aboutsummaryrefslogtreecommitdiff
path: root/tests/NetworkExecutionUtils/NetworkExecutionUtils.hpp
blob: d7e927591694987f3ed147bc7a3bde0d2e2fb5bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <armnn/ArmNN.hpp>
#include <armnn/TypesUtils.hpp>

#if defined(ARMNN_SERIALIZER)
#include "armnnDeserializer/IDeserializer.hpp"
#endif
#if defined(ARMNN_CAFFE_PARSER)
#include "armnnCaffeParser/ICaffeParser.hpp"
#endif
#if defined(ARMNN_TF_PARSER)
#include "armnnTfParser/ITfParser.hpp"
#endif
#if defined(ARMNN_TF_LITE_PARSER)
#include "armnnTfLiteParser/ITfLiteParser.hpp"
#endif
#if defined(ARMNN_ONNX_PARSER)
#include "armnnOnnxParser/IOnnxParser.hpp"
#endif
#include "CsvReader.hpp"
#include "../InferenceTest.hpp"

#include <Profiling.hpp>
#include <ResolveType.hpp>

#include <boost/algorithm/string/trim.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/algorithm/string/classification.hpp>
#include <boost/program_options.hpp>
#include <boost/variant.hpp>

#include <iostream>
#include <fstream>
#include <functional>
#include <future>
#include <algorithm>
#include <iterator>

namespace
{

// Configure boost::program_options for command-line parsing and validation.
namespace po = boost::program_options;

template<typename T, typename TParseElementFunc>
std::vector<T> ParseArrayImpl(std::istream& stream, TParseElementFunc parseElementFunc, const char * chars = "\t ,:")
{
    std::vector<T> result;
    // Processes line-by-line.
    std::string line;
    while (std::getline(stream, line))
    {
        std::vector<std::string> tokens;
        try
        {
            // Coverity fix: boost::split() may throw an exception of type boost::bad_function_call.
            boost::split(tokens, line, boost::algorithm::is_any_of(chars), boost::token_compress_on);
        }
        catch (const std::exception& e)
        {
            ARMNN_LOG(error) << "An error occurred when splitting tokens: " << e.what();
            continue;
        }
        for (const std::string& token : tokens)
        {
            if (!token.empty()) // See https://stackoverflow.com/questions/10437406/
            {
                try
                {
                    result.push_back(parseElementFunc(token));
                }
                catch (const std::exception&)
                {
                    ARMNN_LOG(error) << "'" << token << "' is not a valid number. It has been ignored.";
                }
            }
        }
    }

    return result;
}

bool CheckOption(const po::variables_map& vm,
                 const char* option)
{
    // Check that the given option is valid.
    if (option == nullptr)
    {
        return false;
    }

    // Check whether 'option' is provided.
    return vm.find(option) != vm.end();
}

void CheckOptionDependency(const po::variables_map& vm,
                           const char* option,
                           const char* required)
{
    // Check that the given options are valid.
    if (option == nullptr || required == nullptr)
    {
        throw po::error("Invalid option to check dependency for");
    }

    // Check that if 'option' is provided, 'required' is also provided.
    if (CheckOption(vm, option) && !vm[option].defaulted())
    {
        if (CheckOption(vm, required) == 0 || vm[required].defaulted())
        {
            throw po::error(std::string("Option '") + option + "' requires option '" + required + "'.");
        }
    }
}

void CheckOptionDependencies(const po::variables_map& vm)
{
    CheckOptionDependency(vm, "model-path", "model-format");
    CheckOptionDependency(vm, "model-path", "input-name");
    CheckOptionDependency(vm, "model-path", "output-name");
    CheckOptionDependency(vm, "input-tensor-shape", "model-path");
}

template<armnn::DataType NonQuantizedType>
auto ParseDataArray(std::istream & stream);

template<armnn::DataType QuantizedType>
auto ParseDataArray(std::istream& stream,
                    const float& quantizationScale,
                    const int32_t& quantizationOffset);

template<>
auto ParseDataArray<armnn::DataType::Float32>(std::istream & stream)
{
    return ParseArrayImpl<float>(stream, [](const std::string& s) { return std::stof(s); });
}

