aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2021-06-30 08:39:44 +0000
committerSiCong Li <sicong.li@arm.com>2021-06-30 14:03:17 +0000
commitc63b722591ff23c8c6fe5fb8ef8c8516d40f03aa (patch)
treecbcf05d2daf6cf0b4f5f73d289cdd0356a57b7b9 /src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
parent4a578b923ed000c67fe0bc1433f945aea634ca9c (diff)
downloadComputeLibrary-c63b722591ff23c8c6fe5fb8ef8c8516d40f03aa.tar.gz
Revert "Rework OpenCL Depthwise Convolution"
This reverts commit 561c176598cd14245e2e7918fdf136d1c888d1da. Reason for revert: <validation> Change-Id: I6f2d61c27520439bb538e9265736532104b24cf8 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5127 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/depthwise_convolution_quantized.cl')
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution_quantized.cl961
1 files changed, 961 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
new file mode 100644
index 0000000000..000dce1590
--- /dev/null
+++ b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
@@ -0,0 +1,961 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "helpers_asymm.h"
+
+#ifndef VEC_SIZE
+#if defined(N0)
+#define VEC_SIZE N0
+#else /* defined(N0) */
+#define VEC_SIZE 8
+#endif /* defined(N0) */
+#endif /* VEC_SIZE */
+
+#if defined(ACTIVATION_TYPE) && defined(CONST_0)
+#include "activation_layer_quant.cl"
+#define ACTIVATION_FUNC(x) PERFORM_ACTIVATION_QUANT(ACTIVATION_TYPE, x)
+#else /* defined(ACTIVATION_TYPE) && defined(CONST_0) */
+#define ACTIVATION_FUNC(x) (x)
+#endif /* defined(ACTIVATION_TYPE) && defined(CONST_0) */
+
+#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
+#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
+#define VEC_SHORT VEC_DATA_TYPE(short, VEC_SIZE)
+
+#if defined(DATA_TYPE) && defined(WEIGHTS_TYPE)
+
+#define VEC_TYPE(size) VEC_DATA_TYPE(DATA_TYPE, size)
+
+#if defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
+
+#if defined(WEIGHTS_PROMOTED_TYPE)
+#define VEC_WEIGHTS_PROMOTED_TYPE(size) VEC_DATA_TYPE(WEIGHTS_PROMOTED_TYPE, size)
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#define ARM_DOT(x, y, val) val = arm_dot_acc((x), (y), val);
+#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#define ARM_DOT(x, y, val) val += arm_dot((x), (y));
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#if defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS)
+
+#if CONV_STRIDE_X > 3
+#error "Stride X not supported"
+#endif /* CONV_STRIDE_X > 3 */
+
+#if !defined(IS_DOT8)
+
+#if DILATION_X == 1
+
+#if CONV_STRIDE_X == 1
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ int8 temp0 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value)), int8); \
+ int2 temp1 = CONVERT(vload2(0, (__global DATA_TYPE *)(first_value + 8 * sizeof(DATA_TYPE))), int2); \
+ \
+ left = CONVERT(temp0.s01234567, int8); \
+ middle = CONVERT((int8)(temp0.s1234, temp0.s567, temp1.s0), int8); \
+ right = CONVERT((int8)(temp0.s2345, temp0.s67, temp1.s01), int8); \
+ })
+#elif CONV_STRIDE_X == 2
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
+ int temp1 = CONVERT(*((__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int); \
+ \
+ left = CONVERT(temp0.s02468ace, int8); \
+ middle = CONVERT(temp0.s13579bdf, int8); \
+ right = CONVERT((int8)(temp0.s2468, temp0.sace, temp1), int8); \
+ })
+#else /* CONV_STRIDE_X */
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
+ int8 temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int8); \
+ \
+ left = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
+ middle = CONVERT((int8)(temp0.s147a, temp0.sd, temp1.s036), int8); \
+ right = CONVERT((int8)(temp0.s258b, temp0.se, temp1.s147), int8); \
+ })
+#endif /* CONV_STRIDE_X */
+
+#else /* DILATION_X == 1 */
+
+#if CONV_STRIDE_X == 1
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ left = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value)), int8); \
+ middle = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int8); \
+ right = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int8); \
+ })
+#elif CONV_STRIDE_X == 2
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
+ left = CONVERT(temp0.s02468ace, int8); \
+ \
+ temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int16); \
+ middle = CONVERT(temp0.s02468ace, int8); \
+ \
+ temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int16); \
+ right = CONVERT(temp0.s02468ace, int8); \
+ })
+#else /* CONV_STRIDE_X */
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ int16 temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value)), int16); \
+ int8 temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))), int8); \
+ left = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
+ \
+ temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))), int16); \
+ temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))), int8); \
+ middle = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
+ \
+ temp0 = CONVERT(vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))), int16); \
+ temp1 = CONVERT(vload8(0, (__global DATA_TYPE *)(first_value + (16 + 2 * DILATION_X) * sizeof(DATA_TYPE))), int8); \
+ right = CONVERT((int8)(temp0.s0369, temp0.scf, temp1.s25), int8); \
+ })
+
+#endif /* CONV_STRIDE_X */
+#endif /* DILATION_X==1 */
+
+/** This function computes the depthwise convolution quantized.
