aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2018-12-07 11:18:09 +0000
committerGian Marco Iodice <gianmarco.iodice@arm.com>2018-12-11 14:55:03 +0000
commit3b0a2654034714c16f5930d2b24936d8be7b18a6 (patch)
tree2a3ed3703a4f454ef42084363049aba3bf54ebd6 /src/core/CL/cl_kernels/gemm.cl
parentff0bccfb4697c591d569db9c2dc223f2e311a7d3 (diff)
downloadComputeLibrary-3b0a2654034714c16f5930d2b24936d8be7b18a6.tar.gz
COMPMID-1775: Implement CLGEMMReshapeRHSMatrixKernel to reshape the RHS matrix of GEMM/GEMMLowp
Change-Id: I77f2bfcc5d170bcc2428a2f27104942c1ec877d7 Reviewed-on: https://review.mlplatform.org/375 Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl580
1 files changed, 580 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index cf1e021929..40ee1d45ad 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -252,6 +252,586 @@ __kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
}
#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE)
+#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
+/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (i.e. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (i.e. -DK0=2, -DN0=2).
+ * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ * @note Only the following values for K0, N0 and H0 are supported:
+ * N0: 2,4,8,16
+ * K0: 1,2,4,8,16
+ * H0: greater than 0
+ *
+ * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
+ * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ // Block size
+#define BLOCK_SIZE ((K0) * (N0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (N0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (N0) * (H0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (N0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
+ x / (uint)H0)
+ * (uint)dst_stride_y)
+ + z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a0 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a1 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a2 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a3 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a4 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a5 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a6 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a7 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a8 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a9 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aA = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aB = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aC = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aD = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aE = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aF = 0;
+
+ // Load values from the RHS matrix
+ a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
+#if K0 > 1
+ if(y * (uint)K0 + 1 < SRC_HEIGHT)
+ {
+ a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
+ }
+#endif // K0 > 1
+#if K0 > 2
+ if(y * (uint)K0 + 2 < SRC_HEIGHT)
+ {
+ a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
+ }
+ if(y * (uint)K0 + 3 < SRC_HEIGHT)
+ {
+ a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+ }
+#endif // K0 > 2
+#if K0 > 4
+ if(y * (uint)K0 + 4 < SRC_HEIGHT)
+ {
+ a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
+ }
+ if(y * (uint)K0 + 5 < SRC_HEIGHT)
+ {
+ a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
+ }
+ if(y * (uint)K0 + 6 < SRC_HEIGHT)
+ {
+ a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
+ }
+ if(y * (uint)K0 + 7 < SRC_HEIGHT)
+ {
+ a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
+ }
+#endif // K0 > 4
+#if K0 > 8
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
+ }
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
+ }
+ if(y * (uint)K0 + 10 < SRC_HEIGHT)
+ {
+ aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
+ }
+ if(y * (uint)K0 + 11 < SRC_HEIGHT)
+ {
+ aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
+ }
+ if(y * (uint)K0 + 12 < SRC_HEIGHT)
+ {
+ aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
+ }
+ if(y * (uint)K0 + 13 < SRC_HEIGHT)
+ {
+ aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
+ }
+ if(y * (uint)K0 + 14 < SRC_HEIGHT)
+ {
+ aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
+ }
+ if(y * (uint)K0 + 15 < SRC_HEIGHT)
+ {
+ aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
+ }
+#endif // K0 > 8
+
+ // ---------------------------Store output values ------------------------------
+
+ VSTORE(N0)
+ (a0, 0, (__global DATA_TYPE *)(output_ptr + 0 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#if K0 > 1
+ VSTORE(N0)
+ (a1, 0, (__global DATA_TYPE *)(output_ptr + 1 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // K0 > 1
+#if K0 > 2
+ VSTORE(N0)
+ (a2, 0, (__global DATA_TYPE *)(output_ptr + 2 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (a3, 0, (__global DATA_TYPE *)(output_ptr + 3 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // K0 > 2
+#if K0 > 4
+ VSTORE(N0)
+ (a4, 0, (__global DATA_TYPE *)(output_ptr + 4 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (a5, 0, (__global DATA_TYPE *)(output_ptr + 5 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (a6, 0, (__global DATA_TYPE *)(output_ptr + 6 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (a7, 0, (__global DATA_TYPE *)(output_ptr + 7 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 4