template<>
auto ParseDataArray<armnn::DataType::Signed32>(std::istream & stream)
{
    return ParseArrayImpl<int>(stream, [](const std::string & s) { return std::stoi(s); });
}

template<>
auto ParseDataArray<armnn::DataType::QAsymmU8>(std::istream& stream)
{
    return ParseArrayImpl<uint8_t>(stream,
                                   [](const std::string& s) { return boost::numeric_cast<uint8_t>(std::stoi(s)); });
}

template<>
auto ParseDataArray<armnn::DataType::QAsymmU8>(std::istream& stream,
                                                      const float& quantizationScale,
                                                      const int32_t& quantizationOffset)
{
    return ParseArrayImpl<uint8_t>(stream,
                                   [&quantizationScale, &quantizationOffset](const std::string & s)
                                   {
                                       return boost::numeric_cast<uint8_t>(
                                           armnn::Quantize<uint8_t>(std::stof(s),
                                                                     quantizationScale,
                                                                     quantizationOffset));
                                   });
}
std::vector<unsigned int> ParseArray(std::istream& stream)
{
    return ParseArrayImpl<unsigned int>(stream,
        [](const std::string& s) { return boost::numeric_cast<unsigned int>(std::stoi(s)); });
}

std::vector<std::string> ParseStringList(const std::string & inputString, const char * delimiter)
{
    std::stringstream stream(inputString);
    return ParseArrayImpl<std::string>(stream, [](const std::string& s) { return boost::trim_copy(s); }, delimiter);
}

void RemoveDuplicateDevices(std::vector<armnn::BackendId>& computeDevices)
{
    // Mark the duplicate devices as 'Undefined'.
    for (auto i = computeDevices.begin(); i != computeDevices.end(); ++i)
    {
        for (auto j = std::next(i); j != computeDevices.end(); ++j)
        {
            if (*j == *i)
            {
                *j = armnn::Compute::Undefined;
            }
        }
    }

    // Remove 'Undefined' devices.
    computeDevices.erase(std::remove(computeDevices.begin(), computeDevices.end(), armnn::Compute::Undefined),
                         computeDevices.end());
}

struct TensorPrinter : public boost::static_visitor<>
{
    TensorPrinter(const std::string& binding,
                  const armnn::TensorInfo& info,
                  const std::string& outputTensorFile,
                  bool dequantizeOutput)
        : m_OutputBinding(binding)
        , m_Scale(info.GetQuantizationScale())
        , m_Offset(info.GetQuantizationOffset())
        , m_OutputTensorFile(outputTensorFile)
        , m_DequantizeOutput(dequantizeOutput)
    {}

    void operator()(const std::vector<float>& values)
    {
        ForEachValue(values, [](float value)
            {
                printf("%f ", value);
            });
        WriteToFile(values);
    }

    void operator()(const std::vector<uint8_t>& values)
    {
        if(m_DequantizeOutput)
        {
            auto& scale = m_Scale;
            auto& offset = m_Offset;
            std::vector<float> dequantizedValues;
            ForEachValue(values, [&scale, &offset, &dequantizedValues](uint8_t value)
            {
                auto dequantizedValue = armnn::Dequantize(value, scale, offset);
                printf("%f ", dequantizedValue);
                dequantizedValues.push_back(dequantizedValue);
            });
            WriteToFile(dequantizedValues);
        }
        else
        {
            const std::vector<int> intValues(values.begin(), values.end());
            operator()(intValues);
        }
    }

    void operator()(const std::vector<int>& values)
    {
        ForEachValue(values, [](int value)
            {
                printf("%d ", value);
            });
        WriteToFile(values);
    }

private:
    template<typename Container, typename Delegate>
    void ForEachValue(const Container& c, Delegate delegate)
    {
        std::cout << m_OutputBinding << ": ";
        for (const auto& value : c)
        {
            delegate(value);
        }
        printf("\n");
    }

