aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSiCong Li <sicong.li@arm.com>2020-10-28 14:19:28 +0000
committerSiCong Li <sicong.li@arm.com>2020-11-05 11:20:58 +0000
commit4abc9d1a842e90162afe5349e3d51298fa0b8af4 (patch)
tree9e6745f75b39cdcc8f15fc56c260ad5eded23d36
parent770dfeb04b6fd89afde2005bd46caa6ff0858f3e (diff)
downloadComputeLibrary-4abc9d1a842e90162afe5349e3d51298fa0b8af4.tar.gz
COMPMID-3730 Remove padding from CLGEMMMatrixMultiplyKernel Patch1
* Remove default definition for STORE_BLOCK_BOUNDARY_AWARE to avoid elusive bugs * Clean up gemm_mm_interleaved* and gemm_mm_floating_point* kernels * Relocate to gemm_v1.cl to avoid clashing with new kernels * Rename compile time arguments to conform with the established terminology(MNKB), and to facilitate the use of STORE_BLOCK_BOUNDARY_AWARE Change-Id: Ia85c746b2536cad87257a79685b459b5d2f9a1be Signed-off-by: SiCong Li <sicong.li@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4329 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
-rw-r--r--src/core/CL/CLKernelLibrary.cpp24
-rw-r--r--src/core/CL/cl_kernels/gemm.cl3205
-rw-r--r--src/core/CL/cl_kernels/gemm_v1.cl3222
-rw-r--r--src/core/CL/cl_kernels/load_store_utility.h5
-rw-r--r--src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp24
5 files changed, 3251 insertions, 3229 deletions
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 8c5607eebc..33f0da0aa1 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -206,16 +206,16 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemm_ma_f32", "gemm.cl" },
{ "gemm_mv", "gemv.cl" },
{ "gemm_mv_quantized", "gemv.cl" },
- { "gemm_mm_interleaved_transposed_f16", "gemm.cl" },
- { "gemm_mm_interleaved_transposed_f16_acc32", "gemm.cl" },
- { "gemm_mm_interleaved_transposed_f16_bifrost", "gemm.cl" },
- { "gemm_mm_interleaved_transposed_f32", "gemm.cl" },
- { "gemm_mm_interleaved_transposed_f32_bifrost", "gemm.cl" },
- { "gemm_mm_floating_point", "gemm.cl" },
- { "gemm_mm_floating_point_f16_bifrost", "gemm.cl" },
- { "gemm_mm_floating_point_f16_bifrost_acc32", "gemm.cl" },
- { "gemm_mm_floating_point_f32_bifrost", "gemm.cl" },
- { "gemm_mm_floating_point_f32_bifrost_1000", "gemm.cl" },
+ { "gemm_mm_interleaved_transposed_f16", "gemm_v1.cl" },
+ { "gemm_mm_interleaved_transposed_f16_acc32", "gemm_v1.cl" },
+ { "gemm_mm_interleaved_transposed_f16_bifrost", "gemm_v1.cl" },
+ { "gemm_mm_interleaved_transposed_f32", "gemm_v1.cl" },
+ { "gemm_mm_interleaved_transposed_f32_bifrost", "gemm_v1.cl" },
+ { "gemm_mm_floating_point", "gemm_v1.cl" },
+ { "gemm_mm_floating_point_f16_bifrost", "gemm_v1.cl" },
+ { "gemm_mm_floating_point_f16_bifrost_acc32", "gemm_v1.cl" },
+ { "gemm_mm_floating_point_f32_bifrost", "gemm_v1.cl" },
+ { "gemm_mm_floating_point_f32_bifrost_1000", "gemm_v1.cl" },
{ "gemm_mm_native", "gemm.cl" },
{ "gemm_mm_reshaped_lhs_nt_rhs_t", "gemm.cl" },
{ "gemm_mm_reshaped_lhs_nt_rhs_t_texture", "gemm.cl" },
@@ -690,6 +690,10 @@ const std::map<std::string, std::string> CLKernelLibrary::_program_source_map =
#include "./cl_kernels/gemm.clembed"
},
{
+ "gemm_v1.cl",
+#include "./cl_kernels/gemm_v1.clembed"
+ },
+ {
"gemmlowp.cl",
#include "./cl_kernels/gemmlowp.clembed"
},
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index fa93760847..b1bef301c8 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -4295,3211 +4295,6 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
}
#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
-#if defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
-/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
- __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global float *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- float4 c0 = 0.0f;
