aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/canny.cl
diff options
context:
space:
mode:
authorAnthony Barbier <anthony.barbier@arm.com>2017-09-04 18:44:23 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-09-17 13:03:09 +0100
commit6ff3b19ee6120edf015fad8caab2991faa3070af (patch)
treea7a6dcd16dfd56d79fa1b56a313caeebcc939b68 /src/core/CL/cl_kernels/canny.cl
downloadComputeLibrary-6ff3b19ee6120edf015fad8caab2991faa3070af.tar.gz
COMPMID-344 Updated doxygen
Change-Id: I32f7b84daa560e460b77216add529c8fa8b327ae
Diffstat (limited to 'src/core/CL/cl_kernels/canny.cl')
-rw-r--r--src/core/CL/cl_kernels/canny.cl429
1 files changed, 429 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/canny.cl b/src/core/CL/cl_kernels/canny.cl
new file mode 100644
index 0000000000..ec6719213c
--- /dev/null
+++ b/src/core/CL/cl_kernels/canny.cl
@@ -0,0 +1,429 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+/** Calculate the magnitude and phase from horizontal and vertical result of sobel result.
+ *
+ * @note The calculation of gradient uses level 1 normalisation.
+ * @attention The input and output data types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT:
+ * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short
+ *
+ * @param[in] src1_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
+ * @param[in] src1_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src1_step_x src1_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src1_step_y src1_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src2_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
+ * @param[in] src2_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src2_step_x src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src2_step_y src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[out] grad_ptr Pointer to the gradient output. Supported data types: U16, U32
+ * @param[in] grad_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] grad_step_x grad_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] grad_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] grad_step_y grad_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] grad_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] angle_ptr Pointer to the angle output. Supported data types: U8
+ * @param[in] angle_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] angle_step_x angle_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] angle_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] angle_step_y angle_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] angle_offset_first_element_in_bytes The offset of the first element of the output
+ */
+__kernel void combine_gradients_L1(
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(src2),
+ IMAGE_DECLARATION(grad),
+ IMAGE_DECLARATION(angle))
+{
+ // Construct images
+ Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
+ Image src2 = CONVERT_TO_IMAGE_STRUCT(src2);
+ Image grad = CONVERT_TO_IMAGE_STRUCT(grad);
+ Image angle = CONVERT_TO_IMAGE_STRUCT(angle);
+
+ // Load sobel horizontal and vertical values
+ VEC_DATA_TYPE(DATA_TYPE_IN, 4)
+ h = vload4(0, (__global DATA_TYPE_IN *)src1.ptr);
+ VEC_DATA_TYPE(DATA_TYPE_IN, 4)
+ v = vload4(0, (__global DATA_TYPE_IN *)src2.ptr);
+
+ /* Calculate the gradient, using level 1 normalisation method */
+ VEC_DATA_TYPE(DATA_TYPE_OUT, 4)
+ m = CONVERT_SAT((abs(h) + abs(v)), VEC_DATA_TYPE(DATA_TYPE_OUT, 4));
+
+ /* Calculate the angle */
+ float4 p = atan2pi(convert_float4(v), convert_float4(h));
+
+ /* Remap angle to range [0, 256) */
+ p = select(p, p + 2, p < 0.0f) * 128.0f;
+
+ /* Store results */
+ vstore4(m, 0, (__global DATA_TYPE_OUT *)grad.ptr);
+ vstore4(convert_uchar4_sat_rte(p), 0, angle.ptr);
+}
+
+/** Calculate the gradient and angle from horizontal and vertical result of sobel result.
