aboutsummaryrefslogtreecommitdiff
path: root/src/dynamic_fusion/sketch/gpu/template_writer/cl/ClTemplatePool2d.cpp
blob: 8936db6abe09125797843c749fc320250419b548 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*
 * Copyright (c) 2023-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "ClTemplatePool2d.h"

#include "arm_compute/core/utils/helpers/AdjustVecSize.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/StringUtils.h"

#include "src/core/helpers/WindowHelpers.h"
#include "src/dynamic_fusion/sketch/gpu/components/cl/ClComponentDirectConv2d.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h"
#include "support/StringSupport.h"

namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
namespace
{
// Shape indexes for NHWC Datalayout
constexpr static int32_t height_idx  = 2;
constexpr static int32_t width_idx   = 1;
constexpr static int32_t channel_idx = 0;
} // namespace
ClTemplatePool2d::ClTemplatePool2d(ComponentId                      id,
                                   const ArgumentPack<ITensorInfo> &tensors,
                                   const Attributes                &attributes,
                                   const Settings                  &settings)
    : IGpuTemplateComponentWriter{id, tensors}, _src{}, _dst{}, _attributes{attributes}, _settings{settings}
{
    _src = this->tensors().get_const_tensor(TensorType::ACL_SRC_0);
    _dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0);
    ARM_COMPUTE_ERROR_ON_NULLPTR(_src, _dst);
}

std::string ClTemplatePool2d::get_name() const
{
    return "pool2d";
}

std::string ClTemplatePool2d::get_component_code(const ComponentGroup &comp_group) const
{
    ARM_COMPUTE_UNUSED(comp_group);

    // Condition to use 2x2 optimized kernel
    if (_attributes.pool_size() == Size2D(2, 2))
    {
        return get_2x2_kernel_code();
    }
    else
    {
        return get_MxN_kernel_code();
    }
}

std::string ClTemplatePool2d::get_MxN_kernel_code() const
{
    const auto pool_type          = _attributes.pool_type();
    const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && pool_type != PoolingType::MAX;

    // Define pool op macro.
    std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_"
                                                          : R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_";

    // Kernel start
    // Note: If C is not multiple of N0, we shift back of PARTIAL_N0 elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than N0, N0 should be SHRINKED to the closest smaller N0. This operation is performed on the host side
    std::string code = R"_(
//------------------ START KERNEL {{meta_kernel_id}} ---------------------
// IN_0(src)            {{src}}
// OUT(dst, accum)      {{dst}}

{
    const int idx_out_c = g_ind_0;
    const int idx_out_w = g_ind_1;
)_";

    // Add macro for POOL_OP
    code += "\n" + pool_op + "\n";

    code += R"_(
    const int idx_out_h = g_ind_2 % {{DST_HEIGHT}};
    const int idx_out_n = g_ind_2 / {{DST_HEIGHT}};
)_";

    // Define common variables.
    code += R"_(
    __global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w;

    __global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n * {{dst}}_stride_w;

    VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
    res0 = {{INITIAL_VALUE}};

    const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}};
    const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}};

    const int pool_x_s = max((int)0, -idx_in_w);
    const int pool_x_e = min((int){{POOL_SIZE_X}}, (int){{SRC_WIDTH}} - idx_in_w);
    const int pool_y_s = max((int)0, -idx_in_h);
    const int pool_y_e = min((int){{POOL_SIZE_Y}}, (int){{SRC_HEIGHT}} - idx_in_h);
)_";

    // Determine filter size depending on if padding is excluded or not
    if (_attributes.exclude_padding())
    {
        code += R"_(
    const int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
)_";
    }
    else
    {
        code += R"_(
    const int filter_size = {{POOL_SIZE_X}} * {{POOL_SIZE_Y}};
)_";
    }

    // Loop through pool size
    // if global pooling
    if (_attributes.pool_size().x() == _src->dimension(width_idx) &&
        _attributes.pool_size().y() == _src->dimension(height_idx))
    {
        // Begin loop
        code += R"_(
    // Global pooling path
    for(int y = 0; y < {{POOL_SIZE_Y}}; ++y)
    {
    #pragma unroll 8
        for(int x = 0; x < {{POOL_SIZE_X}}; ++x)
        {
            VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
            data0;
)_";
    }
    else // if local pooling size
    {
        code += R"_(
    for(int y = pool_y_s; y < pool_y_e; ++y)
    {
    #pragma unroll 8
        for(int x = pool_x_s; x < pool_x_e; ++x)
        {
            VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
            data0;
)_";
    } // end else