    template<typename T>
    void WriteToFile(const std::vector<T>& values)
    {
        if (!m_OutputTensorFile.empty())
        {
            std::ofstream outputTensorFile;
            outputTensorFile.open(m_OutputTensorFile, std::ofstream::out | std::ofstream::trunc);
            if (outputTensorFile.is_open())
            {
                outputTensorFile << m_OutputBinding << ": ";
                std::copy(values.begin(), values.end(), std::ostream_iterator<T>(outputTensorFile, " "));
            }
            else
            {
                ARMNN_LOG(info) << "Output Tensor File: " << m_OutputTensorFile << " could not be opened!";
            }
            outputTensorFile.close();
        }
    }

    std::string m_OutputBinding;
    float m_Scale=0.0f;
    int m_Offset=0;
    std::string m_OutputTensorFile;
    bool m_DequantizeOutput = false;
};



template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
std::vector<T> GenerateDummyTensorData(unsigned int numElements)
{
    return std::vector<T>(numElements, static_cast<T>(0));
}

using TContainer         = boost::variant<std::vector<float>, std::vector<int>, std::vector<unsigned char>>;
using QuantizationParams = std::pair<float, int32_t>;

void PopulateTensorWithData(TContainer& tensorData,
                            unsigned int numElements,
                            const std::string& dataTypeStr,
                            const armnn::Optional<QuantizationParams>& qParams,
                            const armnn::Optional<std::string>& dataFile)
{
    const bool readFromFile = dataFile.has_value() && !dataFile.value().empty();
    const bool quantizeData = qParams.has_value();

    std::ifstream inputTensorFile;
    if (readFromFile)
    {
        inputTensorFile = std::ifstream(dataFile.value());
    }

    if (dataTypeStr.compare("float") == 0)
    {
        if (quantizeData)
        {
            const float qScale  = qParams.value().first;
            const int   qOffset = qParams.value().second;

            tensorData = readFromFile ?
                ParseDataArray<armnn::DataType::QAsymmU8>(inputTensorFile, qScale, qOffset) :
                GenerateDummyTensorData<armnn::DataType::QAsymmU8>(numElements);
        }
        else
        {
            tensorData = readFromFile ?
                ParseDataArray<armnn::DataType::Float32>(inputTensorFile) :
                GenerateDummyTensorData<armnn::DataType::Float32>(numElements);
        }
    }
    else if (dataTypeStr.compare("int") == 0)
    {
        tensorData = readFromFile ?
            ParseDataArray<armnn::DataType::Signed32>(inputTensorFile) :
            GenerateDummyTensorData<armnn::DataType::Signed32>(numElements);
    }
    else if (dataTypeStr.compare("qasymm8") == 0)
    {
         tensorData = readFromFile ?
            ParseDataArray<armnn::DataType::QAsymmU8>(inputTensorFile) :
            GenerateDummyTensorData<armnn::DataType::QAsymmU8>(numElements);
    }
    else
    {
        std::string errorMessage = "Unsupported tensor data type " + dataTypeStr;
        ARMNN_LOG(fatal) << errorMessage;

        inputTensorFile.close();
        throw armnn::Exception(errorMessage);
    }

    inputTensorFile.close();
}

} // anonymous namespace

bool generateTensorData = true;

struct ExecuteNetworkParams
{
    using TensorShapePtr = std::unique_ptr<armnn::TensorShape>;

    const char*                   m_ModelPath;
    bool                          m_IsModelBinary;
    std::vector<armnn::BackendId> m_ComputeDevices;
    std::string                   m_DynamicBackendsPath;
    std::vector<string>           m_InputNames;
    std::vector<TensorShapePtr>   m_InputTensorShapes;
    std::vector<string>           m_InputTensorDataFilePaths;
    std::vector<string>           m_InputTypes;
    bool                          m_QuantizeInput;
    std::vector<string>           m_OutputTypes;
    std::vector<string>           m_OutputNames;
    std::vector<string>           m_OutputTensorFiles;
    bool                          m_DequantizeOutput;
    bool                          m_EnableProfiling;
    bool                          m_EnableFp16TurboMode;
    double                        m_ThresholdTime;
    bool                          m_PrintIntermediate;
    size_t                        m_SubgraphId;
    bool                          m_EnableLayerDetails = false;
    bool                          m_GenerateTensorData;
    bool                          m_ParseUnsupported = false;
};