+ *
+ * @note The calculation of gradient uses level 2 normalisation
+ * @attention The input and output data types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT:
+ * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short
+ *
+ * @param[in] src1_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
+ * @param[in] src1_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src1_step_x src1_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src1_step_y src1_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src2_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
+ * @param[in] src2_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src2_step_x src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src2_step_y src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[out] grad_ptr Pointer to the gradient output. Supported data types: U16, U32
+ * @param[in] grad_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] grad_step_x grad_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] grad_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] grad_step_y grad_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] grad_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] angle_ptr Pointer to the angle output. Supported data types: U8
+ * @param[in] angle_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] angle_step_x angle_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] angle_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] angle_step_y angle_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] angle_offset_first_element_in_bytes The offset of the first element of the output
+ */
+__kernel void combine_gradients_L2(
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(src2),
+ IMAGE_DECLARATION(grad),
+ IMAGE_DECLARATION(angle))
+{
+ // Construct images
+ Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
+ Image src2 = CONVERT_TO_IMAGE_STRUCT(src2);
+ Image grad = CONVERT_TO_IMAGE_STRUCT(grad);
+ Image angle = CONVERT_TO_IMAGE_STRUCT(angle);
+
+ // Load sobel horizontal and vertical values
+ float4 h = convert_float4(vload4(0, (__global DATA_TYPE_IN *)src1.ptr));
+ float4 v = convert_float4(vload4(0, (__global DATA_TYPE_IN *)src2.ptr));
+
+ /* Calculate the gradient, using level 2 normalisation method */
+ float4 m = sqrt(h * h + v * v);
+
+ /* Calculate the angle */
+ float4 p = atan2pi(v, h);
+
+ /* Remap angle to range [0, 256) */
+ p = select(p, p + 2, p < 0.0f) * 128.0f;
+
+ /* Store results */
+ vstore4(CONVERT_SAT_ROUND(m, VEC_DATA_TYPE(DATA_TYPE_OUT, 4), rte), 0, (__global DATA_TYPE_OUT *)grad.ptr);
+ vstore4(convert_uchar4_sat_rte(p), 0, angle.ptr);
+}
+
+/** Array that holds the relative coordinates offset for the neighbouring pixels.
+ */
+__constant short4 neighbours_coords[] =
+{
+ { -1, 0, 1, 0 }, // 0
+ { -1, 1, 1, -1 }, // 45
+ { 0, 1, 0, -1 }, // 90
+ { 1, 1, -1, -1 }, // 135
+ { 1, 0, -1, 0 }, // 180
+ { 1, -1, -1, 1 }, // 225
+ { 0, 1, 0, -1 }, // 270
+ { -1, -1, 1, 1 }, // 315
+ { -1, 0, 1, 0 }, // 360
+};
+
+/** Perform non maximum suppression.
+ *
+ * @attention The input and output data types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT:
+ * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short
+ *
+ * @param[in] grad_ptr Pointer to the gradient output. Supported data types: S16, S32
+ * @param[in] grad_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] grad_step_x grad_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] grad_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] grad_step_y grad_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] grad_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[in] angle_ptr Pointer to the angle output. Supported data types: U8
+ * @param[in] angle_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] angle_step_x angle_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] angle_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] angle_step_y angle_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] angle_offset_first_element_in_bytes TThe offset of the first element of the output
+ * @param[out] non_max_ptr Pointer to the non maximum suppressed output. Supported data types: U16, U32
+ * @param[in] non_max_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] non_max_step_x non_max_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] non_max_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] non_max_step_y non_max_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] non_max_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[in] lower_thr The low threshold
+ */
+__kernel void suppress_non_maximum(
+ IMAGE_DECLARATION(grad),
+ IMAGE_DECLARATION(angle),
+ IMAGE_DECLARATION(non_max),
+ uint lower_thr)
+{
+ // Construct images
+ Image grad = CONVERT_TO_IMAGE_STRUCT(grad);
+ Image angle = CONVERT_TO_IMAGE_STRUCT(angle);
+ Image non_max = CONVERT_TO_IMAGE_STRUCT(non_max);
+
+ // Get gradient and angle
+ DATA_TYPE_IN gradient = *((__global DATA_TYPE_IN *)grad.ptr);
+ uchar an = convert_ushort(*angle.ptr);
+
+ if(gradient <= lower_thr)
+ {
+ return;
+ }
+
+ // Divide the whole round into 8 directions
+ uchar ang = 127 - an;
+ DATA_TYPE_OUT q_an = (ang + 16) >> 5;
+
+ // Find the two pixels in the perpendicular direction
+ short2 x_p = neighbours_coords[q_an].s02;
+ short2 y_p = neighbours_coords[q_an].s13;
+ DATA_TYPE_IN g1 = *((global DATA_TYPE_IN *)offset(&grad, x_p.x, y_p.x));
+ DATA_TYPE_IN g2 = *((global DATA_TYPE_IN *)offset(&grad, x_p.y, y_p.y));
+
+ if((gradient > g1) && (gradient > g2))
+ {
+ *((global DATA_TYPE_OUT *)non_max.ptr) = gradient;
+ }
+}
+
+#define EDGE 255
+#define hysteresis_local_stack_L1 8 // The size of level 1 stack. This has to agree with the host side
+#define hysteresis_local_stack_L2 16 // The size of level 2 stack, adjust this can impact the match rate with VX implementation
+
+/** Check whether pixel is valid
+*
+* Skip the pixel if the early_test fails.