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
+ * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
+ */
+
+__kernel void dwc_3x3_native_quantized8_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst),
+ TENSOR3D_DECLARATION(weights),
+ VECTOR_DECLARATION(output_multipliers),
+ VECTOR_DECLARATION(output_shifts)
+#if defined(HAS_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif //defined(HAS_BIAS)
+)
+{
+ __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z;
+ Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
+ Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
+ Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_multipliers);
+ Vector output_shifts = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_shifts);
+
+ // Extract channel and linearized batch indices
+ const int channel = get_global_id(2) % DST_CHANNELS;
+ const int batch = get_global_id(2) / DST_CHANNELS;
+
+#if defined(HAS_BIAS)
+ Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
+
+ int bias_value = *((__global int *)(vector_offset(&biases, channel)));
+#endif //defined(HAS_BIAS)
+
+ // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
+ src_addr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
+ __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
+
+ VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
+ w0 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 0 * weights_stride_y));
+ VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
+ w1 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 1 * weights_stride_y));
+ VEC_DATA_TYPE(WEIGHTS_TYPE, 3)
+ w2 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * weights_stride_y));
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, channel));
+ const int output_shift = *((__global int *)vector_offset(&output_shifts, channel));
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+ int8 values0 = 0;
+ int8 sum0 = 0;
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ int8 values1 = 0;
+ int8 sum1 = 0;
+#endif /* CONV_STRIDE_Y &&DILATION_Y==1 */
+
+ // Row0
+ int8 left, middle, right;
+ GET_VALUES(src_addr + 0 * src_stride_y, left, middle, right);
+ values0 += left * (int8)(w0.s0);
+ values0 += middle * (int8)(w0.s1);
+ values0 += right * (int8)(w0.s2);
+
+#if WEIGHTS_OFFSET != 0
+ sum0 += left + middle + right;
+#endif /* WEIGHTS_OFFSET != 0 */
+
+ // Row1
+ GET_VALUES(src_addr + DILATION_Y * src_stride_y, left, middle, right);
+ values0 += left * (int8)(w1.s0);
+ values0 += middle * (int8)(w1.s1);
+ values0 += right * (int8)(w1.s2);
+
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += left * (int8)(w0.s0);
+ values1 += middle * (int8)(w0.s1);
+ values1 += right * (int8)(w0.s2);
+#endif /* CONV_STRIDE_Y && DILATION_Y== 1 */
+
+#if WEIGHTS_OFFSET != 0
+ int8 tmp = left + middle + right;
+ sum0 += tmp;
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ sum1 += tmp;
+#endif /* CONV_STRIDE_Y &&DILATION_Y== 1 */
+#endif /* WEIGHTS_OFFSET != 0 */
+
+ // Row2
+ GET_VALUES(src_addr + 2 * DILATION_Y * src_stride_y, left, middle, right);
+ values0 += left * (int8)(w2.s0);
+ values0 += middle * (int8)(w2.s1);
+ values0 += right * (int8)(w2.s2);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += left * (int8)(w1.s0);
+ values1 += middle * (int8)(w1.s1);
+ values1 += right * (int8)(w1.s2);
+#endif /* CONV_STRIDE_Y &&DILATION_Y == 1 */
+
+#if WEIGHTS_OFFSET != 0
+ tmp = left + middle + right;
+ sum0 += tmp;
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ sum1 += tmp;
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
+#endif /* WEIGHTS_OFFSET != 0 */
+
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ // Row3
+ GET_VALUES(src_addr + 3 * src_stride_y, left, middle, right);
+ values1 += left * (int8)(w2.s0);
+ values1 += middle * (int8)(w2.s1);
+ values1 += right * (int8)(w2.s2);
+
+#if WEIGHTS_OFFSET != 0
+ sum1 += left + middle + right;
+#endif /* WEIGHTS_OFFSET != 0 */
+#endif /* CONV_STRIDE_Y && DILATION_Y == 1 */
+
+#if defined(HAS_BIAS)
+ values0 += (int8)(bias_value);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += (int8)(bias_value);
+#endif /* CONV_STRIDE_Y & &DILATION_Y == 1 */
+#endif //defined(HAS_BIAS)
+
+#if WEIGHTS_OFFSET != 0
+ values0 += sum0 * (int8)(WEIGHTS_OFFSET);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += sum1 * (int8)(WEIGHTS_OFFSET);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
+#endif /* WEIGHTS_OFFSET != 0 */
+
+#if INPUT_OFFSET != 0
+ VEC_WEIGHTS_PROMOTED_TYPE(3)
+ tmp_we = CONVERT(w0, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w1, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w2, VEC_WEIGHTS_PROMOTED_TYPE(3));