template<typename TParser, typename TDataType>
int MainImpl(const ExecuteNetworkParams& params,
             const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
{
    using TContainer = boost::variant<std::vector<float>, std::vector<int>, std::vector<unsigned char>>;

    std::vector<TContainer> inputDataContainers;

    try
    {
        // Creates an InferenceModel, which will parse the model and load it into an IRuntime.
        typename InferenceModel<TParser, TDataType>::Params inferenceModelParams;
        inferenceModelParams.m_ModelPath                      = params.m_ModelPath;
        inferenceModelParams.m_IsModelBinary                  = params.m_IsModelBinary;
        inferenceModelParams.m_ComputeDevices                 = params.m_ComputeDevices;
        inferenceModelParams.m_DynamicBackendsPath            = params.m_DynamicBackendsPath;
        inferenceModelParams.m_PrintIntermediateLayers        = params.m_PrintIntermediate;
        inferenceModelParams.m_VisualizePostOptimizationModel = params.m_EnableLayerDetails;
        inferenceModelParams.m_ParseUnsupported               = params.m_ParseUnsupported;

        for(const std::string& inputName: params.m_InputNames)
        {
            inferenceModelParams.m_InputBindings.push_back(inputName);
        }

        for(unsigned int i = 0; i < params.m_InputTensorShapes.size(); ++i)
        {
            inferenceModelParams.m_InputShapes.push_back(*params.m_InputTensorShapes[i]);
        }

        for(const std::string& outputName: params.m_OutputNames)
        {
            inferenceModelParams.m_OutputBindings.push_back(outputName);
        }

        inferenceModelParams.m_SubgraphId          = params.m_SubgraphId;
        inferenceModelParams.m_EnableFp16TurboMode = params.m_EnableFp16TurboMode;

        InferenceModel<TParser, TDataType> model(inferenceModelParams,
                                                 params.m_EnableProfiling,
                                                 params.m_DynamicBackendsPath,
                                                 runtime);

        const size_t numInputs = inferenceModelParams.m_InputBindings.size();
        for(unsigned int i = 0; i < numInputs; ++i)
        {
            armnn::Optional<QuantizationParams> qParams = params.m_QuantizeInput ?
                armnn::MakeOptional<QuantizationParams>(model.GetInputQuantizationParams()) :
                armnn::EmptyOptional();

            armnn::Optional<std::string> dataFile = params.m_GenerateTensorData ?
                armnn::EmptyOptional() :
                armnn::MakeOptional<std::string>(params.m_InputTensorDataFilePaths[i]);

            unsigned int numElements = model.GetInputSize(i);
            if (params.m_InputTensorShapes.size() > i && params.m_InputTensorShapes[i])
            {
                // If the user has provided a tensor shape for the current input,
                // override numElements
                numElements = params.m_InputTensorShapes[i]->GetNumElements();
            }

            TContainer tensorData;
            PopulateTensorWithData(tensorData,
                                   numElements,
                                   params.m_InputTypes[i],
                                   qParams,
                                   dataFile);

            inputDataContainers.push_back(tensorData);
        }

        const size_t numOutputs = inferenceModelParams.m_OutputBindings.size();
        std::vector<TContainer> outputDataContainers;

        for (unsigned int i = 0; i < numOutputs; ++i)
        {
            if (params.m_OutputTypes[i].compare("float") == 0)
            {
                outputDataContainers.push_back(std::vector<float>(model.GetOutputSize(i)));
            }
            else if (params.m_OutputTypes[i].compare("int") == 0)
            {
                outputDataContainers.push_back(std::vector<int>(model.GetOutputSize(i)));
            }
            else if (params.m_OutputTypes[i].compare("qasymm8") == 0)
            {
                outputDataContainers.push_back(std::vector<uint8_t>(model.GetOutputSize(i)));
            }
            else
            {
                ARMNN_LOG(fatal) << "Unsupported tensor data type \"" << params.m_OutputTypes[i] << "\". ";
                return EXIT_FAILURE;
            }
        }