- float4 c1 = 0.0f;
- float4 c2 = 0.0f;
- float4 c3 = 0.0f;
-
- for(; src_addr_b <= (src_end_addr_b - (int)(8 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- c0 += (float4)a0.s0 * b0;
- c1 += (float4)a0.s1 * b0;
- c2 += (float4)a0.s2 * b0;
- c3 += (float4)a0.s3 * b0;
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
- b0 = vload4(0, src_addr_b + 4 * MULT_TRANSPOSE1XW_WIDTH);
-
- c0 += (float4)a0.s0 * b0;
- c1 += (float4)a0.s1 * b0;
- c2 += (float4)a0.s2 * b0;
- c3 += (float4)a0.s3 * b0;
- }
-
- for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- c0 += (float4)a0.s0 * b0;
- c1 += (float4)a0.s1 * b0;
- c2 += (float4)a0.s2 * b0;
- c3 += (float4)a0.s3 * b0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, float, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
-
- LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, VEC_SIZE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x4 block
- vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-/** This OpenCL kernel is optimized for Bifrost and tt computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
- __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- float4 c0 = 0.0f;
- float4 c1 = 0.0f;
- float4 c2 = 0.0f;
- float4 c3 = 0.0f;
-
-#define COLS_MTX_B (COLS_B / (4 * MULT_TRANSPOSE1XW_WIDTH))
-
- int i = 0;
- for(; i <= (int)(COLS_MTX_B - 4); i += 4)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
- }
-
- for(; i < (int)(COLS_MTX_B); ++i)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = vload4(0, src_addr_a);
- float4 b0 = vload4(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0.s0 = fma(a0.s0, b0.s0, c0.s0);
- c0.s1 = fma(a0.s0, b0.s1, c0.s1);
- c0.s2 = fma(a0.s0, b0.s2, c0.s2);
- c0.s3 = fma(a0.s0, b0.s3, c0.s3);
-
- c1.s0 = fma(a0.s1, b0.s0, c1.s0);
- c1.s1 = fma(a0.s1, b0.s1, c1.s1);
- c1.s2 = fma(a0.s1, b0.s2, c1.s2);
- c1.s3 = fma(a0.s1, b0.s3, c1.s3);
-
- c2.s0 = fma(a0.s2, b0.s0, c2.s0);
- c2.s1 = fma(a0.s2, b0.s1, c2.s1);
- c2.s2 = fma(a0.s2, b0.s2, c2.s2);
- c2.s3 = fma(a0.s2, b0.s3, c2.s3);
-
- c3.s0 = fma(a0.s3, b0.s0, c3.s0);
- c3.s1 = fma(a0.s3, b0.s1, c3.s1);
- c3.s2 = fma(a0.s3, b0.s2, c3.s2);
- c3.s3 = fma(a0.s3, b0.s3, c3.s3);
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, float, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
-
- LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, VEC_SIZE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x4 block
- vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-// Undefine local defines
-#undef COLS_MTX_B
-
-#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global half *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- half8 c0 = 0.0f;
- half8 c1 = 0.0f;
- half8 c2 = 0.0f;
- half8 c3 = 0.0f;
-
- for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- c0 += (half8)a0.s0 * b0;
- c1 += (half8)a0.s1 * b0;
- c2 += (half8)a0.s2 * b0;
- c3 += (half8)a0.s3 * b0;
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
- b0 = vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH);
-
- c0 += (half8)a0.s0 * b0;
- c1 += (half8)a0.s1 * b0;
- c2 += (half8)a0.s2 * b0;
- c3 += (half8)a0.s3 * b0;
- }
-
- for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- c0 += (half8)a0.s0 * b0;
- c1 += (half8)a0.s1 * b0;
- c2 += (half8)a0.s2 * b0;
- c3 += (half8)a0.s3 * b0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, half, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
-
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, VEC_SIZE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x8 block
- vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1) while accumulating the result in a 32 floating point variable.