+
+ WEIGHTS_PROMOTED_TYPE sum_weights = tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
+ values0 += sum_weights * (int8)(INPUT_OFFSET);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += sum_weights * (int8)(INPUT_OFFSET);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
+#endif /* INPUT_OFFSET != 0 */
+
+#if K_OFFSET != 0
+ values0 += (int8)(K_OFFSET);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += (int8)(K_OFFSET);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
+#endif /* K_OFFSET != 0 */
+
+#if defined(REAL_MULTIPLIER)
+
+ values0 = CONVERT(round(CONVERT(values0, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+#if OUTPUT_SHIFT < 0
+ values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#else // OUTPUT_SHIFT < 0
+ values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#endif // OUTPUT_OFFSET < 0
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+#endif // defined(REAL_MULTIPLIER)
+
+ values0 += (int8)OUTPUT_OFFSET;
+ VEC_TYPE(8)
+ res0 = CONVERT_SAT(values0, VEC_TYPE(8));
+
+ vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+#if defined(REAL_MULTIPLIER)
+
+ values1 = CONVERT(round(CONVERT(values1, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+#if OUTPUT_SHIFT < 0
+ values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#else // OUTPUT_SHIFT < 0
+ values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#endif // OUTPUT_OFFSET < 0
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+#endif // defined(REAL_MULTIPLIER)
+
+ values1 += (int8)OUTPUT_OFFSET;
+ VEC_TYPE(8)
+ res1 = CONVERT_SAT(values1, VEC_TYPE(8));
+
+ vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
+}
+
+#else // !defined(IS_DOT8)
+
+#if DILATION_X == 1
+#if CONV_STRIDE_X == 1
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ VEC_TYPE(8) \
+ temp0 = vload8(0, (__global DATA_TYPE *)(first_value)); \
+ VEC_TYPE(2) \
+ temp1 = vload2(0, (__global DATA_TYPE *)(first_value + 8 * sizeof(DATA_TYPE))); \
+ \
+ left = temp0.s01234567; \
+ middle = (VEC_TYPE(8))(temp0.s1234, temp0.s567, temp1.s0); \
+ right = (VEC_TYPE(8))(temp0.s2345, temp0.s67, temp1.s01); \
+ })
+#elif CONV_STRIDE_X == 2
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ VEC_TYPE(16) \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
+ DATA_TYPE temp1 = *((__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
+ \
+ left = temp0.s02468ace; \
+ middle = temp0.s13579bdf; \
+ right = (VEC_TYPE(8))(temp0.s2468, temp0.sace, temp1); \
+ })
+#else /* CONV_STRIDE_X */
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ VEC_TYPE(16) \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
+ VEC_TYPE(8) \
+ temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
+ \
+ left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
+ middle = (VEC_TYPE(8))(temp0.s147a, temp0.sd, temp1.s036); \
+ right = (VEC_TYPE(8))(temp0.s258b, temp0.se, temp1.s147); \
+ })
+#endif /* CONV_STRIDE_X */
+#else /*DILATION_X==1*/
+
+#if CONV_STRIDE_X == 1
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ left = vload8(0, (__global DATA_TYPE *)(first_value)); \
+ middle = vload8(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
+ right = vload8(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
+ })
+#elif CONV_STRIDE_X == 2
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ VEC_TYPE(16) \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
+ left = temp0.s02468ace; \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
+ middle = temp0.s02468ace; \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
+ right = temp0.s02468ace; \
+ })
+#else /* CONV_STRIDE_X */
+#define GET_VALUES(first_value, left, middle, right) \
+ ({ \
+ VEC_TYPE(16) \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
+ VEC_TYPE(8) \
+ temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
+ left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
+ \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
+ temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))); \
+ middle = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
+ \
+ temp0 = vload16(0, (__global DATA_TYPE *)(first_value + 2 * DILATION_X * sizeof(DATA_TYPE))); \
+ temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + 2 * DILATION_X) * sizeof(DATA_TYPE))); \
+ right = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
+ })
+
+#endif /* CONV_STRIDE_X */
+#endif /*DILATION_X==1*/
+/** This function computes the depthwise convolution quantized using dot product when the data layout is NCHW.