        // model.Run returns the inference time elapsed in EnqueueWorkload (in milliseconds)
        auto inference_duration = model.Run(inputDataContainers, outputDataContainers);

        if (params.m_GenerateTensorData)
        {
            ARMNN_LOG(warning) << "The input data was generated, note that the output will not be useful";
        }

        // Print output tensors
        const auto& infosOut = model.GetOutputBindingInfos();
        for (size_t i = 0; i < numOutputs; i++)
        {
            const armnn::TensorInfo& infoOut = infosOut[i].second;
            auto outputTensorFile = params.m_OutputTensorFiles.empty() ? "" : params.m_OutputTensorFiles[i];

            TensorPrinter printer(inferenceModelParams.m_OutputBindings[i],
                                  infoOut,
                                  outputTensorFile,
                                  params.m_DequantizeOutput);
            boost::apply_visitor(printer, outputDataContainers[i]);
        }

        ARMNN_LOG(info) << "\nInference time: " << std::setprecision(2)
                                << std::fixed << inference_duration.count() << " ms";

        // If thresholdTime == 0.0 (default), then it hasn't been supplied at command line
        if (params.m_ThresholdTime != 0.0)
        {
            ARMNN_LOG(info) << "Threshold time: " << std::setprecision(2)
                                    << std::fixed << params.m_ThresholdTime << " ms";
            auto thresholdMinusInference = params.m_ThresholdTime - inference_duration.count();
            ARMNN_LOG(info) << "Threshold time - Inference time: " << std::setprecision(2)
                                    << std::fixed << thresholdMinusInference << " ms" << "\n";

            if (thresholdMinusInference < 0)
            {
                std::string errorMessage = "Elapsed inference time is greater than provided threshold time.";
                ARMNN_LOG(fatal) << errorMessage;
            }
        }
    }
    catch (armnn::Exception const& e)
    {
        ARMNN_LOG(fatal) << "Armnn Error: " << e.what();
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}

// This will run a test
int RunTest(const std::string& format,
            const std::string& inputTensorShapesStr,
            const vector<armnn::BackendId>& computeDevices,
            const std::string& dynamicBackendsPath,
            const std::string& path,
            const std::string& inputNames,
            const std::string& inputTensorDataFilePaths,
            const std::string& inputTypes,
            bool quantizeInput,
            const std::string& outputTypes,
            const std::string& outputNames,
            const std::string& outputTensorFiles,
            bool dequantizeOuput,
            bool enableProfiling,
            bool enableFp16TurboMode,
            const double& thresholdTime,
            bool printIntermediate,
            const size_t subgraphId,
            bool enableLayerDetails = false,
            bool parseUnsupported = false,
            const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
{
    std::string modelFormat = boost::trim_copy(format);
    std::string modelPath = boost::trim_copy(path);
    std::vector<std::string> inputNamesVector = ParseStringList(inputNames, ",");
    std::vector<std::string> inputTensorShapesVector = ParseStringList(inputTensorShapesStr, ":");
    std::vector<std::string> inputTensorDataFilePathsVector = ParseStringList(
        inputTensorDataFilePaths, ",");
    std::vector<std::string> outputNamesVector = ParseStringList(outputNames, ",");
    std::vector<std::string> inputTypesVector = ParseStringList(inputTypes, ",");
    std::vector<std::string> outputTypesVector = ParseStringList(outputTypes, ",");
    std::vector<std::string> outputTensorFilesVector = ParseStringList(outputTensorFiles, ",");

    // Parse model binary flag from the model-format string we got from the command-line
    bool isModelBinary;
    if (modelFormat.find("bin") != std::string::npos)
    {
        isModelBinary = true;
    }
    else if (modelFormat.find("txt") != std::string::npos || modelFormat.find("text") != std::string::npos)
    {
        isModelBinary = false;
    }
    else
    {
        ARMNN_LOG(fatal) << "Unknown model format: '" << modelFormat << "'. Please include 'binary' or 'text'";
        return EXIT_FAILURE;
    }

    if ((inputTensorShapesVector.size() != 0) && (inputTensorShapesVector.size() != inputNamesVector.size()))
    {
        ARMNN_LOG(fatal) << "input-name and input-tensor-shape must have the same amount of elements.";
        return EXIT_FAILURE;
    }

