aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
diff options
context:
space:
mode:
authorGiorgio Arena <giorgio.arena@arm.com>2021-04-16 12:41:45 +0100
committerGeorgios Pinitas <georgios.pinitas@arm.com>2021-04-20 13:32:10 +0000
commitdcf4c87cf78a5f1667699c1a3511d09356938660 (patch)
tree28aa191a226e4bf4350d622fcb668abaa17e8677 /src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
parent562bee584f3633167725af7915f50d07b0597f10 (diff)
downloadComputeLibrary-dcf4c87cf78a5f1667699c1a3511d09356938660.tar.gz
CLDepthwiseConvolutionLayer rework - Part 1
Remove the reshaped variant for CLDepthwiseConvolutionLayer 3x3 NHWC Quantized - Remove kernel selection by GPUTarget - Remove unused quantized support from the NHWC kernel - Remove CLDepthwiseConvolutionLayerReshapeWeightsKernel - Remove OpenCL kernels for reshaped dwc 3x3 quantized and weights reshape - Remove the "_bifrost" suffix in common OpenCL kernel - Remove the ICLDepthwiseConvolutionLayer3x3Kernel common interface Resolve COMPMID-3864, COMPMID-3907 Change-Id: Icfac0fb6c00e214985beb05dad7c0cdbbee7d830 Signed-off-by: Giorgio Arena <giorgio.arena@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5447 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/depthwise_convolution_quantized.cl')
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution_quantized.cl847
1 files changed, 9 insertions, 838 deletions
diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
index c7fe401f80..000dce1590 100644
--- a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
+++ b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
@@ -334,9 +334,9 @@ __kernel void dwc_3x3_native_quantized8_nchw(
#else // defined(REAL_MULTIPLIER)
#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
- int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
- values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
+ int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
#else // defined(PER_CHANNEL_QUANTIZATION)
#if OUTPUT_SHIFT < 0
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
@@ -360,9 +360,9 @@ __kernel void dwc_3x3_native_quantized8_nchw(
#else // defined(REAL_MULTIPLIER)
#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
- int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
- values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
+ int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
#else // defined(PER_CHANNEL_QUANTIZATION)
#if OUTPUT_SHIFT < 0
values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
@@ -446,8 +446,8 @@ __kernel void dwc_3x3_native_quantized8_nchw(
VEC_TYPE(16) \
temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
VEC_TYPE(8) \
- temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE)))); \
- left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
+ temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
+ left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
\
temp0 = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))); \
@@ -776,835 +776,6 @@ __kernel void dwc_3x3_native_quantized8_dot8_nchw(
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && VEC_SIZE == 4
-/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width or height is not 1.
- *
- * @note This kernel assumes VEC_SIZE is 4.
- * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
- * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
- * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor reshaped. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset Max offset for the input tensor
- */
-__kernel void dwc_3x3_reshaped_quantized8_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- IMAGE_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts),
-#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
-#endif /* defined(HAS_BIAS) */
- int max_offset)
-{
- const int x = get_global_id(0); // channels
- const int y = get_global_id(1); // spatial coordinate x
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
-#endif /* defined(DST_DEPTH) */
-
- int z_coord = 0;
- int4 offset = 0;
- int4 y_coord = ((int4)(y * CONV_STRIDE_X) + (int4)(0, DILATION_X * 1, DILATION_X * 2, DILATION_X * 3)) - (int)CONV_PAD_LEFT;
-
- // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
- y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
- y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
- y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
- y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
-
- int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
-
- // We compute VEC_SIZEx1x1 [C,W,H] elements
- VEC_INT acc = 0, sum = 0;
-
- // Load weights
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w0_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w1_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w8 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * 16));
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w0 = w0_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w1 = w0_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w2 = w0_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w3 = w0_tmp.sCDEF;
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w4 = w1_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w5 = w1_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w6 = w1_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w7 = w1_tmp.sCDEF;
-
-#if INPUT_OFFSET != 0
- VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
- + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT)
- + CONVERT(w6, VEC_INT) + CONVERT(w7, VEC_INT) + CONVERT(w8, VEC_INT);
-#endif /* INPUT_OFFSET != 0 */
-
- // Load input values
- // z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- // z == 1
- // z_coord can be only negative for z = 0 so we do not need to clamp it
- // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- // z == 2
- // Offset can be out-of-bound so we need to check if it is greater than max_offset
- z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y * 2;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- MULTIPLY_ADD_ACCUMULATE(values0, w0, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values1, w1, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values2, w2, acc, sum);