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
+ * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
+ */
+
+__kernel void dwc_3x3_native_quantized8_dot8_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst),
+ TENSOR3D_DECLARATION(weights),
+ VECTOR_DECLARATION(output_multipliers),
+ VECTOR_DECLARATION(output_shifts)
+#if defined(HAS_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif //defined(HAS_BIAS)
+)
+{
+ __global uchar *src_addr = src_ptr + get_global_id(0) * src_step_x + get_global_id(1) * src_step_y + get_global_id(2) * src_step_z;
+ Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst);
+ Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
+ Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_multipliers);
+ Vector output_shifts = CONVERT_TO_VECTOR_STRUCT_NO_STEP(output_shifts);
+
+ // Extract channel and linearized batch indices
+ const int channel = get_global_id(2) % DST_CHANNELS;
+ const int batch = get_global_id(2) / DST_CHANNELS;
+
+#if defined(HAS_BIAS)
+ Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
+
+ const int bias_value = *((__global int *)(vector_offset(&biases, channel)));
+#endif //defined(HAS_BIAS)
+
+ // Load relevant input and weights data (Accounts depth multiplier when indexing input, OFM = IFM * DEPTH_MULTIPLIER)
+ src_addr -= batch * (DST_CHANNELS / DEPTH_MULTIPLIER) * (DEPTH_MULTIPLIER - 1) * src_step_z + (channel - (channel / DEPTH_MULTIPLIER)) * src_step_z;
+ __global uchar *weights_addr = weights.ptr + get_global_id(0) * weights_step_x + get_global_id(1) * weights_step_y + channel * weights_step_z;
+
+ VEC_TYPE(3)
+ w0 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 0 * weights_stride_y));
+ VEC_TYPE(3)
+ w1 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 1 * weights_stride_y));
+ VEC_TYPE(3)
+ w2 = vload3(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * weights_stride_y));
+
+ const int output_multiplier = *((__global int *)vector_offset(&output_multipliers, 0));
+ const int output_shift = *((__global int *)vector_offset(&output_shifts, 0));
+
+ VEC_TYPE(8)
+ left0, middle0, right0;
+ VEC_TYPE(8)
+ left1, middle1, right1;
+ VEC_TYPE(8)
+ left2, middle2, right2;
+
+ int8 values0 = 0;
+ int8 sum0 = 0;
+
+ GET_VALUES(src_addr + 0 * src_stride_y, left0, middle0, right0);
+ GET_VALUES(src_addr + DILATION_Y * src_stride_y, left1, middle1, right1);
+ GET_VALUES(src_addr + 2 * DILATION_Y * src_stride_y, left2, middle2, right2);
+
+#if WEIGHTS_OFFSET != 0
+ sum0 += convert_int8(left0) + convert_int8(middle0) + convert_int8(right0);
+ sum0 += convert_int8(left1) + convert_int8(middle1) + convert_int8(right1);
+ sum0 += convert_int8(left2) + convert_int8(middle2) + convert_int8(right2);
+#endif /* WEIGHTS_OFFSET != 0 */
+
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ // If conv_stride_y is equals to 1, we compute two output rows
+
+ VEC_TYPE(8)
+ left3, middle3, right3;
+ int8 values1 = 0;
+ int8 sum1 = 0;
+
+ GET_VALUES(src_addr + 3 * src_stride_y, left3, middle3, right3);
+
+#if WEIGHTS_OFFSET != 0
+ sum1 += convert_int8(left1) + convert_int8(middle1) + convert_int8(right1);
+ sum1 += convert_int8(left2) + convert_int8(middle2) + convert_int8(right2);
+ sum1 += convert_int8(left3) + convert_int8(middle3) + convert_int8(right3);
+#endif /* WEIGHTS_OFFSET != 0 */
+#endif // CONV_STRIDE_Y == 1 && DILATION_Y==1
+
+ ARM_DOT((VEC_TYPE(4))(left0.s0, middle0.s0, right0.s0, left1.s0), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s0);
+ ARM_DOT((VEC_TYPE(4))(middle1.s0, right1.s0, left2.s0, middle2.s0), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s0);
+ values0.s0 += right2.s0 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s1, middle0.s1, right0.s1, left1.s1), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s1);