    if ((inputTensorDataFilePathsVector.size() != 0) &&
        (inputTensorDataFilePathsVector.size() != inputNamesVector.size()))
    {
        ARMNN_LOG(fatal) << "input-name and input-tensor-data must have the same amount of elements.";
        return EXIT_FAILURE;
    }

    if ((outputTensorFilesVector.size() != 0) &&
        (outputTensorFilesVector.size() != outputNamesVector.size()))
    {
        ARMNN_LOG(fatal) << "output-name and write-outputs-to-file must have the same amount of elements.";
        return EXIT_FAILURE;
    }

    if (inputTypesVector.size() == 0)
    {
        //Defaults the value of all inputs to "float"
        inputTypesVector.assign(inputNamesVector.size(), "float");
    }
    else if ((inputTypesVector.size() != 0) && (inputTypesVector.size() != inputNamesVector.size()))
    {
        ARMNN_LOG(fatal) << "input-name and input-type must have the same amount of elements.";
        return EXIT_FAILURE;
    }

    if (outputTypesVector.size() == 0)
    {
        //Defaults the value of all outputs to "float"
        outputTypesVector.assign(outputNamesVector.size(), "float");
    }
    else if ((outputTypesVector.size() != 0) && (outputTypesVector.size() != outputNamesVector.size()))
    {
        ARMNN_LOG(fatal) << "output-name and output-type must have the same amount of elements.";
        return EXIT_FAILURE;
    }

    // Parse input tensor shape from the string we got from the command-line.
    std::vector<std::unique_ptr<armnn::TensorShape>> inputTensorShapes;

    if (!inputTensorShapesVector.empty())
    {
        inputTensorShapes.reserve(inputTensorShapesVector.size());

        for(const std::string& shape : inputTensorShapesVector)
        {
            std::stringstream ss(shape);
            std::vector<unsigned int> dims = ParseArray(ss);

            try
            {
                // Coverity fix: An exception of type armnn::InvalidArgumentException is thrown and never caught.
                inputTensorShapes.push_back(std::make_unique<armnn::TensorShape>(dims.size(), dims.data()));
            }
            catch (const armnn::InvalidArgumentException& e)
            {
                ARMNN_LOG(fatal) << "Cannot create tensor shape: " << e.what();
                return EXIT_FAILURE;
            }
        }
    }

    // Check that threshold time is not less than zero
    if (thresholdTime < 0)
    {
        ARMNN_LOG(fatal) << "Threshold time supplied as a command line argument is less than zero.";
        return EXIT_FAILURE;
    }

    ExecuteNetworkParams params;
    params.m_ModelPath                = modelPath.c_str();
    params.m_IsModelBinary            = isModelBinary;
    params.m_ComputeDevices           = computeDevices;
    params.m_DynamicBackendsPath      = dynamicBackendsPath;
    params.m_InputNames               = inputNamesVector;
    params.m_InputTensorShapes        = std::move(inputTensorShapes);
    params.m_InputTensorDataFilePaths = inputTensorDataFilePathsVector;
    params.m_InputTypes               = inputTypesVector;
    params.m_QuantizeInput            = quantizeInput;
    params.m_OutputTypes              = outputTypesVector;
    params.m_OutputNames              = outputNamesVector;
    params.m_OutputTensorFiles        = outputTensorFilesVector;
    params.m_DequantizeOutput         = dequantizeOuput;
    params.m_EnableProfiling          = enableProfiling;
    params.m_EnableFp16TurboMode      = enableFp16TurboMode;
    params.m_ThresholdTime            = thresholdTime;
    params.m_PrintIntermediate        = printIntermediate;
    params.m_SubgraphId               = subgraphId;
    params.m_EnableLayerDetails       = enableLayerDetails;
    params.m_GenerateTensorData       = inputTensorDataFilePathsVector.empty();
    params.m_ParseUnsupported         = parseUnsupported;

    // Warn if ExecuteNetwork will generate dummy input data
    if (params.m_GenerateTensorData)
    {
        ARMNN_LOG(warning) << "No input files provided, input tensors will be filled with 0s.";
    }