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global half *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- float8 c0 = 0.0f;
- float8 c1 = 0.0f;
- float8 c2 = 0.0f;
- float8 c3 = 0.0f;
-
- for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = convert_float4(vload4(0, src_addr_a));
- float8 b0 = convert_float8(vload8(0, src_addr_b));
-
- c0 += (float8)a0.s0 * b0;
- c1 += (float8)a0.s1 * b0;
- c2 += (float8)a0.s2 * b0;
- c3 += (float8)a0.s3 * b0;
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = convert_float4(vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT));
- b0 = convert_float8(vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH));
-
- c0 += (float8)a0.s0 * b0;
- c1 += (float8)a0.s1 * b0;
- c2 += (float8)a0.s2 * b0;
- c3 += (float8)a0.s3 * b0;
- }
-
- for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- float4 a0 = convert_float4(vload4(0, src_addr_a));
- float8 b0 = convert_float8(vload8(0, src_addr_b));
-
- c0 += (float8)a0.s0 * b0;
- c1 += (float8)a0.s1 * b0;
- c2 += (float8)a0.s2 * b0;
- c3 += (float8)a0.s3 * b0;
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, float, c, ALPHA);
-#endif // defined(ALPHA)
-
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias_f0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
- float8 bias_f1 = convert_float8(bias1);
- float8 bias_f2 = convert_float8(bias2);
- float8 bias_f3 = convert_float8(bias3);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias_f);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- half8 c_h0 = convert_half8(c0);
- half8 c_h1 = convert_half8(c1);
- half8 c_h2 = convert_half8(c2);
- half8 c_h3 = convert_half8(c3);
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, VEC_SIZE, c_h, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x8 block
- vstore8(c_h0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore8(c_h1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore8(c_h2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore8(c_h3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-/** This OpenCL kernel optimized for Bifrost architectures computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
- *
- * @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
- * @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (e.g. -DMULT_TRANSPOSE1XW_WIDTH=2)
- * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (e.g. -DMULT_INTERLEAVE4X4_HEIGHT=2)
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
- int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
- int z = get_global_id(2);
-
- // Offset
- const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
- const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
-
- // src_addr_a = address of matrix A
- // src_addr_b = address of matrix B
- int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
- int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src1_addr_in_bytes += z * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
- __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
-
- // Compute end row address for matrix B
- __global half *src_end_addr_b = src_addr_b + COLS_B;
-
- src_addr_a += offset_row_a;
- src_addr_b += offset_row_b;
-
- // Reset accumulators
- half8 c0 = 0.0f;
- half8 c1 = 0.0f;
- half8 c2 = 0.0f;
- half8 c3 = 0.0f;
-
-#define COLS_MTX_B (COLS_B / (8 * MULT_TRANSPOSE1XW_WIDTH))
-
- int i = 0;
- for(; i <= (int)(COLS_MTX_B - 4); i += 4)
- {
-#if MULT_INTERLEAVE4X4_HEIGHT == 1
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half8 a0 = vload8(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix B (transposed)
- b0 = vload8(0, src_addr_b);
-
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s4, b0, c0);
- c1 = fma((half8)a0.s5, b0, c1);
- c2 = fma((half8)a0.s6, b0, c2);
- c3 = fma((half8)a0.s7, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload8(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix B (transposed)
- b0 = vload8(0, src_addr_b);
-
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s4, b0, c0);
- c1 = fma((half8)a0.s5, b0, c1);
- c2 = fma((half8)a0.s6, b0, c2);
- c3 = fma((half8)a0.s7, b0, c3);
-#else // MULT_INTERLEAVE4X4_HEIGHT == 1
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-
- // Load values from matrix A (interleaved) and matrix B (transposed)
- a0 = vload4(0, src_addr_a);
- b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
-#endif // MULT_INTERLEAVE4X4_HEIGHT == 1
- }
-
- for(; i < (int)(COLS_MTX_B); ++i)
- {
- // Load values from matrix A (interleaved) and matrix B (transposed)
- half4 a0 = vload4(0, src_addr_a);
- half8 b0 = vload8(0, src_addr_b);
-
- src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT;
- src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH;
-
- c0 = fma((half8)a0.s0, b0, c0);
- c1 = fma((half8)a0.s1, b0, c1);
- c2 = fma((half8)a0.s2, b0, c2);
- c3 = fma((half8)a0.s3, b0, c3);
- }
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(4, half, c, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(4, c, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
- 2) * src2_stride_z;
-
- LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(4, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(4, c, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, VEC_SIZE, c, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store 4x8 block
- vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
- vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
- vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
- vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
-}
-
-// Undefine local defines
-#undef COLS_MTX_B
-
-#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-
-#endif // defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
-
-#if defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
-#if defined(DATA_TYPE)
-#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped.