+#if K0 > 8
+ VSTORE(N0)
+ (a8, 0, (__global DATA_TYPE *)(output_ptr + 8 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (a9, 0, (__global DATA_TYPE *)(output_ptr + 9 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (aA, 0, (__global DATA_TYPE *)(output_ptr + 10 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (aB, 0, (__global DATA_TYPE *)(output_ptr + 11 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (aC, 0, (__global DATA_TYPE *)(output_ptr + 12 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (aD, 0, (__global DATA_TYPE *)(output_ptr + 13 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (aE, 0, (__global DATA_TYPE *)(output_ptr + 14 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(N0)
+ (aF, 0, (__global DATA_TYPE *)(output_ptr + 15 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 8
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+
+#if defined(TRANSPOSE)
+/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
+ * the output matrix unrolling the values.
+ *
+ * @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float)
+ * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (i.e. -DSRC_HEIGHT=16)
+ * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (i.e. -DK0=2, -DN0=2).
+ * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
+ * @note The option -DTRANSPOSE must passed at compile time.
+ * @note Only the following values for K0, N0 and H0 are supported:
+ * N0: 2,4,8,16
+ * K0: 4,8,16
+ * H0: greater than 0
+ *
+ * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32
+ * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ // Block size
+#define BLOCK_SIZE ((K0) * (N0))
+
+ // Output offset X
+#if defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (K0)
+#else // defined(INTERLEAVE)
+#define OUTPUT_OFFSET_X (BLOCK_SIZE)
+#endif // defined(INTERLEAVE)
+
+ // Output step X
+#if defined(INTERLEAVE)
+#define OUTPUT_STEP_X (K0) * (H0)
+#else // Do not interleave
+#define OUTPUT_STEP_X (K0)
+#endif // defined(INTERLEAVE)
+
+ // Compute source and destination addresses
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+ // ------------------ Compute input/output addresses ---------------------------
+
+ // Compute the input address
+ __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
+
+ // Compute the output address
+ __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
+ (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
+
+ // ---------------------------Load input values --------------------------------
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a0 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a1 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a2 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a3 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a4 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a5 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a6 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a7 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a8 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ a9 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aA = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aB = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aC = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aD = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aE = 0;
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ aF = 0;
+
+ // Load values from the RHS matrix
+ a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
+ if(y * (uint)K0 + 1 < SRC_HEIGHT)
+ {
+ a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
+ }
+ if(y * (uint)K0 + 2 < SRC_HEIGHT)
+ {
+ a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
+ }
+ if(y * (uint)K0 + 3 < SRC_HEIGHT)
+ {
+ a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
+ }
+#if K0 > 4
+ if(y * (uint)K0 + 4 < SRC_HEIGHT)
+ {
+ a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
+ }
+ if(y * (uint)K0 + 5 < SRC_HEIGHT)
+ {
+ a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
+ }
+ if(y * (uint)K0 + 6 < SRC_HEIGHT)
+ {
+ a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
+ }
+ if(y * (uint)K0 + 7 < SRC_HEIGHT)
+ {
+ a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
+ }
+#endif // K0 > 4
+#if K0 > 8
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
+ }
+ if(y * (uint)K0 + 9 < SRC_HEIGHT)
+ {
+ a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
+ }
+ if(y * (uint)K0 + 10 < SRC_HEIGHT)
+ {
+ aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
+ }
+ if(y * (uint)K0 + 11 < SRC_HEIGHT)
+ {
+ aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
+ }
+ if(y * (uint)K0 + 12 < SRC_HEIGHT)
+ {
+ aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
+ }
+ if(y * (uint)K0 + 13 < SRC_HEIGHT)
+ {
+ aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
+ }
+ if(y * (uint)K0 + 14 < SRC_HEIGHT)
+ {
+ aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
+ }
+ if(y * (uint)K0 + 15 < SRC_HEIGHT)
+ {
+ aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