-
- MULTIPLY_ADD_ACCUMULATE(values3, w3, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values4, w4, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values5, w5, acc, sum);
-
- MULTIPLY_ADD_ACCUMULATE(values6, w6, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values7, w7, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values8, w8, acc, sum);
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
- VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr);
- acc += bias_values;
-#endif // defined(HAS_BIAS)
-
-#if WEIGHTS_OFFSET != 0
- acc += WEIGHTS_OFFSET * sum;
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- acc += INPUT_OFFSET * sum_we;
-#endif /* INPUT_OFFSET != 0 */
-
-#if K_OFFSET != 0
- acc += (VEC_INT)K_OFFSET;
-#endif /* K_OFFSET != 0 */
-
-#if defined(REAL_MULTIPLIER)
-
- acc = CONVERT(round(CONVERT(acc, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT(output_multipliers);
- Vector output_shifts = CONVERT_TO_VECTOR_STRUCT(output_shifts);
- VEC_INT output_multiplier = VLOAD(VEC_SIZE)(0, (__global int *)output_multipliers.ptr);
- VEC_INT output_shift = VLOAD(VEC_SIZE)(0, (__global int *)output_shifts.ptr);
-
- VEC_INT res_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc, output_multiplier, output_shift);
- acc = select(res_shift_lt0, res_shift_gt0, output_shift >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- acc = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
-#else // OUTPUT_SHIFT < 0
- acc = asymm_mult_by_quant_multiplier_less_than_one(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-#endif // OUTPUT_SHIFT < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- acc += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res = CONVERT_SAT(acc, VEC_TYPE(VEC_SIZE));
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res), 0, (__global DATA_TYPE *)(dst_addr));
-}
-#endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
-
-#if defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED) && VEC_SIZE == 4
-/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1.
- *
- * @note This kernel assumes VEC_SIZE is 4.
- * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2)
- * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1).
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset Max offset for the input tensor
- */
-
-__kernel void dwc_3x3_reshaped_quantized8_stride1_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- IMAGE_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts),
-#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
-#endif /* defined(HAS_BIAS) */
- int max_offset)
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
-#endif /* defined(DST_DEPTH) */
-
- int z_coord = 0;
- int4 offset = 0;
- int4 y_coord = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
-
- // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
- y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
- y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
- y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
- y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
-
- int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
-
- // We compute 4x2x2 [C,W,H] elements
- VEC_INT acc0 = 0, sum0 = 0;
- VEC_INT acc1 = 0, sum1 = 0;
- VEC_INT acc2 = 0, sum2 = 0;
- VEC_INT acc3 = 0, sum3 = 0;
-
- // Load weights
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w0_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w1_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w8 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * 16));
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w0 = w0_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w1 = w0_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w2 = w0_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w3 = w0_tmp.sCDEF;
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w4 = w1_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w5 = w1_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w6 = w1_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w7 = w1_tmp.sCDEF;
-
-#if INPUT_OFFSET != 0
- VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
- + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT)
- + CONVERT(w6, VEC_INT) + CONVERT(w7, VEC_INT) + CONVERT(w8, VEC_INT);
-#endif /* INPUT_OFFSET != 0 */
-
- // Load input values
- // z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 1
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 2
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 2;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 3
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 3;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- MULTIPLY_ADD_ACCUMULATE(values0, w0, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values1, w1, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values2, w2, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values1, w0, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values2, w1, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values3, w2, acc1, sum1);
-
- MULTIPLY_ADD_ACCUMULATE(values4, w3, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values5, w4, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values6, w5, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values5, w3, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values6, w4, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values7, w5, acc1, sum1);
-
- MULTIPLY_ADD_ACCUMULATE(values8, w6, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values9, w7, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values10, w8, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values9, w6, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values10, w7, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values11, w8, acc1, sum1);
-