- *
- * @note This OpenCL kernel works with floating point data types (F16/F32)
- * @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
- * @note The number of matrix A columns and the optional alpha's value need to be passed at compile time using -DCOLS_A and -DALPHA
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(DATA_TYPE);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(DATA_TYPE));
-
- VECTOR_TYPE acc0 = 0.0f;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- VECTOR_TYPE acc1 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- VECTOR_TYPE acc2 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- VECTOR_TYPE acc3 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(DATA_TYPE)); src_addr += (int2)(2 * sizeof(DATA_TYPE), 2 * src1_stride_y))
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 2, DATA_TYPE, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- VEC_DATA_TYPE(DATA_TYPE, 2)
- a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
- VECTOR_TYPE b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
-
- // Accumulate
- acc0 += b0 * (VECTOR_TYPE)a0.s0;
- acc0 += b1 * (VECTOR_TYPE)a0.s1;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * (VECTOR_TYPE)a1.s0;
- acc1 += b1 * (VECTOR_TYPE)a1.s1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * (VECTOR_TYPE)a2.s0;
- acc2 += b1 * (VECTOR_TYPE)a2.s1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * (VECTOR_TYPE)a3.s0;
- acc3 += b1 * (VECTOR_TYPE)a3.s1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(DATA_TYPE), src1_stride_y))
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
-
- // Accumulate
- acc0 += b0 * (VECTOR_TYPE)a0;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * (VECTOR_TYPE)a1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * (VECTOR_TYPE)a2;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * (VECTOR_TYPE)a3;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, DATA_TYPE, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)NUM_ELEMS_PROCESSED_PER_THREAD_X * sizeof(DATA_TYPE));
-
- LOAD_BLOCK(1, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)NUM_ELEMS_PROCESSED_PER_THREAD_X * sizeof(DATA_TYPE)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, DATA_TYPE, bias, BETA);
-#endif // UNIT_BIAS
-
- // c = c + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store output block
- STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, NUM_ELEMS_PROCESSED_PER_THREAD_X, DATA_TYPE, acc, dst_addr, dst_stride_y, zout.s);
-}
-#endif // defined(DATA_TYPE)
-
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
- *
- * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for matrix B
- src_addr.s1 += idx * sizeof(float);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Initialize accumulators
- float4 acc0 = 0.0f;
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float4 acc1 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float4 acc2 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float4 acc3 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // A and B src indices get incremented at the same time.
- int i = 0;
- for(; i <= ((int)COLS_A - 4); i += 4)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A and matrix B
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, float, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A and matrix B
- float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float4 a1 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float4 a2 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float4 a3 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s0, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s0, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s0, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s0, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s0, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s0, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s0, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s0, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s0, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s0, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s0, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s0, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s0, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s0, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix A and matrix B
- b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s1, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s1, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s1, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s1, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s1, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s1, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s1, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s1, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s1, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s1, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s1, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s1, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s1, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s1, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s1, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s1, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix A and matrix B
