aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/fft.cl
diff options
context:
space:
mode:
authorGeorgios Pinitas <georgios.pinitas@arm.com>2019-03-18 20:07:37 +0000
committerGeorgios Pinitas <georgios.pinitas@arm.com>2019-03-29 10:46:38 +0000
commit0bc784982f183d9d50be31adb867e84c237d9fc3 (patch)
tree0c6f7092d409acfcf204c0b537be01524b776e6b /src/core/CL/cl_kernels/fft.cl
parent47d39dc615d1dee2482bc84699802165a9778ac8 (diff)
downloadComputeLibrary-0bc784982f183d9d50be31adb867e84c237d9fc3.tar.gz
COMPMID-1958: Implements 1D FFT in OpenCL.
Forward complex FFT implementation. Change-Id: Ia0ba8740072e5adb06f8ead462a47abc8b5dd125 Signed-off-by: Georgios Pinitas <georgios.pinitas@arm.com> Reviewed-on: https://review.mlplatform.org/c/904 Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/fft.cl')
-rw-r--r--src/core/CL/cl_kernels/fft.cl1014
1 files changed, 1014 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/fft.cl b/src/core/CL/cl_kernels/fft.cl
new file mode 100644
index 0000000000..5f1ef2483b
--- /dev/null
+++ b/src/core/CL/cl_kernels/fft.cl
@@ -0,0 +1,1014 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+/** Computes the digit reverse stage
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] idx_ptr Pointer to the index tensor. Supported data types: U32
+ * @param[in] idx_stride_x Stride of the index tensor in X dimension (in bytes)
+ * @param[in] idx_step_x idx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] idx_offset_first_element_in_bytes The offset of the first element in the index tensor
+ */
+__kernel void digit_reverse(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst),
+ VECTOR_DECLARATION(idx))
+{
+ // Get tensor pointers
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(src);
+ Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
+ Vector idx = CONVERT_TO_VECTOR_STRUCT(idx);
+
+ const unsigned int iidx = *((__global uint *)(idx.ptr));
+
+ // Load data
+ float2 data = vload2(0, (__global float *)tensor3D_offset(&src, iidx, get_global_id(1), get_global_id(2)));
+
+ // Store result
+ vstore2(data, 0, (__global float *)dst.ptr);
+}
+
+/** Calculates and applies the twiddle factor to a given input.
+ *
+ * @param[in] phi The angle.
+ * @param[in,out] input The input on which the factor should be applied.
+ */
+#define TWIDDLE_FACTOR_MULTIPLICATION(phi, input) \
+ { \
+ float2 w, tmp; \
+ w.x = native_cos(phi); \
+ w.y = native_sin(phi); \
+ tmp.x = (w.x * input.x) - (w.y * input.y); \
+ tmp.y = (w.x * input.y) + (w.y * input.x); \
+ input = tmp; \
+ }
+
+/** Computes radix-2 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ */
+#define DFT_2(c0, c1) \
+ { \
+ float2 v0; \
+ v0 = c0; \
+ c0 = v0 + c1; \
+ c1 = v0 - c1; \
+ }
+
+// radix-3 butterfly unit factors
+#define SQRT3DIV2 0.86602540378443f
+
+/** Computes radix-3 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ */
+#define DFT_3(c0, c1, c2) \
+ { \
+ float2 v0 = c1 + c2; \
+ float2 v1 = c1 - c2; \
+ c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \
+ c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \
+ c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \
+ c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \
+ c0 = c0 + v0; \
+ }
+
+/**Computes radix-4 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ */
+#define DFT_4(c0, c1, c2, c3) \
+ { \
+ float2 v0, v1, v2, v3; \
+ v0 = c0 + c2; \
+ v1 = c1 + c3; \
+ v2 = c0 - c2; \
+ v3.x = c1.y - c3.y; \
+ v3.y = c3.x - c1.x; \
+ c0 = v0 + v1; \
+ c2 = v0 - v1; \
+ c1 = v2 + v3; \
+ c3 = v2 - v3; \
+ }
+
+// radix-5 butterfly unit factors
+#define W5_A 0.30901699437494f
+#define W5_B 0.95105651629515f
+#define W5_C 0.80901699437494f
+#define W5_D 0.58778525229247f
+
+/** Computes radix-5 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ * @param[in,out] c4 Complex input 4.