+ }
+#endif // K0 > 8
+
+ // ---------------------------Transpose the block ------------------------------
+
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res0 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res1 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res2 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res3 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res4 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res5 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res6 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res7 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res8 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ res9 = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ resA = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ resB = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ resC = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ resD = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ resE = 0;
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ resF = 0;
+
+#if K0 == 4
+ // This part computes the following transpositions:
+ // 4x2 -> 2x4
+ // 4x4 -> 4x4
+ // 4x8 -> 8x4
+ // 4x16 -> 16x4
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
+#endif // N0 > 2
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
+#endif // N0 > 8
+
+#elif K0 == 8 // N0 == 3
+ // This part computes the following transpositions:
+ // 8x2 -> 2x8
+ // 8x4 -> 4x8
+ // 8x8 -> 8x8
+ // 8x16 -> 16x8
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
+#endif // N0 > 2
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
+#endif // N0 > 8
+
+#elif K0 == 16 // N0 == 16
+
+ // This part computes the following transpositions:
+ // 16x2 -> 2x16
+ // 16x4 -> 4x16
+ // 16x8 -> 8x16
+ // 16x16 -> 16x16
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
+ a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
+ a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
+#if N0 > 2
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
+ a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
+ a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
+#endif // N0 > 2
+#if N0 > 4
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
+ a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
+ a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
+ a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
+ a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
+#endif // N0 > 4
+#if N0 > 8
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
+ a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
+ a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
+ a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
+ a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
+ a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
+ a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
+ a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
+ a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
+#endif // N0 > 8
+
+#else // N0 == 16
+#error "Not supported N0 value"
+#endif // N0 > 2
+
+ // ---------------------------Store the output values ------------------------------
+
+ VSTORE(K0)
+ (res0, 0, (__global DATA_TYPE *)(output_ptr + 0 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (res1, 0, (__global DATA_TYPE *)(output_ptr + 1 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#if N0 > 2
+ VSTORE(K0)
+ (res2, 0, (__global DATA_TYPE *)(output_ptr + 2 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (res3, 0, (__global DATA_TYPE *)(output_ptr + 3 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 2
+#if N0 > 4
+ VSTORE(K0)
+ (res4, 0, (__global DATA_TYPE *)(output_ptr + 4 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (res5, 0, (__global DATA_TYPE *)(output_ptr + 5 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (res6, 0, (__global DATA_TYPE *)(output_ptr + 6 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (res7, 0, (__global DATA_TYPE *)(output_ptr + 7 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 4
+#if N0 > 8
+ VSTORE(K0)
+ (res8, 0, (__global DATA_TYPE *)(output_ptr + 8 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (res9, 0, (__global DATA_TYPE *)(output_ptr + 9 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (resA, 0, (__global DATA_TYPE *)(output_ptr + 10 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (resB, 0, (__global DATA_TYPE *)(output_ptr + 11 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (resC, 0, (__global DATA_TYPE *)(output_ptr + 12 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (resD, 0, (__global DATA_TYPE *)(output_ptr + 13 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (resE, 0, (__global DATA_TYPE *)(output_ptr + 14 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+ VSTORE(K0)
+ (resF, 0, (__global DATA_TYPE *)(output_ptr + 15 * OUTPUT_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 8
+
+#undef BLOCK_SIZE
+#undef OUTPUT_OFFSET_X
+#undef OUTPUT_STEP_X
+}
+#endif // defined(TRANSPOSE)
+#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
+
#if defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH)
#if ELEMENT_SIZE == 1