aboutsummaryrefslogtreecommitdiff
path: root/src/armnn/test/optimizations/MaxMinIntoBoundedReluTests.cpp
blob: 62f8f08f3b7b49ff6a47b93420db5b0d5647d584 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//
// Copyright © 2024 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include <TestUtils.hpp>
#include <ResolveType.hpp>
#include <armnnUtils/QuantizeHelper.hpp>

#include <armnn/INetwork.hpp>

#include <doctest/doctest.h>

using namespace armnn;

namespace
{
template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
void MulMaxMinTest(Compute backendId, size_t numLayers)
{
    const TensorInfo input0TensorInfo({ 1, 2, 2, 3 },
                                      ArmnnType,
                                      IsQuantizedType<T>() ? 0.25f : 1,
                                      IsQuantizedType<T>() ? 10 : 0,
                                      true);
    const TensorInfo input1TensorInfo({ 1, 1, 1, 1 },
                                      ArmnnType,
                                      IsQuantizedType<T>() ? 0.25f : 1,
                                      IsQuantizedType<T>() ? 11 : 0,
                                      true);
    const TensorInfo maxInput1TensorInfo({ 1, 1, 1, 1 },
                                         ArmnnType,
                                         IsQuantizedType<T>() ? 0.25f : 1,
                                         IsQuantizedType<T>() ? 12 : 0,
                                         true);
    const TensorInfo minInput1TensorInfo({ 1, 1, 1, 1 },
                                         ArmnnType,
                                         IsQuantizedType<T>() ? 0.25f : 1,
                                         IsQuantizedType<T>() ? 13 : 0,
                                         true);
    const TensorInfo outputTensorInfo({ 1, 2, 2, 3 },
                                      ArmnnType,
                                      IsQuantizedType<T>() ? 0.5f : 1,
                                      IsQuantizedType<T>() ? 14 : 0);

    std::vector<float> input0Data
    {
         0.0f,  0.0f,  0.0f,
         1.0f,  1.0f,  1.0f,
        -1.0f, -1.0f, -1.0f,
        -2.0f, -2.0f, -2.0f
    };
    std::vector<float> input1Data
    {
         1.0f
    };
    std::vector<float> maxInput1Data
    {
         -100.0f
    };
    std::vector<float> minInput1Data
    {
         100.0f
    };
    std::vector<float> outputExpectedData =
    {
         0.0f,  0.0f,  0.0f,
         1.0f,  1.0f,  1.0f,
        -1.0f, -1.0f, -1.0f,
        -2.0f, -2.0f, -2.0f
    };

    std::vector<T> input0 = armnnUtils::QuantizedVector<T>(input0Data,
                                                           input0TensorInfo.GetQuantizationScale(),
                                                           input0TensorInfo.GetQuantizationOffset());
    std::vector<T> input1 = armnnUtils::QuantizedVector<T>(input1Data,
                                                           input1TensorInfo.GetQuantizationScale(),
                                                           input1TensorInfo.GetQuantizationOffset());
    std::vector<T> maxInput1 = armnnUtils::QuantizedVector<T>(maxInput1Data,
                                                              maxInput1TensorInfo.GetQuantizationScale(),
                                                              maxInput1TensorInfo.GetQuantizationOffset());
    std::vector<T> minInput1 = armnnUtils::QuantizedVector<T>(minInput1Data,
                                                              minInput1TensorInfo.GetQuantizationScale(),
                                                              minInput1TensorInfo.GetQuantizationOffset());
    std::vector<T> outputExpected = armnnUtils::QuantizedVector<T>(outputExpectedData,
                                                                   outputTensorInfo.GetQuantizationScale(),
                                                                   outputTensorInfo.GetQuantizationOffset());
    std::vector<T> outputActual(outputTensorInfo.GetNumElements());

    // Create a network
    INetworkPtr network = INetwork::Create();

    // add layers to network
    IConnectableLayer* const input0Layer = network->AddInputLayer(0);
    IConnectableLayer* const input1Layer = network->AddInputLayer(1);
    IConnectableLayer* const mulLayer = network->AddElementwiseBinaryLayer(BinaryOperation::Mul, "mul");

    auto constMaxInput1Tensor = ConstTensor(maxInput1TensorInfo, maxInput1);
    IConnectableLayer* const maxInput1Layer = network->AddConstantLayer(constMaxInput1Tensor, "maxInput1");
    IConnectableLayer* const maxLayer = network->AddElementwiseBinaryLayer(BinaryOperation::Maximum, "max");

    auto constMinInput1Tensor = ConstTensor(minInput1TensorInfo, minInput1);
    IConnectableLayer* const minInput1Layer = network->AddConstantLayer(constMinInput1Tensor, "minInput1");
    IConnectableLayer* const minLayer = network->AddElementwiseBinaryLayer(BinaryOperation::Minimum, "min");

