA)
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
+ uint4 zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+ // Store the output block
+ vstore8(hacc0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vstore8(hacc1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vstore8(hacc2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vstore8(hacc3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+ // Store the output block
+ vstore8(hacc0, 0, (__global half *)(dst_addr + 0 * dst_stride_y));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ vstore8(hacc1, 0, (__global half *)(dst_addr + 1 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ vstore8(hacc2, 0, (__global half *)(dst_addr + 2 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ vstore8(hacc3, 0, (__global half *)(dst_addr + 3 * dst_stride_y));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+#endif // REINTERPRET_OUTPUT_AS_3D
+}
+
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
+ *
* @note This OpenCL kernel works with the 16-bit floating point data type (half) and uses the fma units.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.