- b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s2, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s2, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s2, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s2, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s2, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s2, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s2, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s2, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s2, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s2, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s2, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s2, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s2, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s2, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s2, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s2, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix A and matrix B
- b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s3, b0.s0, acc0.s0);
- acc0.s1 = fma(a0.s3, b0.s1, acc0.s1);
- acc0.s2 = fma(a0.s3, b0.s2, acc0.s2);
- acc0.s3 = fma(a0.s3, b0.s3, acc0.s3);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-
- acc1.s0 = fma(a1.s3, b0.s0, acc1.s0);
- acc1.s1 = fma(a1.s3, b0.s1, acc1.s1);
- acc1.s2 = fma(a1.s3, b0.s2, acc1.s2);
- acc1.s3 = fma(a1.s3, b0.s3, acc1.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-
- acc2.s0 = fma(a2.s3, b0.s0, acc2.s0);
- acc2.s1 = fma(a2.s3, b0.s1, acc2.s1);
- acc2.s2 = fma(a2.s3, b0.s2, acc2.s2);
- acc2.s3 = fma(a2.s3, b0.s3, acc2.s3);
-
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- acc3.s0 = fma(a3.s3, b0.s0, acc3.s0);
- acc3.s1 = fma(a3.s3, b0.s1, acc3.s1);
- acc3.s2 = fma(a3.s3, b0.s2, acc3.s2);
- acc3.s3 = fma(a3.s3, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += 4 * sizeof(float);
- }
-
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0, b0.s0, acc0.s0);
- acc0.s1 = fma(a0, b0.s1, acc0.s1);
- acc0.s2 = fma(a0, b0.s2, acc0.s2);
- acc0.s3 = fma(a0, b0.s3, acc0.s3);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1.s0 = fma(a1, b0.s0, acc1.s0);
- acc1.s1 = fma(a1, b0.s1, acc1.s1);
- acc1.s2 = fma(a1, b0.s2, acc1.s2);
- acc1.s3 = fma(a1, b0.s3, acc1.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2.s0 = fma(a2, b0.s0, acc2.s0);
- acc2.s1 = fma(a2, b0.s1, acc2.s1);
- acc2.s2 = fma(a2, b0.s2, acc2.s2);
- acc2.s3 = fma(a2, b0.s3, acc2.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3.s0 = fma(a3, b0.s0, acc3.s0);
- acc3.s1 = fma(a3, b0.s1, acc3.s1);
- acc3.s2 = fma(a3, b0.s2, acc3.s2);
- acc3.s3 = fma(a3, b0.s3, acc3.s3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += sizeof(float);
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
-
- LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, float, VEC_SIZE, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- vstore4(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore4(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore4(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore4(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
- *
- * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
- * This OpenCL kernel is optimized for Bifrost when the number of matrix B columns is less or equal to 1000.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=2.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha if alpha!=1.0f.
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- // Requires 2 NUM_ELEMS_PROCESSED_PER_THREAD_X, C vect2, A vect4, B (2 vload2) // to fix for NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(float);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- // Initialize accumulators
- float2 acc0 = 0.0f;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float2 acc1 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float2 acc2 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float2 acc3 = 0.0f;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // A and B src indices get incremented at the same time.
- int i = 0;
- for(; i <= ((int)COLS_A - 8); i += 8)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + zin.s0));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b1 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b2 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b3 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b4 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b5 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b6 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- float2 b7 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
- acc0.s0 = fma(a0.s1, b1.s0, acc0.s0);
- acc0.s0 = fma(a0.s2, b2.s0, acc0.s0);
- acc0.s0 = fma(a0.s3, b3.s0, acc0.s0);
- acc0.s0 = fma(a0.s4, b4.s0, acc0.s0);
- acc0.s0 = fma(a0.s5, b5.s0, acc0.s0);
- acc0.s0 = fma(a0.s6, b6.s0, acc0.s0);
- acc0.s0 = fma(a0.s7, b7.s0, acc0.s0);
-
- acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
- acc0.s1 = fma(a0.s1, b1.s1, acc0.s1);
- acc0.s1 = fma(a0.s2, b2.s1, acc0.s1);
- acc0.s1 = fma(a0.s3, b3.s1, acc0.s1);
- acc0.s1 = fma(a0.s4, b4.s1, acc0.s1);
- acc0.s1 = fma(a0.s5, b5.s1, acc0.s1);