    // Forward to implementation based on the parser type
    if (modelFormat.find("armnn") != std::string::npos)
    {
#if defined(ARMNN_SERIALIZER)
    return MainImpl<armnnDeserializer::IDeserializer, float>(params, runtime);
#else
        ARMNN_LOG(fatal) << "Not built with serialization support.";
    return EXIT_FAILURE;
#endif
    }
    else if (modelFormat.find("caffe") != std::string::npos)
    {
#if defined(ARMNN_CAFFE_PARSER)
        return MainImpl<armnnCaffeParser::ICaffeParser, float>(params, runtime);
#else
        ARMNN_LOG(fatal) << "Not built with Caffe parser support.";
        return EXIT_FAILURE;
#endif
    }
    else if (modelFormat.find("onnx") != std::string::npos)
{
#if defined(ARMNN_ONNX_PARSER)
    return MainImpl<armnnOnnxParser::IOnnxParser, float>(params, runtime);
#else
        ARMNN_LOG(fatal) << "Not built with Onnx parser support.";
    return EXIT_FAILURE;
#endif
    }
    else if (modelFormat.find("tensorflow") != std::string::npos)
    {
#if defined(ARMNN_TF_PARSER)
        return MainImpl<armnnTfParser::ITfParser, float>(params, runtime);
#else
        ARMNN_LOG(fatal) << "Not built with Tensorflow parser support.";
        return EXIT_FAILURE;
#endif
    }
    else if(modelFormat.find("tflite") != std::string::npos)
    {
#if defined(ARMNN_TF_LITE_PARSER)
        if (! isModelBinary)
        {
            ARMNN_LOG(fatal) << "Unknown model format: '" << modelFormat << "'. Only 'binary' format supported \
              for tflite files";
            return EXIT_FAILURE;
        }
        return MainImpl<armnnTfLiteParser::ITfLiteParser, float>(params, runtime);
#else
        ARMNN_LOG(fatal) << "Unknown model format: '" << modelFormat <<
            "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
        return EXIT_FAILURE;
#endif
    }
    else
    {
        ARMNN_LOG(fatal) << "Unknown model format: '" << modelFormat <<
                                 "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
        return EXIT_FAILURE;
    }
}

int RunCsvTest(const armnnUtils::CsvRow &csvRow, const std::shared_ptr<armnn::IRuntime>& runtime,
               const bool enableProfiling, const bool enableFp16TurboMode, const double& thresholdTime,
               const bool printIntermediate, bool enableLayerDetails = false, bool parseUnuspported = false)
{
    boost::ignore_unused(runtime);
    std::string modelFormat;
    std::string modelPath;
    std::string inputNames;
    std::string inputTensorShapes;
    std::string inputTensorDataFilePaths;
    std::string outputNames;
    std::string inputTypes;
    std::string outputTypes;
    std::string dynamicBackendsPath;
    std::string outputTensorFiles;

    size_t subgraphId = 0;

    const std::string backendsMessage = std::string("The preferred order of devices to run layers on by default. ")
                                      + std::string("Possible choices: ")
                                      + armnn::BackendRegistryInstance().GetBackendIdsAsString();