- MULTIPLY_ADD_ACCUMULATE(values4, w0, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values5, w1, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values6, w2, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values5, w0, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values6, w1, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values7, w2, acc3, sum3);
-
- MULTIPLY_ADD_ACCUMULATE(values8, w3, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values9, w4, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values10, w5, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values9, w3, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values10, w4, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values11, w5, acc3, sum3);
-
- MULTIPLY_ADD_ACCUMULATE(values12, w6, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values13, w7, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values14, w8, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values13, w6, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values14, w7, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values15, w8, acc3, sum3);
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-
- VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr);
-
- acc0 += bias_values;
- acc1 += bias_values;
- acc2 += bias_values;
- acc3 += bias_values;
-#endif /* defined(HAS_BIAS) */
-
-#if WEIGHTS_OFFSET != 0
- acc0 += WEIGHTS_OFFSET * sum0;
- acc1 += WEIGHTS_OFFSET * sum1;
- acc2 += WEIGHTS_OFFSET * sum2;
- acc3 += WEIGHTS_OFFSET * sum3;
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- VEC_INT offs = INPUT_OFFSET * sum_we;
-
- acc0 += offs;
- acc1 += offs;
- acc2 += offs;
- acc3 += offs;
-#endif /* INPUT_OFFSET != 0 */
-
-#if K_OFFSET != 0
- acc0 += (VEC_INT)K_OFFSET;
- acc1 += (VEC_INT)K_OFFSET;
- acc2 += (VEC_INT)K_OFFSET;
- acc3 += (VEC_INT)K_OFFSET;
-#endif /* K_OFFSET != 0 */
-
-#if defined(REAL_MULTIPLIER)
-
- acc0 = CONVERT(round(CONVERT(acc0, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc2 = CONVERT(round(CONVERT(acc2, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc3 = CONVERT(round(CONVERT(acc3, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT(output_multipliers);
- Vector output_shifts = CONVERT_TO_VECTOR_STRUCT(output_shifts);
- VEC_INT output_multiplier = VLOAD(VEC_SIZE)(0, (__global int *)output_multipliers.ptr);
- VEC_INT output_shift = VLOAD(VEC_SIZE)(0, (__global int *)output_shifts.ptr);
-
- VEC_INT res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc0, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc1, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res2_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc2, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res3_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc3, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res0_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, output_multiplier, output_shift);
- VEC_INT res1_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc1, output_multiplier, output_shift);
- VEC_INT res2_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc2, output_multiplier, output_shift);
- VEC_INT res3_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc3, output_multiplier, output_shift);
- acc0 = select(res0_shift_lt0, res0_shift_gt0, output_shift >= 0);
- acc1 = select(res1_shift_lt0, res1_shift_gt0, output_shift >= 0);
- acc2 = select(res2_shift_lt0, res2_shift_gt0, output_shift >= 0);
- acc3 = select(res3_shift_lt0, res3_shift_gt0, output_shift >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- acc0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc2 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc3 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
-#else // OUTPUT_SHIFT < 0
- acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc2 = asymm_mult_by_quant_multiplier_less_than_one(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc3 = asymm_mult_by_quant_multiplier_less_than_one(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-#endif // OUTPUT_SHIFT < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- acc0 += (VEC_INT)OUTPUT_OFFSET;
- acc1 += (VEC_INT)OUTPUT_OFFSET;
- acc2 += (VEC_INT)OUTPUT_OFFSET;
- acc3 += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res0 = CONVERT_SAT(acc0, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res1 = CONVERT_SAT(acc1, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res2 = CONVERT_SAT(acc2, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res3 = CONVERT_SAT(acc3, VEC_TYPE(VEC_SIZE));
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res0), 0, dst_addr + 0 * dst_stride_y);
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res1), 0, dst_addr + 1 * dst_stride_y);
-
-#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2)
-#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- {
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res2), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + 1 * dst_stride_z));
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res3), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + 1 * dst_stride_z));
- }
-}
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) && VEC_SIZE == 4
-/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1 using dot product.
- *
- * @note Per-channel quantization is not supported by this kernel.
- * @note This kernel assumes VEC_SIZE is 4.
- * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2)
- * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1).
- * @note If REAL_MULTIPLIER is passed at compile time (i.e. -DREAL_MULTIPLIER=1.355f), the final quantization is performed using a floating point multiplication.
- * If not, the quantization will be performed using a fixed point multiplication
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset The maximum allowed offset for the input tensor
- */
-__kernel void dwc_3x3_reshaped_quantized8_dot8_stride1_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- IMAGE_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts),
-#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
-#endif // defined(HAS_BIAS)
- int max_offset)