+ */
+#define DFT_5(c0, c1, c2, c3, c4) \
+ { \
+ float2 v0, v1, v2, v3, v4; \
+ v0 = c0; \
+ v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3); \
+ v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3); \
+ v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3); \
+ v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3); \
+ c0 = v0 + c1 + c2 + c3 + c4; \
+ c1 = v0 + v1 + (float2)(v4.y, -v4.x); \
+ c2 = v0 - v2 + (float2)(v3.y, -v3.x); \
+ c3 = v0 - v2 + (float2)(-v3.y, v3.x); \
+ c4 = v0 + v1 + (float2)(-v4.y, v4.x); \
+ }
+
+// radix-7 butterfly unit factors
+#define W7_A 0.62348980185873f
+#define W7_B 0.78183148246802f
+#define W7_C 0.22252093395631f
+#define W7_D 0.97492791218182f
+#define W7_E 0.90096886790241f
+#define W7_F 0.43388373911755f
+
+/** Computes radix-7 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ * @param[in,out] c4 Complex input 4.
+ * @param[in,out] c5 Complex input 5.
+ * @param[in,out] c6 Complex input 6.
+ */
+#define DFT_7(c0, c1, c2, c3, c4, c5, c6) \
+ { \
+ float2 v0, v1, v2, v3, v4, v5, v6; \
+ v0 = c0; \
+ v1 = W7_A * (c1 + c6) - W7_C * (c2 + c5) - W7_E * (c3 + c4); \
+ v2 = W7_C * (c1 + c6) + W7_E * (c2 + c5) - W7_A * (c3 + c4); \
+ v3 = W7_E * (c1 + c6) - W7_A * (c2 + c5) + W7_C * (c3 + c4); \
+ v4 = W7_B * (c1 - c6) + W7_D * (c2 - c5) + W7_F * (c3 - c4); \
+ v5 = W7_D * (c1 - c6) - W7_F * (c2 - c5) - W7_B * (c3 - c4); \
+ v6 = W7_F * (c1 - c6) - W7_B * (c2 - c5) + W7_D * (c3 - c4); \
+ c0 = v0 + c1 + c2 + c3 + c4 + c5 + c6; \
+ c1 = v0 + v1 + (float2)(v4.y, -v4.x); \
+ c2 = v0 - v2 + (float2)(v5.y, -v5.x); \
+ c3 = v0 - v3 + (float2)(v6.y, -v6.x); \
+ c4 = v0 - v3 + (float2)(-v6.y, v6.x); \
+ c5 = v0 - v2 + (float2)(-v5.y, v5.x); \
+ c6 = v0 + v1 + (float2)(-v4.y, v4.x); \
+ }
+
+/** Computes radix-8 butterfly unit.
+ *
+ * @param[in,out] c0 Complex input 0.
+ * @param[in,out] c1 Complex input 1.
+ * @param[in,out] c2 Complex input 2.
+ * @param[in,out] c3 Complex input 3.
+ * @param[in,out] c4 Complex input 4.
+ * @param[in,out] c5 Complex input 5.
+ * @param[in,out] c6 Complex input 6.
+ * @param[in,out] c7 Complex input 7.