+ ARM_DOT((VEC_TYPE(4))(middle1.s1, right1.s1, left2.s1, middle2.s1), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s1);
+ values0.s1 += right2.s1 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s2, middle0.s2, right0.s2, left1.s2), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s2);
+ ARM_DOT((VEC_TYPE(4))(middle1.s2, right1.s2, left2.s2, middle2.s2), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s2);
+ values0.s2 += right2.s2 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s3, middle0.s3, right0.s3, left1.s3), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s3);
+ ARM_DOT((VEC_TYPE(4))(middle1.s3, right1.s3, left2.s3, middle2.s3), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s3);
+ values0.s3 += right2.s3 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s4, middle0.s4, right0.s4, left1.s4), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s4);
+ ARM_DOT((VEC_TYPE(4))(middle1.s4, right1.s4, left2.s4, middle2.s4), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s4);
+ values0.s4 += right2.s4 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s5, middle0.s5, right0.s5, left1.s5), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s5);
+ ARM_DOT((VEC_TYPE(4))(middle1.s5, right1.s5, left2.s5, middle2.s5), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s5);
+ values0.s5 += right2.s5 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s6, middle0.s6, right0.s6, left1.s6), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s6);
+ ARM_DOT((VEC_TYPE(4))(middle1.s6, right1.s6, left2.s6, middle2.s6), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s6);
+ values0.s6 += right2.s6 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left0.s7, middle0.s7, right0.s7, left1.s7), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values0.s7);
+ ARM_DOT((VEC_TYPE(4))(middle1.s7, right1.s7, left2.s7, middle2.s7), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values0.s7);
+ values0.s7 += right2.s7 * w2.s2;
+
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ ARM_DOT((VEC_TYPE(4))(left1.s0, middle1.s0, right1.s0, left2.s0), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s0);
+ ARM_DOT((VEC_TYPE(4))(middle2.s0, right2.s0, left3.s0, middle3.s0), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s0);
+ values1.s0 += right3.s0 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s1, middle1.s1, right1.s1, left2.s1), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s1);
+ ARM_DOT((VEC_TYPE(4))(middle2.s1, right2.s1, left3.s1, middle3.s1), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s1);
+ values1.s1 += right3.s1 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s2, middle1.s2, right1.s2, left2.s2), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s2);
+ ARM_DOT((VEC_TYPE(4))(middle2.s2, right2.s2, left3.s2, middle3.s2), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s2);
+ values1.s2 += right3.s2 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s3, middle1.s3, right1.s3, left2.s3), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s3);
+ ARM_DOT((VEC_TYPE(4))(middle2.s3, right2.s3, left3.s3, middle3.s3), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s3);
+ values1.s3 += right3.s3 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s4, middle1.s4, right1.s4, left2.s4), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s4);
+ ARM_DOT((VEC_TYPE(4))(middle2.s4, right2.s4, left3.s4, middle3.s4), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s4);
+ values1.s4 += right3.s4 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s5, middle1.s5, right1.s5, left2.s5), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s5);
+ ARM_DOT((VEC_TYPE(4))(middle2.s5, right2.s5, left3.s5, middle3.s5), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s5);