+* Otherwise, it tries to add the pixel coordinate to the stack, and proceed to popping the stack instead if the stack is full
+*
+* @param[in] early_test Boolean condition based on the minv check and visited buffer check
+* @param[in] x_pos X-coordinate of pixel that is going to be recorded, has to be within the boundary
+* @param[in] y_pos Y-coordinate of pixel that is going to be recorded, has to be within the boundary
+* @param[in] x_cur X-coordinate of current central pixel
+* @param[in] y_cur Y-coordinate of current central pixel
+*/
+#define check_pixel(early_test, x_pos, y_pos, x_cur, y_cur) \
+ { \
+ if(!early_test) \
+ { \
+ /* Number of elements in the local stack 1, points to next available entry */ \
+ c = *((__global char *)offset(&l1_stack_counter, x_cur, y_cur)); \
+ \
+ if(c > (hysteresis_local_stack_L1 - 1)) /* Stack level 1 is full */ \
+ goto pop_stack; \
+ \
+ /* The pixel that has already been recorded is ignored */ \
+ if(!atomic_or((__global uint *)offset(&recorded, x_pos, y_pos), 1)) \
+ { \
+ l1_ptr[c] = (short2)(x_pos, y_pos); \
+ *((__global char *)offset(&l1_stack_counter, x_cur, y_cur)) += 1; \
+ } \
+ } \
+ }
+
+/** Perform hysteresis.
+ *
+ * @attention The input data_type needs to be passed at compile time using -DDATA_TYPE_IN: e.g. -DDATA_TYPE_IN=short
+ *
+ * @param[in] src_ptr Pointer to the input image. Supported data types: U8
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] out_ptr Pointer to the output image. Supported data types: U8
+ * @param[in] out_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] out_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] out_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] visited_ptr Pointer to the visited buffer, where pixels are marked as visited. Supported data types: U32
+ * @param[in] visited_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] visited_step_x visited_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] visited_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] visited_step_y visited_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] visited_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] recorded_ptr Pointer to the recorded buffer, where pixels are marked as recorded. Supported data types: U32
+ * @param[in] recorded_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] recorded_step_x recorded_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] recorded_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] recorded_step_y recorded_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] recorded_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] l1_stack_ptr Pointer to the l1 stack of a pixel. Supported data types: S32
+ * @param[in] l1_stack_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] l1_stack_step_x l1_stack_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] l1_stack_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] l1_stack_step_y l1_stack_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] l1_stack_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[out] l1_stack_counter_ptr Pointer to the l1 stack counters of an image. Supported data types: U8
+ * @param[in] l1_stack_counter_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] l1_stack_counter_step_x l1_stack_counter_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] l1_stack_counter_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] l1_stack_counter_step_y l1_stack_counter_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] l1_stack_counter_offset_first_element_in_bytes The offset of the first element of the output
+ * @param[in] low_thr The lower threshold
+ * @param[in] up_thr The upper threshold
+ * @param[in] width The width of the image.