- acc0.s1 = fma(a0.s6, b6.s1, acc0.s1);
- acc0.s1 = fma(a0.s7, b7.s1, acc0.s1);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc1.s0 = fma(a0.s0, b0.s0, acc1.s0);
- acc1.s0 = fma(a0.s1, b1.s0, acc1.s0);
- acc1.s0 = fma(a0.s2, b2.s0, acc1.s0);
- acc1.s0 = fma(a0.s3, b3.s0, acc1.s0);
- acc1.s0 = fma(a0.s4, b4.s0, acc1.s0);
- acc1.s0 = fma(a0.s5, b5.s0, acc1.s0);
- acc1.s0 = fma(a0.s6, b6.s0, acc1.s0);
- acc1.s0 = fma(a0.s7, b7.s0, acc1.s0);
-
- acc1.s1 = fma(a0.s0, b0.s1, acc1.s1);
- acc1.s1 = fma(a0.s1, b1.s1, acc1.s1);
- acc1.s1 = fma(a0.s2, b2.s1, acc1.s1);
- acc1.s1 = fma(a0.s3, b3.s1, acc1.s1);
- acc1.s1 = fma(a0.s4, b4.s1, acc1.s1);
- acc1.s1 = fma(a0.s5, b5.s1, acc1.s1);
- acc1.s1 = fma(a0.s6, b6.s1, acc1.s1);
- acc1.s1 = fma(a0.s7, b7.s1, acc1.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc2.s0 = fma(a0.s0, b0.s0, acc2.s0);
- acc2.s0 = fma(a0.s1, b1.s0, acc2.s0);
- acc2.s0 = fma(a0.s2, b2.s0, acc2.s0);
- acc2.s0 = fma(a0.s3, b3.s0, acc2.s0);
- acc2.s0 = fma(a0.s4, b4.s0, acc2.s0);
- acc2.s0 = fma(a0.s5, b5.s0, acc2.s0);
- acc2.s0 = fma(a0.s6, b6.s0, acc2.s0);
- acc2.s0 = fma(a0.s7, b7.s0, acc2.s0);
-
- acc2.s1 = fma(a0.s0, b0.s1, acc2.s1);
- acc2.s1 = fma(a0.s1, b1.s1, acc2.s1);
- acc2.s1 = fma(a0.s2, b2.s1, acc2.s1);
- acc2.s1 = fma(a0.s3, b3.s1, acc2.s1);
- acc2.s1 = fma(a0.s4, b4.s1, acc2.s1);
- acc2.s1 = fma(a0.s5, b5.s1, acc2.s1);
- acc2.s1 = fma(a0.s6, b6.s1, acc2.s1);
- acc2.s1 = fma(a0.s7, b7.s1, acc2.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#if defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#else // defined(REINTERPRET_INPUT_AS_3D)
- a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // defined(REINTERPRET_INPUT_AS_3D)
- acc3.s0 = fma(a0.s0, b0.s0, acc3.s0);
- acc3.s0 = fma(a0.s1, b1.s0, acc3.s0);
- acc3.s0 = fma(a0.s2, b2.s0, acc3.s0);
- acc3.s0 = fma(a0.s3, b3.s0, acc3.s0);
- acc3.s0 = fma(a0.s4, b4.s0, acc3.s0);
- acc3.s0 = fma(a0.s5, b5.s0, acc3.s0);
- acc3.s0 = fma(a0.s6, b6.s0, acc3.s0);
- acc3.s0 = fma(a0.s7, b7.s0, acc3.s0);
-
- acc3.s1 = fma(a0.s0, b0.s1, acc3.s1);
- acc3.s1 = fma(a0.s1, b1.s1, acc3.s1);
- acc3.s1 = fma(a0.s2, b2.s1, acc3.s1);
- acc3.s1 = fma(a0.s3, b3.s1, acc3.s1);
- acc3.s1 = fma(a0.s4, b4.s1, acc3.s1);
- acc3.s1 = fma(a0.s5, b5.s1, acc3.s1);
- acc3.s1 = fma(a0.s6, b6.s1, acc3.s1);
- acc3.s1 = fma(a0.s7, b7.s1, acc3.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += sizeof(float) * 8;
- }
- // float size increment
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Multiply and accumulate
- acc0.s0 = fma(a0, b0.s0, acc0.s0);
- acc0.s1 = fma(a0, b0.s1, acc0.s1);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1.s0 = fma(a1, b0.s0, acc1.s0);
- acc1.s1 = fma(a1, b0.s1, acc1.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2.s0 = fma(a2, b0.s0, acc2.s0);
- acc2.s1 = fma(a2, b0.s1, acc2.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3.s0 = fma(a3, b0.s0, acc3.s0);
- acc3.s1 = fma(a3, b0.s1, acc3.s1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += sizeof(float);
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float));
-
- LOAD_BLOCK(1, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, float, VEC_SIZE, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- vstore2(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vstore2(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vstore2(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vstore2(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-
-#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
- *
- * @note This OpenCL kernel works with the 16-bit floating point data type (half) and accumulating the result in a 32 floating point variable.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(half);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- float8 acc0 = 0.0h;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float8 acc1 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float8 acc2 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float8 acc3 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- int i = 0;
- for(; i <= ((int)COLS_A - 4); i += 4)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
-
- // Accumulate
- acc0 = fma(b0, (float8)a0.s0, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s0, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s0, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s0, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (float8)a0.s1, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s1, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s1, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s1, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (float8)a0.s2, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s2, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s2, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s2, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (float8)a0.s3, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1.s3, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2.s3, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3.s3, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += 4 * sizeof(half);
- }
-
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
-
- src_addr += (int2)(sizeof(half), src1_stride_y);