+ values1.s5 += right3.s5 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s6, middle1.s6, right1.s6, left2.s6), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s6);
+ ARM_DOT((VEC_TYPE(4))(middle2.s6, right2.s6, left3.s6, middle3.s6), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s6);
+ values1.s6 += right3.s6 * w2.s2;
+
+ ARM_DOT((VEC_TYPE(4))(left1.s7, middle1.s7, right1.s7, left2.s7), (VEC_TYPE(4))(w0.s0, w0.s1, w0.s2, w1.s0), values1.s7);
+ ARM_DOT((VEC_TYPE(4))(middle2.s7, right2.s7, left3.s7, middle3.s7), (VEC_TYPE(4))(w1.s1, w1.s2, w2.s0, w2.s1), values1.s7);
+ values1.s7 += right3.s7 * w2.s2;
+#endif // CONV_STRIDE_Y == 1 && DILATION_Y==1
+
+#if defined(HAS_BIAS)
+ values0 += (int8)(bias_value);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += (int8)(bias_value);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
+#endif //defined(HAS_BIAS)
+
+#if WEIGHTS_OFFSET != 0
+ values0 += sum0 * (int8)(WEIGHTS_OFFSET);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += sum1 * (int8)(WEIGHTS_OFFSET);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1 */
+#endif /* WEIGHTS_OFFSET != 0 */
+
+#if INPUT_OFFSET != 0
+ WEIGHTS_PROMOTED_TYPE sum_weights = 0;
+ VEC_WEIGHTS_PROMOTED_TYPE(3)
+ tmp_we = CONVERT(w0, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w1, VEC_WEIGHTS_PROMOTED_TYPE(3)) + CONVERT(w2, VEC_WEIGHTS_PROMOTED_TYPE(3));
+ sum_weights += tmp_we.s0 + tmp_we.s1 + tmp_we.s2;
+ values0 += sum_weights * (int8)(INPUT_OFFSET);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += sum_weights * (int8)(INPUT_OFFSET);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
+#endif /* INPUT_OFFSET != 0 */
+
+#if K_OFFSET != 0
+ values0 += (int8)(K_OFFSET);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+ values1 += (int8)(K_OFFSET);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
+#endif /* K_OFFSET != 0 */
+
+#if defined(REAL_MULTIPLIER)
+
+ values0 = CONVERT(round(CONVERT(values0, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+#if OUTPUT_SHIFT < 0
+ values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#else // OUTPUT_SHIFT < 0
+ values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#endif // OUTPUT_OFFSET < 0
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+#endif // defined(REAL_MULTIPLIER)
+
+ values0 += (int8)OUTPUT_OFFSET;
+ VEC_TYPE(8)
+ res0 = CONVERT_SAT(values0, VEC_TYPE(8));
+
+ vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr);
+#if CONV_STRIDE_Y == 1 && DILATION_Y == 1
+
+#if defined(REAL_MULTIPLIER)
+
+ values1 = CONVERT(round(CONVERT(values1, float8) * (float8)REAL_MULTIPLIER), int8);
+
+#else // defined(REAL_MULTIPLIER)
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+#if OUTPUT_SHIFT < 0
+ values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#else // OUTPUT_SHIFT < 0
+ values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
+#endif // OUTPUT_OFFSET < 0
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+#endif // defined(REAL_MULTIPLIER)
+
+ values1 += (int8)OUTPUT_OFFSET;
+ VEC_TYPE(8)
+ res1 = CONVERT_SAT(values1, VEC_TYPE(8));
+
+ vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y);
+#endif /* CONV_STRIDE_Y == 1 && DILATION_Y==1*/
+}
+
+#endif // !defined(IS_DOT8)
+
+#endif /* defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) */
+
+#if defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
+
+#define asymm_mult_by_quant_multiplier_less_than_one(x, y, z) ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, y, z, VEC_SIZE)
+
+#define MULTIPLY_ADD(x, y, acc) acc += CONVERT(CONVERT(x, VEC_WEIGHTS_PROMOTED_TYPE(VEC_SIZE)) * CONVERT(y, VEC_WEIGHTS_PROMOTED_TYPE(VEC_SIZE)), VEC_INT)
+
+#if WEIGHTS_OFFSET != 0
+#define MULTIPLY_ADD_ACCUMULATE(x, y, acc, sum) \
+ ({ \
+ sum += CONVERT(x, VEC_INT); \
+ MULTIPLY_ADD(x, y, acc); \
+ })
+#else /* WEIGHTS_OFFSET != 0 */
+#define MULTIPLY_ADD_ACCUMULATE(x, y, acc, sum) MULTIPLY_ADD(x, y, acc)