    po::options_description desc("Options");
    try
    {
        desc.add_options()
        ("model-format,f", po::value(&modelFormat),
         "armnn-binary, caffe-binary, caffe-text, tflite-binary, onnx-binary, onnx-text, tensorflow-binary or "
         "tensorflow-text.")
        ("model-path,m", po::value(&modelPath), "Path to model file, e.g. .armnn, .caffemodel, .prototxt, "
         ".tflite, .onnx")
        ("compute,c", po::value<std::vector<armnn::BackendId>>()->multitoken(),
         backendsMessage.c_str())
        ("dynamic-backends-path,b", po::value(&dynamicBackendsPath),
         "Path where to load any available dynamic backend from. "
         "If left empty (the default), dynamic backends will not be used.")
        ("input-name,i", po::value(&inputNames), "Identifier of the input tensors in the network separated by comma.")
        ("subgraph-number,n", po::value<size_t>(&subgraphId)->default_value(0), "Id of the subgraph to be "
         "executed. Defaults to 0.")
        ("input-tensor-shape,s", po::value(&inputTensorShapes),
         "The shape of the input tensors in the network as a flat array of integers separated by comma. "
         "Several shapes can be passed separating them by semicolon. "
         "This parameter is optional, depending on the network.")
        ("input-tensor-data,d", po::value(&inputTensorDataFilePaths)->default_value(""),
         "Path to files containing the input data as a flat array separated by whitespace. "
         "Several paths can be passed separating them by comma. If not specified, the network will be run with dummy "
         "data (useful for profiling).")
        ("input-type,y",po::value(&inputTypes), "The type of the input tensors in the network separated by comma. "
         "If unset, defaults to \"float\" for all defined inputs. "
         "Accepted values (float, int or qasymm8).")
        ("quantize-input,q",po::bool_switch()->default_value(false),
         "If this option is enabled, all float inputs will be quantized to qasymm8. "
         "If unset, default to not quantized. "
         "Accepted values (true or false)")
        ("output-type,z",po::value(&outputTypes), "The type of the output tensors in the network separated by comma. "
         "If unset, defaults to \"float\" for all defined outputs. "
         "Accepted values (float, int or qasymm8).")
        ("output-name,o", po::value(&outputNames),
         "Identifier of the output tensors in the network separated by comma.")
        ("dequantize-output,l",po::bool_switch()->default_value(false),
         "If this option is enabled, all quantized outputs will be dequantized to float. "
         "If unset, default to not get dequantized. "
         "Accepted values (true or false)")
        ("write-outputs-to-file,w", po::value(&outputTensorFiles),
         "Comma-separated list of output file paths keyed with the binding-id of the output slot. "
         "If left empty (the default), the output tensors will not be written to a file.");
    }
    catch (const std::exception& e)
    {
        // Coverity points out that default_value(...) can throw a bad_lexical_cast,
        // and that desc.add_options() can throw boost::io::too_few_args.
        // They really won't in any of these cases.
        BOOST_ASSERT_MSG(false, "Caught unexpected exception");
        ARMNN_LOG(fatal) << "Fatal internal error: " << e.what();
        return EXIT_FAILURE;
    }

    std::vector<const char*> clOptions;
    clOptions.reserve(csvRow.values.size());
    for (const std::string& value : csvRow.values)
    {
        clOptions.push_back(value.c_str());
    }

    po::variables_map vm;
    try
    {
        po::store(po::parse_command_line(static_cast<int>(clOptions.size()), clOptions.data(), desc), vm);

        po::notify(vm);

        CheckOptionDependencies(vm);
    }
    catch (const po::error& e)
    {
        std::cerr << e.what() << std::endl << std::endl;
        std::cerr << desc << std::endl;
        return EXIT_FAILURE;
    }

    // Get the value of the switch arguments.
    bool quantizeInput = vm["quantize-input"].as<bool>();
    bool dequantizeOutput = vm["dequantize-output"].as<bool>();

    // Get the preferred order of compute devices.
    std::vector<armnn::BackendId> computeDevices = vm["compute"].as<std::vector<armnn::BackendId>>();

    // Remove duplicates from the list of compute devices.
    RemoveDuplicateDevices(computeDevices);

    // Check that the specified compute devices are valid.
    std::string invalidBackends;
    if (!CheckRequestedBackendsAreValid(computeDevices, armnn::Optional<std::string&>(invalidBackends)))
    {
        ARMNN_LOG(fatal) << "The list of preferred devices contains invalid backend IDs: "
                                 << invalidBackends;
        return EXIT_FAILURE;
    }

    return RunTest(modelFormat, inputTensorShapes, computeDevices, dynamicBackendsPath, modelPath, inputNames,
                   inputTensorDataFilePaths, inputTypes, quantizeInput, outputTypes, outputNames, outputTensorFiles,
                   dequantizeOutput, enableProfiling, enableFp16TurboMode, thresholdTime, printIntermediate, subgraphId,
                   enableLayerDetails, parseUnuspported);
}