/* * Copyright (c) 2023-2024 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ClTemplatePool2d.h" #include "arm_compute/core/utils/helpers/AdjustVecSize.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/StringUtils.h" #include "src/core/helpers/WindowHelpers.h" #include "src/dynamic_fusion/sketch/gpu/components/cl/ClComponentDirectConv2d.h" #include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h" #include "support/StringSupport.h" namespace arm_compute { namespace experimental { namespace dynamic_fusion { namespace { // Shape indexes for NHWC Datalayout constexpr static int32_t height_idx = 2; constexpr static int32_t width_idx = 1; constexpr static int32_t channel_idx = 0; } // namespace ClTemplatePool2d::ClTemplatePool2d(ComponentId id, const ArgumentPack &tensors, const Attributes &attributes, const Settings &settings) : IGpuTemplateComponentWriter{id, tensors}, _src{}, _dst{}, _attributes{attributes}, _settings{settings} { _src = this->tensors().get_const_tensor(TensorType::ACL_SRC_0); _dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0); ARM_COMPUTE_ERROR_ON_NULLPTR(_src, _dst); } std::string ClTemplatePool2d::get_name() const { return "pool2d"; } std::string ClTemplatePool2d::get_component_code(const ComponentGroup &comp_group) const { ARM_COMPUTE_UNUSED(comp_group); // Condition to use 2x2 optimized kernel if (_attributes.pool_size() == Size2D(2, 2)) { return get_2x2_kernel_code(); } else { return get_MxN_kernel_code(); } } std::string ClTemplatePool2d::get_MxN_kernel_code() const { const auto pool_type = _attributes.pool_type(); const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && pool_type != PoolingType::MAX; // Define pool op macro. std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_" : R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_"; // Kernel start // Note: If C is not multiple of N0, we shift back of PARTIAL_N0 elements to compute the leftover elements for get_global_id(0) == 0 // Note: If C is less than N0, N0 should be SHRINKED to the closest smaller N0. This operation is performed on the host side std::string code = R"_( //------------------ START KERNEL {{meta_kernel_id}} --------------------- // IN_0(src) {{src}} // OUT(dst, accum) {{dst}} { const int idx_out_c = g_ind_0; const int idx_out_w = g_ind_1; )_"; // Add macro for POOL_OP code += "\n" + pool_op + "\n"; code += R"_( const int idx_out_h = g_ind_2 % {{DST_HEIGHT}}; const int idx_out_n = g_ind_2 / {{DST_HEIGHT}}; )_"; // Define common variables. code += R"_( __global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w; __global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n * {{dst}}_stride_w; VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0) res0 = {{INITIAL_VALUE}}; const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}}; const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}}; const int pool_x_s = max((int)0, -idx_in_w); const int pool_x_e = min((int){{POOL_SIZE_X}}, (int){{SRC_WIDTH}} - idx_in_w); const int pool_y_s = max((int)0, -idx_in_h); const int pool_y_e = min((int){{POOL_SIZE_Y}}, (int){{SRC_HEIGHT}} - idx_in_h); )_"; // Determine filter size depending on if padding is excluded or not if (_attributes.exclude_padding()) { code += R"_( const int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s); )_"; } else { code += R"_( const int filter_size = {{POOL_SIZE_X}} * {{POOL_SIZE_Y}}; )_"; } // Loop through pool size // if global pooling if (_attributes.pool_size().x() == _src->dimension(width_idx) && _attributes.pool_size().y() == _src->dimension(height_idx)) { // Begin loop code += R"_( // Global pooling path for(int y = 0; y < {{POOL_SIZE_Y}}; ++y) { #pragma unroll 8 for(int x = 0; x < {{POOL_SIZE_X}}; ++x) { VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0) data0; )_"; } else // if local pooling size { code += R"_( for(int y = pool_y_s; y < pool_y_e; ++y) { #pragma unroll 8 for(int x = pool_x_s; x < pool_x_e; ++x) { VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0) data0; )_"; } // end else // if condition inside loop - use 32bit acc if mixed_precision. // End loop through pooling section. if (fp_mixed_precision) { // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE code += R"_( data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)); res0 = POOL_OP(res0, data0); } } )_"; } else // load data, compute result and end loop { code += R"_( data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + (x + idx_in_w) * {{src}}_stride_y + (y + idx_in_h) * {{src}}_stride_z)); res0 = POOL_OP(res0, data0); } } )_"; } // For Pool AVG ONLY, divide pool output by filter size if (pool_type == PoolingType::AVG) { code += R"_( res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size; )_"; } // If mixed precision convert datatype before storing. Then end kernel. if (fp_mixed_precision) { code += R"_( VEC_DATA_TYPE({{DATA_TYPE}}, N0) res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0)); STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0); )_"; } else { // Store data code += R"_( STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0); )_"; } code += R"_( //------------------ END KERNEL {{meta_kernel_id}} --------------------- } )_"; return code; } std::string ClTemplatePool2d::get_2x2_kernel_code() const { const auto pool_type = _attributes.pool_type(); const bool fp_mixed_precision = (_src->data_type() == DataType::F16) && pool_type != PoolingType::MAX; std::string pool_op = (pool_type == PoolingType::AVG) ? R"_(#define POOL_OP(x,y) ((x) + (y)))_" : R"_(#define POOL_OP(x,y) (fmax((x), (y))) )_"; std::string code = R"_( //------------------ START KERNEL {{meta_kernel_id}} --------------------- // IN_0(src) {{src}} // OUT(dst, accum) {{dst}} #define SELECT_TYPE SELECT_VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0) { const int idx_out_c = g_ind_0; const int idx_out_w = g_ind_1; )_"; // Add pool op macro code += "\n" + pool_op + "\n"; // If batch size != 1, the batch size dimension is collapsed over the height dimension code += R"_( const int idx_out_h = g_ind_2 % {{DST_HEIGHT}}; const int idx_out_n = g_ind_2 / {{DST_HEIGHT}}; )_"; code += R"_( const int idx_in_w = idx_out_w * {{STRIDE_X}} - {{PAD_X}}; const int idx_in_h = idx_out_h * {{STRIDE_Y}} - {{PAD_Y}}; __global unsigned char *in_base_ptr = {{src}}_ptr + {{src}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_n * {{src}}_stride_w; __global unsigned char *out_base_ptr = {{dst}}_ptr + {{dst}}_offset_first_element_in_bytes + idx_out_c * sizeof({{DATA_TYPE}}) + idx_out_w * {{dst}}_stride_y + idx_out_h * {{dst}}_stride_z + idx_out_n * {{dst}}_stride_w; const int pool_x_s = max((int)0, -idx_in_w); const int pool_x_e = min((int)2, (int){{SRC_WIDTH}} - idx_in_w); const int pool_y_s = max((int)0, -idx_in_h); const int pool_y_e = min((int)2, (int){{SRC_HEIGHT}} - idx_in_h); const int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s); const int x0 = pool_x_s + idx_in_w; const int y0 = pool_y_s + idx_in_h; const int x1 = pool_x_e - 1 + idx_in_w; const int y1 = pool_y_e - 1 + idx_in_h; REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0), data, 0); )_"; if (fp_mixed_precision) { // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE code += R"_( data0 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)); data1 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)); data2 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)); data3 = CONVERT(VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z)), VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)); )_"; } else { code += R"_( data0 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y0 * {{src}}_stride_z)); data1 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y0 * {{src}}_stride_z)); data2 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x0 * {{src}}_stride_y + y1 * {{src}}_stride_z)); data3 = VLOAD(N0)(0, (__global {{DATA_TYPE}} *)(in_base_ptr + x1 * {{src}}_stride_y + y1 * {{src}}_stride_z)); )_"; } if (pool_type != PoolingType::MAX) { // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound) code += R"_( if(filter_size != 4) { SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0; SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)({{SRC_WIDTH}} - 1); SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0; SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)({{SRC_HEIGHT}} - 1); data0 = select(data0, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_s)); data1 = select(data1, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_s)); data2 = select(data2, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_s | cond_h_e)); data3 = select(data3, (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0)){{INITIAL_VALUE}}, (SELECT_TYPE)(cond_w_e | cond_h_e)); } )_"; } code += R"_( VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0) res0 = data0; res0 = POOL_OP(res0, data1); res0 = POOL_OP(res0, data2); res0 = POOL_OP(res0, data3); )_"; if (pool_type == PoolingType::AVG) { // If avg pooling divide result accordingly. if (_attributes.exclude_padding()) { code += R"_( res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))filter_size; )_"; } else { code += R"_( res0 /= (VEC_DATA_TYPE({{ACC_DATA_TYPE}}, N0))4; )_"; } } // Store result if (fp_mixed_precision) { code += R"_( VEC_DATA_TYPE({{DATA_TYPE}}, N0) res_converted0 = CONVERT(res0, VEC_DATA_TYPE({{DATA_TYPE}}, N0)); STORE_VECTOR_SELECT(res_converted, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0); )_"; } else { code += R"_( STORE_VECTOR_SELECT(res, {{DATA_TYPE}}, out_base_ptr, N0, PARTIAL_N0, (PARTIAL_N0 != 0) && g_ind_0 == 0); )_"; } code += R"_( //------------------ END KERNEL {{meta_kernel_id}} --------------------- } #undef SELECT_TYPE )_"; return code; } void ClTemplatePool2d::declare_variables(GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const { vtable.declare_variable(comp_group, _src, GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer), "src"); vtable.declare_variable(comp_group, _dst, GpuKernelArgumentInfo(GpuKernelArgumentInfo::Type::Tensor_4D_t_Buffer), "dst"); } TagLUT ClTemplatePool2d::get_tag_lut(const GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const { ARM_COMPUTE_UNUSED(comp_group); TagLUT lut{}; // Arguments and global shared variables lut["src"] = vtable.get_variable(_src); lut["dst"] = vtable.get_variable(_dst); // Local build options lut["meta_kernel_id"] = id(); // Retrieve relevant data const auto padding = _attributes.pad(); const auto stride = _attributes.stride(); const auto pool_size = _attributes.pool_size(); const auto data_type = _src->data_type(); const auto use_fp_mixed_precision = (_src->data_type() == DataType::F16) && _attributes.pool_type() != PoolingType::MAX; const std::string max_initial_value = _settings.use_inf_as_limit() ? "(-INFINITY)" : float_to_string_with_full_precision(std::numeric_limits::lowest()); // pool specific lut["STRIDE_X"] = stride.x(); lut["STRIDE_Y"] = stride.y(); lut["PAD_X"] = padding.left; lut["PAD_Y"] = padding.top; lut["POOL_SIZE_X"] = pool_size.width; lut["POOL_SIZE_Y"] = pool_size.height; // Datatypes and variables lut["ACC_DATA_TYPE"] = get_cl_type_from_data_type( (use_fp_mixed_precision) ? (DataType::F32) : (data_type)); // Type of accumulators to use. lut["DATA_TYPE"] = get_cl_type_from_data_type(data_type); lut["SRC_WIDTH"] = _src->dimension(width_idx); lut["SRC_HEIGHT"] = _src->dimension(height_idx); lut["INITIAL_VALUE"] = (_attributes.pool_type() == PoolingType::MAX) ? max_initial_value : std::string("0"); // Tensor specific data lut["DST_HEIGHT"] = _dst->dimension(height_idx); return lut; } CLBuildOptions ClTemplatePool2d::get_build_options(const ComponentGroup &comp_group) const { const auto root_window = comp_group.get_root_component()->template_writer()->get_window(); const unsigned int n0 = root_window.x().step(); const unsigned int partial_store_n0 = _dst->dimension(0) % n0; CLBuildOptions build_opts{}; build_opts.add_option("-DN0=" + support::cpp11::to_string(n0)); build_opts.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0)); return build_opts; } std::string ClTemplatePool2d::get_config_id() const { const DataType data_type = _src->data_type(); const DataLayout data_layout = _src->data_layout(); std::string config_id{}; config_id += "pooling_layer_2d_"; config_id += lower_string(string_from_data_type(data_type)); config_id += "_"; config_id += lower_string(string_from_data_layout(data_layout)); config_id += "_"; config_id += support::cpp11::to_string(_dst->dimension(width_idx)); config_id += "_"; config_id += support::cpp11::to_string(_dst->dimension(height_idx)); config_id += "_"; config_id += support::cpp11::to_string(_dst->dimension(channel_idx)); return config_id; } std::set ClTemplatePool2d::get_headers_list() const { return std::set{"helpers.h", "tile_helpers.h", "repeat.h"}; } Window ClTemplatePool2d::get_window() const { ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized"); const auto output_shape = _dst->tensor_shape(); const unsigned int vec_size = adjust_vec_size(((_dst->data_type() == DataType::F32) ? 2 : 4), _dst->dimension(0)); // Create and configure kernel window auto win = calculate_max_window(output_shape, Steps(vec_size)); win = win.collapse_if_possible(win, Window::DimZ); // collapse window on batch size. return win; } } // namespace dynamic_fusion } // namespace experimental } // namespace arm_compute