+ */
+#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \
+ { \
+ float2 v0, v1, v2, v3, v4, v5, v6, v7; \
+ float2 s0, s1, s2, s3, s4, s5, s6, s7; \
+ float2 t0, t1, t2; \
+ v0 = c0 + c4; \
+ v1 = c1 + c5; \
+ v2 = c2 + c6; \
+ v3 = c3 + c7; \
+ v4 = c0 - c4; \
+ v5 = c1 - c5; \
+ v6 = c2 - c6; \
+ v7 = c3 - c7; \
+ s0 = v0 + v2; \
+ s1 = v1 + v3; \
+ s2 = v0 - v2; \
+ s3 = v1 - v3; \
+ s4.x = v4.x - v6.y; \
+ s4.y = v4.y + v6.x; \
+ s5.x = v5.x - v7.y; \
+ s5.y = v5.y + v7.x; \
+ s6.x = v4.x + v6.y; \
+ s6.y = v4.y - v6.x; \
+ s7.x = v5.x + v7.y; \
+ s7.y = v5.y - v7.x; \
+ t0.x = -s3.y; \
+ t0.y = s3.x; \
+ t1.x = M_SQRT1_2_F * (s5.x - s5.y); \
+ t1.y = M_SQRT1_2_F * (s5.x + s5.y); \
+ t2.x = -M_SQRT1_2_F * (s7.x + s7.y); \
+ t2.y = M_SQRT1_2_F * (s7.x - s7.y); \
+ c0 = s0 + s1; \
+ c1 = s6 - t2; \
+ c2 = s2 - t0; \
+ c3 = s4 - t1; \
+ c4 = s0 - s1; \
+ c5 = s6 + t2; \
+ c6 = s2 + t0; \
+ c7 = s4 + t1; \
+ }
+
+/** Computes the first stage of a radix-2 DFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+kernel void fft_radix_2_first_stage_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float4 data = vload4(0, (__global float *)input.ptr);
+
+ // Compute DFT N = 2
+ DFT_2(data.s01, data.s23);
+
+ // Store eight complex output values
+ vstore4(data, 0, (__global float *)output.ptr);
+}
+
+/** Computes the first stage of a radix-3 DFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+kernel void fft_radix_3_first_stage_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float4 data0 = vload4(0, (__global float *)input.ptr);
+ float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 2, 0, 0));
+
+ // Compute DFT N = 3
+ DFT_3(data0.s01, data0.s23, data1.s01);
+
+ // Store eight complex output values
+ vstore4(data0, 0, (__global float *)output.ptr);
+ vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 2, 0, 0));
+}
+
+/** Computes the first stage of a radix-4 DFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+kernel void fft_radix_4_first_stage_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float8 data = vload8(0, (__global float *)input.ptr);
+
+ // Compute DFT N = 4
+ DFT_4(data.s01, data.s23, data.s45, data.s67);
+
+ // Store eight complex output values
+ vstore8(data, 0, (__global float *)output.ptr);
+}
+
+/** Computes the first stage of a radix-5 DFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+kernel void fft_radix_5_first_stage_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float8 data0 = vload8(0, (__global float *)input.ptr);
+ float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 4, 0, 0));
+
+ // Compute DFT N = 5
+ DFT_5(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01);
+
+ // Store eight complex output values
+ vstore8(data0, 0, (__global float *)output.ptr);
+ vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 4, 0, 0));
+}
+
+/** Computes the first stage of a radix-7 DFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+kernel void fft_radix_7_first_stage_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float8 data0 = vload8(0, (__global float *)input.ptr);
+ float4 data1 = vload4(0, (__global float *)tensor3D_offset(&input, 4, 0, 0));
+ float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 6, 0, 0));
+
+ // Compute DFT N = 7
+ DFT_7(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01, data1.s23, data2.s01);
+
+ // Store eight complex output values
+ vstore8(data0, 0, (__global float *)output.ptr);
+ vstore4(data1, 0, (__global float *)tensor3D_offset(&output, 4, 0, 0));
+ vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 6, 0, 0));
+}
+
+/** Computes the first stage of a radix-8 DFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+kernel void fft_radix_8_first_stage_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+)
+{
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float16 data = vload16(0, (__global float *)input.ptr);
+
+ // Compute DFT N = 8
+ DFT_8(data.s01, data.s23, data.s45, data.s67, data.s89, data.sAB, data.sCD, data.sEF);
+
+ // Store eight complex output values
+ vstore16(data, 0, (__global float *)output.ptr);
+}
+
+/** Computes a stage of a radix-2 FFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
+ * @param[in] Ni Nx * Ny.