    // if condition inside loop - use 32bit acc if mixed_precision.
    // End loop through pooling section.
    if (fp_mixed_precision)
    {
        // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
        code += R"_(
            data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
            res0 = POOL_OP(res0, data0);
        }
    }
)_";
    }
    else // load data, compute result and end loop
    {
        code += R"_(
            data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z));
            res0 = POOL_OP(res0, data0);
        }
    }
)_";
    }

    // For Pool AVG ONLY, divide pool output by filter size
    if (pool_type == PoolingType::AVG)
    {
        code += R"_(
    res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size;
)_";
    }

    // If mixed precision convert datatype before storing. Then end kernel.
    if (fp_mixed_precision)
    {
        code += R"_(
    VEC_DATA_TYPE({{DATA_TYPE}}, N0)
    res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0));
    STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
    }
    else
    {
        // Store data
        code += R"_(
    STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
    }

    code += R"_(
//------------------ END KERNEL {{meta_kernel_id}} ---------------------
}
)_";

    return code;
}

std::string ClTemplatePool2d::get_2x2_kernel_code() const
{
    const auto  pool_type          = _attributes.pool_type();
    const bool  fp_mixed_precision = (_src->data_type() == DataType::F16) && pool_type != PoolingType::MAX;
    std::string pool_op            = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_"
                                                                     : R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_";

    std::string code = R"_(
//------------------ START KERNEL {{meta_kernel_id}} ---------------------
// IN_0(src)            {{src}}
// OUT(dst, accum)      {{dst}}

#define SELECT_TYPE SELECT_VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)

{
    const int idx_out_c = g_ind_0;
    const int idx_out_w = g_ind_1;
)_";

    // Add pool op macro
    code += "\n" + pool_op + "\n";

    // If batch size != 1, the batch size dimension is collapsed over the height dimension
    code += R"_(
    const int idx_out_h = g_ind_2 % {{DST_HEIGHT}};
    const int idx_out_n = g_ind_2 / {{DST_HEIGHT}};
)_";

    code += R"_(
    const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}};
    const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}};

    __global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w;
    __global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n *
                                           {{dst}}_stride_w;
    const int pool_x_s = max((int)0, -idx_in_w);
    const int pool_x_e = min((int)2, (int){{SRC_WIDTH}} - idx_in_w);
    const int pool_y_s = max((int)0, -idx_in_h);
    const int pool_y_e = min((int)2, (int){{SRC_HEIGHT}} - idx_in_h);

    const int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);
    const int x0 = pool_x_s + idx_in_w;
    const int y0 = pool_y_s + idx_in_h;
    const int x1 = pool_x_e - 1 + idx_in_w;
    const int y1 = pool_y_e - 1 + idx_in_h;

    REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0), data, 0);
)_";

    if (fp_mixed_precision)
    {
        // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
        code += R"_(
    data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
    data1 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
    data2 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
    data3 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0));
)_";
    }
    else
    {
        code += R"_(
    data0         = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z));
    data1         = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z));
    data2         = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z));
    data3         = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z));
)_";
    }

    if (pool_type != PoolingType::MAX)
    {
        // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
        code += R"_(
    if(filter_size != 4)
    {
        SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
        SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)({{SRC_WIDTH}} - 1);
        SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
        SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)({{SRC_HEIGHT}} - 1);

        data0 = select(data0, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_s));
        data1 = select(data1, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_s));
        data2 = select(data2, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_e));
        data3 = select(data3, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_e));
    }
)_";
    }

    code += R"_(
    VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)
    res0 = data0;
    res0 = POOL_OP(res0, data1);
    res0 = POOL_OP(res0, data2);
    res0 = POOL_OP(res0, data3);
)_";

    if (pool_type == PoolingType::AVG)
    {
        // If avg pooling divide result accordingly.
        if (_attributes.exclude_padding())
        {
            code += R"_(
    res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size;
)_";
        }
        else
        {
            code += R"_(
    res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))4;
)_";
        }
    }