+#endif /* WEIGHTS_OFFSET != 0 */
+
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#define DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1) \
+ ({ \
+ ARM_DOT((VEC_TYPE(4))(val0, val1, val2, val3), w0.s0123, acc); \
+ ARM_DOT((VEC_TYPE(4))(val4, val5, val6, val7), w0.s4567, acc); \
+ acc += val8 * w1; \
+ })
+
+#define DOT_PRODUCT_REDUCTION(sum, val0, val1, val2, val3, val4, val5, val6, val7, val8) \
+ ({ \
+ sum = val0; \
+ ARM_DOT((VEC_TYPE(4))(val1, val2, val3, val4), (VEC_TYPE(4))1, sum); \
+ ARM_DOT((VEC_TYPE(4))(val5, val6, val7, val8), (VEC_TYPE(4))1, sum); \
+ })
+
+#define DOT_PRODUCT_REDUCTION_WEIGHTS(sum, w0, w1) \
+ ({ \
+ sum = w1; \
+ ARM_DOT(w0.s0123, (VEC_TYPE(4))1, sum); \
+ ARM_DOT(w0.s4567, (VEC_TYPE(4))1, sum); \
+ })
+
+#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+
+#endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
+
+#endif // defined(WEIGHTS_PROMOTED_TYPE)
+
+#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
+
+#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_SHIFT) && defined(OUTPUT_MULTIPLIER) && defined(VEC_SIZE_LEFTOVER)
+/** This function computes the depthwise convolution for NHWC data layout.
+ *
+ * @note The number of elements processed must be passed at compile time using -DN0 (e.g. -DN0=2)
+ * @note The depth multiplier must be passed at compile time using -DDEPTH_MULTIPLIER (e.g. -DDEPTH_MULTIPLIER=1)
+ * @note The first dimension of the input tensor must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM1=112)
+ * @note The second dimension of the input tensor must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM2=80)
+ * @note The kernel width must be passed at compile time using -DKERNEL_WIDTH (e.g. -DKERNEL_WIDTH=5)
+ * @note The kernel height must be passed at compile time using -DKERNEL_HEIGHT (e.g. -DKERNEL_HEIGHT=5)
+ * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
+ * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
+ * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
+ * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
+ * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
+ * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
+ * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
+ * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
+ * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
+ * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
+ * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
+ * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
+ * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
+ * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
+ * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
+ * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
+ * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
+ * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
+ * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
+ */
+__kernel void dwc_MxN_native_quantized8_nhwc(
+ TENSOR4D_DECLARATION(src),
+ TENSOR4D_DECLARATION(dst),
+ TENSOR3D_DECLARATION(weights),
+ VECTOR_DECLARATION(output_multipliers),
+ VECTOR_DECLARATION(output_shifts)
+#if defined(HAS_BIAS)
+ ,
+ VECTOR_DECLARATION(biases)
+#endif // defined(HAS_BIAS)
+)
+{
+ int x_offs = max((int)(get_global_id(0) * N0 - (N0 - VEC_SIZE_LEFTOVER) % N0), 0);
+ int y = get_global_id(1); // spatial coordinate x
+#if defined(DST_DEPTH)
+ int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
+ int b = get_global_id(2) / (int)DST_DEPTH; // batch
+#else // defined(DST_DEPTH)
+ int z = get_global_id(2); // spatial coordinate y
+#endif // defined(DST_DEPTH)
+
+ __global uchar *s_addr = src_ptr + src_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE);
+
+ __global uchar *d_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) * (int)DEPTH_MULTIPLIER + y * dst_stride_y + z * dst_stride_z;