+ * @param[in] exp_const Exponent constant
+ */
+kernel void fft_radix_2_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+ ,
+ uint Nx, uint Ni, float exp_const)
+{
+ // Each work-item computes a single radix-2
+ uint kx = get_global_id(0);
+
+ // Compute nx
+ uint nx = kx % Nx;
+
+ // Compute n index
+ uint n = nx + (kx / Nx) * Ni;
+
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+ input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+ output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+ // Load two complex input values
+ float2 c0 = vload2(0, (__global float *)input.ptr);
+ float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+
+ // Compute phi
+ float phi = (float)nx * exp_const;
+
+ // Multiply by twiddle factor
+ TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+
+ // Compute DFT N = 2
+ DFT_2(c0, c1);
+
+ // Store two complex output values
+ vstore2(c0, 0, (__global float *)output.ptr);
+ vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-3 FFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
+ * @param[in] Ni Nx * Ny.
+ * @param[in] exp_const Exponent constant
+ */
+kernel void fft_radix_3_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+ ,
+ uint Nx, uint Ni, float exp_const)
+{
+ // Each work-item computes a single radix-3
+ uint kx = get_global_id(0);
+
+ // Compute nx
+ uint nx = kx % Nx;
+
+ // Compute n index
+ uint n = nx + (kx / Nx) * Ni;
+
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+ input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+ output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+ // Load three complex input values
+ float2 c0 = vload2(0, (__global float *)input.ptr);
+ float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+ float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+
+ // Compute phi
+ float phi = (float)nx * exp_const;
+
+ // Multiply by twiddle factor
+ TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+ TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+
+ // Compute DFT N = 3
+ DFT_3(c0, c1, c2);
+
+ // Store three complex output values
+ vstore2(c0, 0, (__global float *)output.ptr);
+ vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+ vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-4 FFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
+ * @param[in] Ni Nx * Ny.
+ * @param[in] exp_const Exponent constant
+ */
+kernel void fft_radix_4_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+ ,
+ uint Nx, uint Ni, float exp_const)
+{
+ // Each work-item computes a single radix-4
+ uint kx = get_global_id(0);
+
+ // Compute nx
+ uint nx = kx % Nx;
+
+ // Compute n index
+ uint n = nx + (kx / Nx) * Ni;
+
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+ input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+ output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+ // Load four complex input values
+ float2 c0 = vload2(0, (__global float *)input.ptr);
+ float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+ float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+ float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+
+ // Compute phi
+ float phi = (float)nx * exp_const;
+
+ // Multiply by twiddle factor
+ TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+ TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+ TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+
+ // Compute DFT N = 4
+ DFT_4(c0, c1, c2, c3);
+
+ // Store four complex output values
+ vstore2(c0, 0, (__global float *)output.ptr);
+ vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+ vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+ vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-5 FFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
+ * @param[in] Ni Nx * Ny.
+ * @param[in] exp_const Exponent constant
+ */
+kernel void fft_radix_5_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+ ,
+ uint Nx, uint Ni, float exp_const)
+{
+ // Each work-item computes a single radix-5
+ uint kx = get_global_id(0);
+
+ // Compute nx
+ uint nx = kx % Nx;
+
+ // Compute n index
+ uint n = nx + (kx / Nx) * Ni;
+
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+ input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+ output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+ // Load five complex input values
+ float2 c0 = vload2(0, (__global float *)input.ptr);
+ float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+ float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+ float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+ float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+
+ // Compute phi
+ float phi = (float)nx * exp_const;
+
+ // Multiply by twiddle factor
+ TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+ TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+ TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+ TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+
+ // Compute DFT N = 5
+ DFT_5(c0, c1, c2, c3, c4);
+
+ // Store five complex output values
+ vstore2(c0, 0, (__global float *)output.ptr);
+ vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+ vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+ vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+ vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-7 FFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
+ * @param[in] Ni Nx * Ny.