    IConnectableLayer* const outputLayer = network->AddOutputLayer(0);

    // set tensor info to output slots
    input0Layer->GetOutputSlot(0).SetTensorInfo(input0TensorInfo);
    input1Layer->GetOutputSlot(0).SetTensorInfo(input1TensorInfo);
    mulLayer->GetOutputSlot(0).SetTensorInfo(input0TensorInfo);
    maxInput1Layer->GetOutputSlot(0).SetTensorInfo(maxInput1TensorInfo);
    maxLayer->GetOutputSlot(0).SetTensorInfo(input0TensorInfo);
    minInput1Layer->GetOutputSlot(0).SetTensorInfo(minInput1TensorInfo);
    minLayer->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);

    // connect layers.
    // In0  In1
    //  \   /
    //   Mul  maxIn1
    //    |   /
    //   Max    minIn1
    //    |     /
    //     Min
    //     |
    //    Out
    input0Layer   ->GetOutputSlot(0).Connect(mulLayer->GetInputSlot(0));
    input1Layer   ->GetOutputSlot(0).Connect(mulLayer->GetInputSlot(1));
    mulLayer      ->GetOutputSlot(0).Connect(maxLayer->GetInputSlot(0));
    maxInput1Layer->GetOutputSlot(0).Connect(maxLayer->GetInputSlot(1));
    maxLayer      ->GetOutputSlot(0).Connect(minLayer->GetInputSlot(0));
    minInput1Layer->GetOutputSlot(0).Connect(minLayer->GetInputSlot(1));
    minLayer      ->GetOutputSlot(0).Connect(outputLayer->GetInputSlot(0));

    // Create ArmNN runtime
    IRuntimePtr run = IRuntime::Create(IRuntime::CreationOptions());

    // Optimise ArmNN network
    IOptimizedNetworkPtr optNet = Optimize(*network, {backendId}, run->GetDeviceSpec());

    Graph& graph = GetGraphForTesting(optNet.get());

    auto checkMul = [ ](const armnn::Layer* const layer) -> bool
    {
        auto* mulLayer = PolymorphicDowncast<const ElementwiseBinaryLayer*>(layer);

        return IsLayerOfType<ElementwiseBinaryLayer>(layer) &&
               (mulLayer->GetParameters().m_Operation == BinaryOperation::Mul);
    };

    auto checkBoundedRelu = [ ](const armnn::Layer* const layer) -> bool
    {
        auto* activationLayer = PolymorphicDowncast<const ActivationLayer*>(layer);

        return IsLayerOfType<ActivationLayer>(layer) &&
               (activationLayer->GetParameters().m_Function == ActivationFunction::BoundedReLu);
    };

    // 2 inputs, mul, activation(in CpuRef and CpuAcc), output
    CHECK((graph.GetNumLayers() == numLayers));
    if (numLayers == 4)
    {
        CHECK(CheckSequence(graph.cbegin(),
                            graph.cend(),
                            &IsLayerOfType<InputLayer>,
                            &IsLayerOfType<InputLayer>,
                            checkMul,
                            &IsLayerOfType<OutputLayer>));
    }
    else if (numLayers == 5)
    {
        CHECK(CheckSequence(graph.cbegin(),
                            graph.cend(),
                            &IsLayerOfType<InputLayer>,
                            &IsLayerOfType<InputLayer>,
                            checkMul,
                            checkBoundedRelu,
                            &IsLayerOfType<OutputLayer>));
    }

    // Load network into runtime
    NetworkId networkIdentifier;
    run->LoadNetwork(networkIdentifier, std::move(optNet));

    // Create input and output tensors
    InputTensors inputTensors
    {
        {0, ConstTensor(input0TensorInfo, input0.data())},
        {1, ConstTensor(input1TensorInfo, input1.data())}
    };
    OutputTensors outputTensors
    {
        {0, Tensor(run->GetOutputTensorInfo(networkIdentifier, 0), outputActual.data())}
    };

    // Run inference
    run->EnqueueWorkload(networkIdentifier, inputTensors, outputTensors);

    // Checks the results
    CHECK(outputActual == outputExpected);
}
}

TEST_SUITE("Optimizer")
{
#if defined(ARMNNREF_ENABLED)
TEST_CASE("FuseMulMaxMinTest_Float_CpuRef")
{
    MulMaxMinTest<DataType::Float32>(Compute::CpuRef, 5);
}
#endif
#if defined(ARMCOMPUTENEON_ENABLED)
TEST_CASE("FuseMulMaxMinTest_Float_CpuAcc")
{
    MulMaxMinTest<DataType::Float32>(Compute::CpuAcc, 5);
}
#endif
#if defined(ARMCOMPUTECL_ENABLED)
TEST_CASE("FuseMulMaxMinTest_Float_GpuAcc")
{
    MulMaxMinTest<DataType::Float32>(Compute::GpuAcc, 4);
}
#endif
}