+
+ __global uchar *w_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offs * sizeof(WEIGHTS_TYPE) * (int)DEPTH_MULTIPLIER;
+
+#if defined(HAS_BIAS)
+ __global uchar *b_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offs * sizeof(int) * (int)DEPTH_MULTIPLIER;
+#endif // defined(HAS_BIAS)
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ __global uchar *out_mul_addr = output_multipliers_ptr + output_multipliers_offset_first_element_in_bytes + x_offs * sizeof(int) * (int)DEPTH_MULTIPLIER;
+ __global uchar *out_shift_addr = output_shifts_ptr + output_shifts_offset_first_element_in_bytes + x_offs * sizeof(int) * (int)DEPTH_MULTIPLIER;
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+#if defined(DST_DEPTH)
+ s_addr += b * src_stride_w;
+ d_addr += b * dst_stride_w;
+#endif // defined(DST_DEPTH)
+
+#if DEPTH_MULTIPLIER > 1
+ for(int d = 0; d < (int)DEPTH_MULTIPLIER; ++d)
+ {
+#endif // DEPTH_MULTIPLIER > 1
+ // Each work-item computes N0x1x1 elements
+ VEC_INT res = 0;
+
+ int x_coord = y * CONV_STRIDE_X - (int)CONV_PAD_LEFT;
+ int y_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP;
+
+ for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
+ {
+ if(y_coord >= 0 && y_coord < SRC_DIM2)
+ {
+ int x_coord_tmp = x_coord;
+
+ for(int xk = 0; xk < KERNEL_WIDTH; ++xk)
+ {
+ if(x_coord_tmp >= 0 && x_coord_tmp < SRC_DIM1)
+ {
+ int s_offset = x_coord_tmp * (int)src_stride_y + y_coord * (int)src_stride_z;
+ int w_offset = xk * weights_stride_y + yk * weights_stride_z;
+
+ // Load input and weights values
+ VEC_INT i = CONVERT(VLOAD(N0)(0, (__global DATA_TYPE *)(s_addr + s_offset)), VEC_INT);
+ VEC_INT w = CONVERT(VLOAD(N0)(0, (__global WEIGHTS_TYPE *)(w_addr + w_offset)), VEC_INT);
+
+ res += (i + (VEC_INT)INPUT_OFFSET) * (w + (VEC_INT)WEIGHTS_OFFSET);
+ }
+ x_coord_tmp += DILATION_X;
+ }
+ }
+ y_coord += DILATION_Y;
+ }
+
+#if defined(HAS_BIAS)
+ VEC_INT bias = VLOAD(N0)(0, (__global int *)(b_addr));
+ res += bias;
+#endif // defined(HAS_BIAS)
+
+#if defined(PER_CHANNEL_QUANTIZATION)
+ VEC_INT output_multiplier = VLOAD(N0)(0, (__global int *)(out_mul_addr));
+ VEC_INT output_shift = VLOAD(N0)(0, (__global int *)(out_shift_addr));
+
+ VEC_INT res_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(res, output_multiplier, output_shift, N0);
+ VEC_INT res_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(res, output_multiplier, output_shift, N0);
+ res = select(res_shift_lt0, res_shift_gt0, (VEC_INT)(output_shift) >= 0);
+#else // defined(PER_CHANNEL_QUANTIZATION)
+#if OUTPUT_SHIFT < 0
+ res = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(res, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, N0);
+#else // OUTPUT_SHIFT < 0
+ res = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(res, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, N0);
+#endif // OUTPUT_OFFSET < 0
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+
+ res += (VEC_INT)OUTPUT_OFFSET;
+
+ VEC_TYPE(VEC_SIZE)
+ res0 = CONVERT_SAT(res, VEC_TYPE(VEC_SIZE));
+ res0 = ACTIVATION_FUNC(res0);
+
+ STORE_VECTOR_SELECT(res, DATA_TYPE, d_addr, N0, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
+
+#if DEPTH_MULTIPLIER > 1
+ w_addr += sizeof(WEIGHTS_TYPE);
+ d_addr += sizeof(DATA_TYPE);
+#if defined(PER_CHANNEL_QUANTIZATION)
+ out_mul_addr += sizeof(int);
+ out_shift_addr += sizeof(int);
+#endif // defined(PER_CHANNEL_QUANTIZATION)
+#if defined(HAS_BIAS)
+ b_addr += sizeof(int);
+#endif // defined(HAS_BIAS)
+ }
+#endif // DEPTH_MULTIPLIER > 1
+}
+#endif // defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defiend(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_SHIFT) && defined(OUTPUT_MULTIPLIER) && defined(VEC_SIZE_LEFTOVER)
+#endif // defined(DATA_TYPE) && defined(WEIGHTS_TYPE)