-
- // Accumulate
- acc0 = fma(b0, (float8)a0, acc0); // b0 * (half8)a0;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (float8)a1, acc1); // b0 * (half8)a1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (float8)a2, acc2); // b0 * (half8)a2;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (float8)a3, acc3); // b0 * (half8)a3;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, acc, ALPHA);
-#endif // defined(ALPHA)
-
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias_f0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
- float8 bias_f0 = convert_float8(bias0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float8 bias_f1 = convert_float8(bias1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float8 bias_f2 = convert_float8(bias2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float8 bias_f3 = convert_float8(bias3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, float, bias_f, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias_f);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
- half8 acc_h0 = convert_half8(acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half8 acc_h1 = convert_half8(acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half8 acc_h2 = convert_half8(acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half8 acc_h3 = convert_half8(acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, half, VEC_SIZE, acc_h, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, acc_h, dst_addr, dst_stride_y, zout.s);
-}
-
-/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
- *
- * @note This OpenCL kernel works with the 16-bit floating point data type (half) and uses the fma units.
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
- * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
- *
- * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
- * The activation function is performed after the bias addition
- * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
- * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
- * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
- * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
- * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
- * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
- * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
- * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
- * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
- * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
- */
-__kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
- IMAGE_DECLARATION(src1),
-#if defined(BETA)
- IMAGE_DECLARATION(src2),
-#endif // defined(BETA)
- IMAGE_DECLARATION(dst),
- uint src0_stride_z,
- uint src1_stride_z,
-#if defined(BETA)
- uint src2_stride_z,
-#endif //defined(BETA)
- uint dst_stride_z
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint src_cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
-#if defined(REINTERPRET_OUTPUT_AS_3D)
- ,
- uint dst_cross_plane_pad
-#endif // REINTERPRET_OUTPUT_AS_3D
- )
-{
- int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
-
- // Compute starting address for matrix A and Matrix B
- int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
-
- // Update address for the matrix A
- src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
-
- // Update address for the matrix B
- src_addr.s1 += idx * sizeof(half);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zin) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zin = min(DEPTH_GEMM3D - 1, zin);
-
- // Add offset due to the cross plane paddings
- zin *= (src_cross_plane_pad * src0_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src0_stride_z by DEPTH_GEMM3D
- src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- src_addr.s0 += get_global_id(2) * src0_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
-#if defined(MATRIX_B_DEPTH)
- // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
- src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
-#else // defined(MATRIX_B_DEPTH)
- src_addr.s1 += get_global_id(2) * src1_stride_z;
-#endif // defined(MATRIX_B_DEPTH)
-
- half8 acc0 = 0.0h;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half8 acc1 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half8 acc2 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half8 acc3 = 0.0h;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- int i = 0;
- for(; i <= ((int)COLS_A - 4); i += 4)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
-
- // Accumulate
- acc0 = fma(b0, (half8)a0.s0, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s0, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s0, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s0, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (half8)a0.s1, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s1, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s1, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s1, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (half8)a0.s2, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s2, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s2, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s2, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