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
-#endif /* defined(DST_DEPTH) */
-
- int z_coord = 0;
- int4 offset = 0;
- int4 y_coord = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
-
- // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
- y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
- y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
- y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
- y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
-
- int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
-
- // We compute 4x2x1 [C,W,H] elements
- VEC_INT acc0 = 0;
- VEC_INT acc1 = 0;
- VEC_INT sum0 = 0;
- VEC_INT sum1 = 0;
-
- // Load weights
- VEC_TYPE(16)
- w0 = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
- VEC_TYPE(16)
- w1 = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
- VEC_TYPE(4)
- w2 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 32));
-
-#if INPUT_OFFSET != 0
- // Initilize the final result with the weights reduction multiplied by INPUT_OFFSET
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s0, w0.s01234567, w0.s8);
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s2, w1.s23456789, w1.sA);
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
-
- // Multiply the weights reduction with INPUT_OFFSET
- acc0 = INPUT_OFFSET * acc0;
-
- acc1 = acc0;
-#endif // INPUT_OFFSET != 0
-
- // Load input values
- // z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = y_offset + (int4)(z_coord * src_stride_z);
- offset = min(offset, (int4)max_offset);
-
- VEC_TYPE(VEC_SIZE)
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 1
- // z_coord can be only negative for z = 0 so we do not need to clamp it
- // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z - (int)CONV_PAD_TOP + 1;
- offset = y_offset + (int4)(z_coord * src_stride_z);
- VEC_TYPE(VEC_SIZE)
- values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 2
- // After z = 1 we can simply add src_stride_z to offset without updating z_coord
- // However offset can be out-of-bound so we need to check if it is greater than max_offset
- offset += (int4)src_stride_z;
- offset = min(offset, (int4)max_offset);
- VEC_TYPE(VEC_SIZE)
- values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- DOT_PRODUCT_REDUCTION(sum0.s0, values0.s0, values1.s0, values2.s0, values4.s0, values5.s0, values6.s0, values8.s0, values9.s0, values10.s0);
- DOT_PRODUCT_REDUCTION(sum1.s0, values1.s0, values2.s0, values3.s0, values5.s0, values6.s0, values7.s0, values9.s0, values10.s0, values11.s0);
- DOT_PRODUCT(acc0.s0, values0.s0, values1.s0, values2.s0, values4.s0, values5.s0, values6.s0, values8.s0, values9.s0, values10.s0, w0.s01234567, w0.s8);
- DOT_PRODUCT(acc1.s0, values1.s0, values2.s0, values3.s0, values5.s0, values6.s0, values7.s0, values9.s0, values10.s0, values11.s0, w0.s01234567, w0.s8);
-
- DOT_PRODUCT_REDUCTION(sum0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1);
- DOT_PRODUCT_REDUCTION(sum1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1);
- DOT_PRODUCT(acc0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
- DOT_PRODUCT(acc1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
-
- DOT_PRODUCT_REDUCTION(sum0.s2, values0.s2, values1.s2, values2.s2, values4.s2, values5.s2, values6.s2, values8.s2, values9.s2, values10.s2);
- DOT_PRODUCT_REDUCTION(sum1.s2, values1.s2, values2.s2, values3.s2, values5.s2, values6.s2, values7.s2, values9.s2, values10.s2, values11.s2);
- DOT_PRODUCT(acc0.s2, values0.s2, values1.s2, values2.s2, values4.s2, values5.s2, values6.s2, values8.s2, values9.s2, values10.s2, w1.s23456789, w1.sA);
- DOT_PRODUCT(acc1.s2, values1.s2, values2.s2, values3.s2, values5.s2, values6.s2, values7.s2, values9.s2, values10.s2, values11.s2, w1.s23456789, w1.sA);
-
- DOT_PRODUCT_REDUCTION(sum0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3);
- DOT_PRODUCT_REDUCTION(sum1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3);
- DOT_PRODUCT(acc0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
- DOT_PRODUCT(acc1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-
- VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr);
-
- acc0 += bias_values;
- acc1 += bias_values;
-
-#endif // defined(HAS_BIAS)
-
-#if WEIGHTS_OFFSET != 0
- acc0 += WEIGHTS_OFFSET * sum0;
- acc1 += WEIGHTS_OFFSET * sum1;
-#endif // WEIGHTS_OFFSET != 0
-
-#if K_OFFSET != 0
- acc0 += (VEC_INT)K_OFFSET;
- acc1 += (VEC_INT)K_OFFSET;
-
-#endif // K_OFFSET != 0
-
-#if defined(REAL_MULTIPLIER)
-
- acc0 = CONVERT(round(CONVERT(acc0, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if OUTPUT_SHIFT < 0
- acc0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
-#else // OUTPUT_SHIFT < 0
- acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-#endif // OUTPUT_SHIFT < 0
-
-#endif // defined(REAL_MULTIPLIER)
- acc0 += (VEC_INT)OUTPUT_OFFSET;
- acc1 += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res0 = CONVERT_SAT(acc0, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res1 = CONVERT_SAT(acc1, VEC_TYPE(VEC_SIZE));
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res0), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res1), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
-}
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) && VEC_SIZE==4
-
-#endif // defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
-
#endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
#endif // defined(WEIGHTS_PROMOTED_TYPE)
@@ -1612,7 +783,7 @@ __kernel void dwc_3x3_reshaped_quantized8_dot8_stride1_nhwc(
#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_SHIFT) && defined(OUTPUT_MULTIPLIER) && defined(VEC_SIZE_LEFTOVER)
-/** This function computes the depthwise convolution for NHWC data layout. This kernel assumes that the weights tensor is NOT reshaped
+/** This function computes the depthwise convolution for NHWC data layout.
*
* @note The number of elements processed must be passed at compile time using -DN0 (e.g. -DN0=2)
* @note The depth multiplier must be passed at compile time using -DDEPTH_MULTIPLIER (e.g. -DDEPTH_MULTIPLIER=1)