+ * @param[in] exp_const Exponent constant
+ */
+kernel void fft_radix_7_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+ ,
+ uint Nx, uint Ni, float exp_const)
+{
+ // Each work-item computes a single radix-7
+ uint kx = get_global_id(0);
+
+ // Compute nx
+ uint nx = kx % Nx;
+
+ // Compute n index
+ uint n = nx + (kx / Nx) * Ni;
+
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+ input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+ output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+ // Load seven complex input values
+ float2 c0 = vload2(0, (__global float *)input.ptr);
+ float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+ float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+ float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+ float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+ float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 5 * Nx, 0, 0));
+ float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 6 * Nx, 0, 0));
+
+ // Compute phi
+ float phi = (float)nx * exp_const;
+
+ // Multiply by twiddle factor
+ TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+ TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+ TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+ TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+ TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
+ TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
+
+ // Compute DFT N = 7
+ DFT_7(c0, c1, c2, c3, c4, c5, c6);
+
+ // Store seven complex output values
+ vstore2(c0, 0, (__global float *)output.ptr);
+ vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+ vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+ vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+ vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+ vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 5 * Nx, 0, 0));
+ vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 6 * Nx, 0, 0));
+}
+
+/** Computes a stage of a radix-8 FFT.
+ *
+ * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time
+ *
+ * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32
+ * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage
+ * @param[in] Ni Nx * Ny.
+ * @param[in] exp_const Exponent constant
+ */
+kernel void fft_radix_8_axis_0(
+ TENSOR3D_DECLARATION(input)
+#ifndef IN_PLACE
+ ,
+ TENSOR3D_DECLARATION(output)
+#endif /* not IN_PLACE */
+ ,
+ uint Nx, uint Ni, float exp_const)
+{
+ // Each work-item computes a single radix-8
+ uint kx = get_global_id(0);
+
+ // Compute nx
+ uint nx = kx % Nx;
+
+ // Compute n index
+ uint n = nx + (kx / Nx) * Ni;
+
+ // Get tensor pointers
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
+ input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z;
+#ifdef IN_PLACE
+ Tensor3D output = input;
+#else /* IN_PLACE */
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
+ output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z;
+#endif /* IN_PLACE */
+
+ // Load eight complex input values
+ float2 c0 = vload2(0, (__global float *)input.ptr);
+ float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0));
+ float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0));
+ float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0));
+ float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0));
+ float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 5 * Nx, 0, 0));
+ float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 6 * Nx, 0, 0));
+ float2 c7 = vload2(0, (__global float *)tensor3D_offset(&input, 7 * Nx, 0, 0));
+
+ // Compute phi
+ float phi = (float)nx * exp_const;
+
+ // Multiply by twiddle factor
+ TWIDDLE_FACTOR_MULTIPLICATION(phi, c1);
+ TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2);
+ TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3);
+ TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4);
+ TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5);
+ TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6);
+ TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7);
+
+ // Compute DFT N = 8
+ DFT_8(c0, c1, c2, c3, c4, c5, c6, c7);
+
+ // Store eight complex output values
+ vstore2(c0, 0, (__global float *)output.ptr);
+ vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0));
+ vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0));
+ vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0));
+ vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0));
+ vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 5 * Nx, 0, 0));
+ vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 6 * Nx, 0, 0));
+ vstore2(c7, 0, (__global float *)tensor3D_offset(&output, 7 * Nx, 0, 0));
+} \ No newline at end of file