+ * @param[in] height The height of the image
+ */
+kernel void hysteresis(
+ IMAGE_DECLARATION(src),
+ IMAGE_DECLARATION(out),
+ IMAGE_DECLARATION(visited),
+ IMAGE_DECLARATION(recorded),
+ IMAGE_DECLARATION(l1_stack),
+ IMAGE_DECLARATION(l1_stack_counter),
+ uint low_thr,
+ uint up_thr,
+ int width,
+ int height)
+{
+ // Create images
+ Image src = CONVERT_TO_IMAGE_STRUCT_NO_STEP(src);
+ Image out = CONVERT_TO_IMAGE_STRUCT_NO_STEP(out);
+ Image visited = CONVERT_TO_IMAGE_STRUCT_NO_STEP(visited);
+ Image recorded = CONVERT_TO_IMAGE_STRUCT_NO_STEP(recorded);
+ Image l1_stack = CONVERT_TO_IMAGE_STRUCT_NO_STEP(l1_stack);
+ Image l1_stack_counter = CONVERT_TO_IMAGE_STRUCT_NO_STEP(l1_stack_counter);
+
+ // Index
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ // Load value
+ DATA_TYPE_IN val = *((__global DATA_TYPE_IN *)offset(&src, x, y));
+
+ // If less than upper threshold set to NO_EDGE and return
+ if(val <= up_thr)
+ {
+ *offset(&out, x, y) = 0;
+ return;
+ }
+
+ // Init local stack 2
+ short2 stack_L2[hysteresis_local_stack_L2] = { 0 };
+ int L2_counter = 0;
+
+ // Perform recursive hysteresis
+ while(true)
+ {
+ // Get L1 stack pointer
+ __global short2 *l1_ptr = (__global short2 *)(l1_stack.ptr + y * l1_stack.stride_y + x * hysteresis_local_stack_L1 * l1_stack.stride_x);
+
+ // If the pixel has already been visited, proceed with the items in the stack instead
+ if(atomic_or((__global uint *)offset(&visited, x, y), 1) != 0)
+ {
+ goto pop_stack;
+ }
+
+ // Set strong edge
+ *offset(&out, x, y) = EDGE;
+
+ // If it is the top of stack l2, we don't need check the surrounding pixels
+ if(L2_counter > (hysteresis_local_stack_L2 - 1))
+ {
+ goto pop_stack2;
+ }
+
+ // Points to the start of the local stack;
+ char c;
+
+ VEC_DATA_TYPE(DATA_TYPE_IN, 4)
+ x_tmp;
+ uint4 v_tmp;
+
+ // Get direction pixel indices
+ int N = max(y - 1, 0), S = min(y + 1, height - 2), W = max(x - 1, 0), E = min(x + 1, width - 2);
+
+ // Check 8 pixels around for week edges where low_thr < val <= up_thr
+ x_tmp = vload4(0, (__global DATA_TYPE_IN *)offset(&src, W, N));
+ v_tmp = vload4(0, (__global uint *)offset(&visited, W, N));
+ check_pixel(((x_tmp.s0 <= low_thr) || v_tmp.s0 || (x_tmp.s0 > up_thr)), W, N, x, y); // NW
+ check_pixel(((x_tmp.s1 <= low_thr) || v_tmp.s1 || (x_tmp.s1 > up_thr)), x, N, x, y); // N
+ check_pixel(((x_tmp.s2 <= low_thr) || v_tmp.s2 || (x_tmp.s2 > up_thr)), E, N, x, y); // NE
+
+ x_tmp = vload4(0, (__global DATA_TYPE_IN *)offset(&src, W, y));
+ v_tmp = vload4(0, (__global uint *)offset(&visited, W, y));
+ check_pixel(((x_tmp.s0 <= low_thr) || v_tmp.s0 || (x_tmp.s0 > up_thr)), W, y, x, y); // W
+ check_pixel(((x_tmp.s2 <= low_thr) || v_tmp.s2 || (x_tmp.s2 > up_thr)), E, y, x, y); // E
+
+ x_tmp = vload4(0, (__global DATA_TYPE_IN *)offset(&src, W, S));
+ v_tmp = vload4(0, (__global uint *)offset(&visited, W, S));
+ check_pixel(((x_tmp.s0 <= low_thr) || v_tmp.s0 || (x_tmp.s0 > up_thr)), W, S, x, y); // SW
+ check_pixel(((x_tmp.s1 <= low_thr) || v_tmp.s1 || (x_tmp.s1 > up_thr)), x, S, x, y); // S
+ check_pixel(((x_tmp.s2 <= low_thr) || v_tmp.s2 || (x_tmp.s2 > up_thr)), E, S, x, y); // SE
+
+#undef check_pixel
+
+pop_stack:
+ c = *((__global char *)offset(&l1_stack_counter, x, y));
+
+ if(c >= 1)
+ {
+ *((__global char *)offset(&l1_stack_counter, x, y)) -= 1;
+ int2 l_c = convert_int2(l1_ptr[c - 1]);
+
+ // Push the current position into level 2 stack
+ stack_L2[L2_counter].x = x;
+ stack_L2[L2_counter].y = y;
+
+ x = l_c.x;
+ y = l_c.y;
+
+ L2_counter++;
+
+ continue;
+ }
+
+ if(L2_counter > 0)
+ {
+ goto pop_stack2;
+ }
+ else
+ {
+ return;
+ }
+
+pop_stack2:
+ L2_counter--;
+ x = stack_L2[L2_counter].x;
+ y = stack_L2[L2_counter].y;
+ };
+}