    // Store result
    if (fp_mixed_precision)
    {
        code += R"_(
    VEC_DATA_TYPE({{DATA_TYPE}}, N0)
    res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0));
    STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
    }
    else
    {
        code += R"_(
    STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0);
)_";
    }

    code += R"_(
    //------------------ END KERNEL {{meta_kernel_id}} ---------------------
}
#undef SELECT_TYPE
)_";

    return code;
}

void ClTemplatePool2d::declare_variables(GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
{
    vtable.declare_variable(comp_group, _src, GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer),
                            "src");

    vtable.declare_variable(comp_group, _dst, GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer),
                            "dst");
}

TagLUT ClTemplatePool2d::get_tag_lut(const GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
{
    ARM_COMPUTE_UNUSED(comp_group);

    TagLUT lut{};
    // Arguments and global shared variables
    lut["src"] = vtable.get_variable(_src);
    lut["dst"] = vtable.get_variable(_dst);

    // Local build options
    lut["meta_kernel_id"] = id();

    // Retrieve relevant data
    const auto padding   = _attributes.pad();
    const auto stride    = _attributes.stride();
    const auto pool_size = _attributes.pool_size();
    const auto data_type = _src->data_type();
    const auto use_fp_mixed_precision =
        (_src->data_type() == DataType::F16) && _attributes.pool_type() != PoolingType::MAX;
    const std::string max_initial_value =
        _settings.use_inf_as_limit() ? "(-INFINITY)"
                                     : float_to_string_with_full_precision(std::numeric_limits<float>::lowest());

    // pool specific
    lut["STRIDE_X"]    = stride.x();
    lut["STRIDE_Y"]    = stride.y();
    lut["PAD_X"]       = padding.left;
    lut["PAD_Y"]       = padding.top;
    lut["POOL_SIZE_X"] = pool_size.width;
    lut["POOL_SIZE_Y"] = pool_size.height;

    // Datatypes and variables
    lut["ACC_DATA_TYPE"] = get_cl_type_from_data_type(
        (use_fp_mixed_precision) ? (DataType::F32) : (data_type)); // Type of accumulators to use.
    lut["DATA_TYPE"]     = get_cl_type_from_data_type(data_type);
    lut["SRC_WIDTH"]     = _src->dimension(width_idx);
    lut["SRC_HEIGHT"]    = _src->dimension(height_idx);
    lut["INITIAL_VALUE"] = (_attributes.pool_type() == PoolingType::MAX) ? max_initial_value : std::string("0");

    // Tensor specific data
    lut["DST_HEIGHT"] = _dst->dimension(height_idx);

    return lut;
}

CLBuildOptions ClTemplatePool2d::get_build_options(const ComponentGroup &comp_group) const
{
    const auto         root_window      = comp_group.get_root_component()->template_writer()->get_window();
    const unsigned int n0               = root_window.x().step();
    const unsigned int partial_store_n0 = _dst->dimension(0) % n0;

    CLBuildOptions build_opts{};
    build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
    build_opts.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0));

    return build_opts;
}

std::string ClTemplatePool2d::get_config_id() const
{
    const DataType   data_type   = _src->data_type();
    const DataLayout data_layout = _src->data_layout();

    std::string config_id{};
    config_id += "pooling_layer_2d_";
    config_id += lower_string(string_from_data_type(data_type));
    config_id += "_";
    config_id += lower_string(string_from_data_layout(data_layout));
    config_id += "_";
    config_id += support::cpp11::to_string(_dst->dimension(width_idx));
    config_id += "_";
    config_id += support::cpp11::to_string(_dst->dimension(height_idx));
    config_id += "_";
    config_id += support::cpp11::to_string(_dst->dimension(channel_idx));

    return config_id;
}

std::set<std::string> ClTemplatePool2d::get_headers_list() const
{
    return std::set<std::string>{"helpers.h", "tile_helpers.h", "repeat.h"};
}

Window ClTemplatePool2d::get_window() const
{
    ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized");
    const auto         output_shape = _dst->tensor_shape();
    const unsigned int vec_size = adjust_vec_size(((_dst->data_type() == DataType::F32) ? 2 : 4), _dst->dimension(0));

    // Create and configure kernel window
    auto win = calculate_max_window(output_shape, Steps(vec_size));
    win      = win.collapse_if_possible(win, Window::DimZ); // collapse window on batch size.
    return win;
}

} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute