aboutsummaryrefslogtreecommitdiff
path: root/reference_model/src/ops/type_conversion.cc
blob: e46ab3897f101c20b7993e0f3027120924ff01b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

// Copyright (c) 2020-2021, ARM Limited.
//
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
//
//         http://www.apache.org/licenses/LICENSE-2.0
//
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//    limitations under the License.

#include "type_conversion.h"
#include "quant_util.h"
#include "template_types.h"
#include <cmath>

using namespace TosaReference;
using namespace Eigen;
using namespace tosa;

template <int Rank, DType InDtype, DType OutDtype>
OpRescale<Rank, InDtype, OutDtype>::OpRescale(SubgraphTraverser* sgt_,
                                              TosaAttributeBase* attribute_,
                                              TosaQuantInfoBase* qinfo_,
                                              uint64_t id_)
    : GraphNode(sgt_, Op_RESCALE, id_)
{
    setRequiredOperands(1, 1);
    setRequiredRank(0, 4);
    INIT_ATTRIBUTE(Rescale);
}

template <int Rank, DType InDtype, DType OutDtype>
OpRescale<Rank, InDtype, OutDtype>::~OpRescale()
{
    if (attribute)
        delete attribute;
}

template <int Rank, DType InDtype, DType OutDtype>
int OpRescale<Rank, InDtype, OutDtype>::checkTensorAttributes()
{
    if (validateRequiredOperands())
        return 1;

    if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0]))
    {
        return 1;
    }

    // output and input must be the same rank and size
    if (inputs[0]->matchRankSize(*outputs[0]))
    {
        printNodeValidationError("OpRescale: input and output rank/size must match");
        return 1;
    }

    in  = dynamic_cast<TosaReference::TensorTemplate<TIn>*>(inputs[0]);
    out = dynamic_cast<TosaReference::TensorTemplate<TOut>*>(outputs[0]);

    ASSERT_MEM(in && out);

    if ((InDtype != DType_INT8) && (InDtype != DType_UINT8) && (attribute->input_zp() != 0))
    {
        printNodeValidationError("OpRescale: Input DType not INT8/UINT8 and zero point not 0");
        return 1;
    }

    if ((OutDtype != DType_INT8) && (OutDtype != DType_UINT8) && (attribute->output_zp() != 0))
    {
        printNodeValidationError("OpRescale: Output DType not INT8/UINT8 and zero point not 0");
        return 1;
    }

    if (attribute->scale32() && (InDtype == DType_INT48))
    {
        printNodeValidationError("OpRescale: Scale set to true but input type is INT48");
        return 1;
    }

    if ((!attribute->scale32()) && attribute->double_round())
    {
        printNodeValidationError("OpRescale: Scale set to false but double round set to true");
        return 1;
    }

    return 0;
}

template <int Rank, DType InDtype, DType OutDtype>
int OpRescale<Rank, InDtype, OutDtype>::eval()
{
    int32_t input_zp                = attribute->input_zp();
    int32_t output_zp               = attribute->output_zp();
    std::vector<int32_t> multiplier = attribute->multiplier();
    std::vector<int32_t> shift      = attribute->shift();
    bool scale32                    = attribute->scale32();
    bool double_round               = attribute->double_round();
    bool per_channel                = attribute->per_channel();

    // reshape [d0, d1, ..., dn] into [d0 * d1 ..., dn]
    Eigen::array<Eigen::Index, 2> shape_2d;
    shape_2d[0] = 1;
    if (Rank > 0)
    {
        for (int i = 0; i < Rank - 1; i++)
        {
            shape_2d[0] *= this->in->getShape()[i];
        }
        shape_2d[1] = this->in->getShape()[Rank - 1];
    }
    else
    {
        shape_2d[1] = 1;
    }
    ETensor2<InEigenType> input_reshaped = this->in->getTensor().reshape(shape_2d);

    ETensor2<OutEigenType> output_2d(shape_2d);

    if (per_channel)
    {
        ETensor2<InEigenType> curr_channel_slice_prescaled;
        ETensor2<OutEigenType> curr_channel_slice_postscaled;
        int32_t channel_multiplier, channel_shift;
        Eigen::array<Eigen::Index, 2> begin, size;
        size = Eigen::array<Eigen::Index, 2>({ shape_2d[0], 1 });
        try
        {
            for (int32_t i = 0; i < shape_2d[1]; i++)
            {
                begin                        = Eigen::array<Eigen::Index, 2>({ 0, i });
                curr_channel_slice_prescaled = input_reshaped.slice(begin, size);
                channel_multiplier           = multiplier[i];
                channel_shift                = shift[i];
                curr_channel_slice_postscaled =
                    curr_channel_slice_prescaled.unaryExpr([input_zp, output_zp, channel_multiplier, channel_shift,
                                                            double_round, scale32](InEigenType in_val) -> OutEigenType {
                        InEigenType input_zp_shifted = in_val - (InEigenType)input_zp;
                        int32_t scaled;
                        if (scale32)
                            scaled = TosaReference::QuantUtil::apply_scale_32(input_zp_shifted, channel_multiplier,
                                                                              channel_shift, double_round);
                        else
                            scaled = TosaReference::QuantUtil::apply_scale_16(input_zp_shifted, channel_multiplier,
                                                                              channel_shift);
                        OutEigenType out_val = (OutEigenType)(scaled + output_zp);
                        out_val              = std::max<OutEigenType>(out_val, QMin);
                        out_val              = std::min<OutEigenType>(out_val, QMax);
                        return out_val;
                    });

                for (int32_t j = 0; j < shape_2d[0]; j++)
                {
                    output_2d(j, i) = curr_channel_slice_postscaled(j, 0);
                }
            }
        }
        catch (std::string desc)
        {
            REQUIRE(false, "OpRescale apply_scale_32/16() fails: %s.", desc.c_str());
        }
    }
    else
    {
        int32_t tensor_multiplier = multiplier[0];
        int32_t tensor_shift      = shift[0];
        try
        {
            output_2d = input_reshaped.unaryExpr([input_zp, output_zp, tensor_multiplier, tensor_shift, double_round,
                                                  scale32](InEigenType in_val) -> OutEigenType {
                InEigenType input_zp_shifted = in_val - (InEigenType)input_zp;
                int32_t scaled;
                if (scale32)
                    scaled = TosaReference::QuantUtil::apply_scale_32(input_zp_shifted, tensor_multiplier, tensor_shift,
                                                                      double_round);
                else
                    scaled =
                        TosaReference::QuantUtil::apply_scale_16(input_zp_shifted, tensor_multiplier, tensor_shift);
                OutEigenType out_val = (OutEigenType)(scaled + output_zp);
                out_val              = std::max<OutEigenType>(out_val, QMin);
                out_val              = std::min<OutEigenType>(out_val, QMax);
                return out_val;
            });
        }
        catch (std::string desc)
        {
            REQUIRE(false, "OpRescale apply_scale_32/16() fails: %s.", desc.c_str());
        }
    }

    // reshape [d0 * d1 ..., dn] back to [d0, d1, ..., dn]
    Eigen::array<Eigen::Index, Rank> output_shape;
    for (int i = 0; i < Rank; i++)
    {
        output_shape[i] = this->out->getShape()[i];
    }
    this->out->getTensor() = output_2d.reshape(output_shape);

    return GraphNode::eval();
}

template <int Rank, DType InDtype, DType OutDtype>
OpCast<Rank, InDtype, OutDtype>::OpCast(SubgraphTraverser* sgt_,
                                        TosaAttributeBase* attribute_,
                                        TosaQuantInfoBase* qinfo_,
                                        uint64_t id_)
    : GraphNode(sgt_, Op_CAST, id_)
{
    setRequiredOperands(1, 1);
    setRequiredRank(0, 6);
}

template <int Rank, DType InDtype, DType OutDtype>
OpCast<Rank, InDtype, OutDtype>::~OpCast()
{}

template <int Rank, DType InDtype, DType OutDtype>
int OpCast<Rank, InDtype, OutDtype>::checkTensorAttributes()
{
    if (validateRequiredOperands())
        return 1;

    if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0]))
    {
        return 1;
    }

    // output and input must be the same rank and size
    if (inputs[0]->matchRankSize(*outputs[0]))
    {
        printNodeValidationError("OpCast: input and output rank/size must match");
        return 1;
    }

    in  = dynamic_cast<TosaReference::TensorTemplate<TIn>*>(inputs[0]);
    out = dynamic_cast<TosaReference::TensorTemplate<TOut>*>(outputs[0]);

    ASSERT_MEM(in && out);

    return 0;
}

template <int Rank, DType InDtype, DType OutDtype>
int OpCast<Rank, InDtype, OutDtype>::eval()
{
    this->out->getTensor() = this->in->getTensor().unaryExpr(cast_helper.get_fcn());

    return GraphNode::eval();
}

template <DType InDtype, DType OutDtype>
CastHelper<InDtype, OutDtype>::CastHelper()
{
    fcn = [](InEigenType in) -> OutEigenType {
        OutEigenType out = (OutEigenType)in;    // implicit sign_extend() if sizeof(out_t) >= sizeof(in_t)
        return out;
    };
}

template <DType InDtype>
CastHelper<InDtype, DType_BOOL>::CastHelper()
{
    fcn = [](InEigenType in) -> bool { return (in != 0) ? true : false; };
}

template <DType OutDtype>
CastHelper<DType_BOOL, OutDtype>::CastHelper()
{
    fcn = [](bool in) -> OutEigenType {
        OutEigenType out = in ? (OutEigenType)1 : (OutEigenType)0;
        return out;
    };
}

template <DType InDtype>
CastHelper<InDtype, DType_FLOAT>::CastHelper()
{
    fcn = [](InEigenType in) -> float {
        float out = (OutEigenType)in;    // default cast to float is round_to_nearest_float()
        return out;
    };
}

template <DType OutDtype>
CastHelper<DType_FLOAT, OutDtype>::CastHelper()
{
    fcn = [](float in) -> OutEigenType {
        OutEigenType out = std::round(in);
        out              = std::max<OutEigenType>(out, OutMin);
        out              = std::min<OutEigenType>(out, OutMax);
        return out;
    };
}

// template explicit instantiation
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, BOOL, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, BOOL, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, BOOL, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, BOOL);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT8, FLOAT);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, BOOL);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT16, FLOAT);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, BOOL);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, INT32, FLOAT);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, FLOAT, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, FLOAT, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpCast, FLOAT, INT32);

DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT8, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT8, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT8, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT16, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT16, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT16, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT32, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT32, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT32, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT48, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT48, INT16);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT48, INT32);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, UINT8, INT8);
DEF_INSTANTIATE_RANK0_6_ONE_RANK_TWO_TYPE(OpRescale, INT8, UINT8);