- src_addr.s1 += src1_stride_y;
- acc0 = fma(b0, (half8)a0.s3, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1.s3, acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2.s3, acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3.s3, acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- src_addr.s0 += 4 * sizeof(half);
- }
-
- for(; i < (int)COLS_A; ++i)
- {
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#else // defined(REINTERPRET_INPUT_AS_3D)
- // Load values from matrix A
- half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Load values from matrix B
- half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
-
- src_addr += (int2)(sizeof(half), src1_stride_y);
-
- // Accumulate
- acc0 = fma(b0, (half8)a0, acc0); // b0 * (half8)a0;
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = fma(b0, (half8)a1, acc1); // b0 * (half8)a1;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = fma(b0, (half8)a2, acc2); // b0 * (half8)a2;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = fma(b0, (half8)a3, acc3); // b0 * (half8)a3;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- int z = get_global_id(2);
-
- // Compute destination address
- Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
-
- // Compute dst address
- __global uchar *dst_addr = offset(&dst, 0, 0);
-
- uint4 zout = 0;
-
-#if defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
- // in order to take into account the presence of possible cross plane paddings
- //
- // | |
- // | plane0 |
- // | |
- // |__________________|
- // |******************|
- // | cross_plane_pad |
- // |******************|
- // | |
- // | plane1 |
- // | |
- // |__________________|
-
- // The plane (zout) is calculated dividing M (get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y) by HEIGHT_GEMM3D
- zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * NUM_ELEMS_PROCESSED_PER_THREAD_Y)) / (uint4)HEIGHT_GEMM3D;
- zout = min(DEPTH_GEMM3D - 1, zout);
-
- // Add offset due to the cross plane paddings
- zout *= (dst_cross_plane_pad * dst_stride_y);
-
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply dst_stride_z by DEPTH_GEMM3D
- dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
-#else // defined(REINTERPRET_OUTPUT_AS_3D)
- // Add offset for batched GEMM
- dst_addr += z * dst_stride_z;
-#endif // defined(REINTERPRET_OUTPUT_AS_3D)
-
- // Multiply by the weight of matrix-matrix product and store the result
-#if defined(ALPHA)
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, half, acc, ALPHA);
-#endif // defined(ALPHA)
-
- // Add beta*bias
-#if defined(BETA)
- REPEAT_VAR_INIT_TO_CONST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, uint, zero, 0);
-
-#if defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
-
- LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(1, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias[broadcasted]
- ADD_BLOCK_BROADCAST(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias0);
-
-#else // defined(BROADCAST_BIAS)
- __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) *
- (uint)NUM_ELEMS_PROCESSED_PER_THREAD_Y * src2_stride_y) + get_global_id(2) * src2_stride_z;
-
- LOAD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
-
-#ifndef UNIT_BETA
- SCALE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, half, bias, BETA);
-#endif // UNIT_BIAS
-
- // acc = acc + bias
- ADD_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, acc, bias);
-
-#endif // defined(BROADCAST_BIAS)
-#endif // defined(BETA)
-
-#if defined(ACTIVATION_TYPE)
- ACTIVATION_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, ACTIVATION_TYPE, half, VEC_SIZE, acc, A_VAL, B_VAL);
-#endif // defined(ACTIVATION_TYPE)
-
- // Store the output block
- STORE_BLOCK(NUM_ELEMS_PROCESSED_PER_THREAD_Y, 8, half, acc, dst_addr, dst_stride_y, zout.s);
-}
-#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-
-#endif // defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
-
#if defined(BETA)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
diff --git a/src/core/CL/cl_kernels/gemm_v1.cl b/src/core/CL/cl_kernels/gemm_v1.cl
new file mode 100644
index 0000000000..231f81a123
--- /dev/null
+++ b/src/core/CL/cl_kernels/gemm_v1.cl
@@ -0,0 +1,3222 @@
+/*
+ * Copyright (c) 2020 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "gemm_helpers.h"
+#include "repeat.h"
+
+#if defined(K) && defined(H0) && defined(V0)
+/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
+ *
+ * @note The number of rows of the *un-reshaped* matrix B (K) must be passed at compile time using -DK
+ * @note The optional alpha's value need to be passed at compile time using -DALPHA
+ * @note The multiplication factor for the transposition width (H0) must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_interleaved_transposed_f32(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int x = get_global_id(0) / H0;
+ int y = get_global_id(1) / V0;
+ int z = get_global_id(2);
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % V0) * 4;
+ const int offset_row_b = (get_global_id(0) % H0) * 4;
+
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
+ __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
+
+ // Compute end row address for matrix B
+ __global float *src_end_addr_b = src_addr_b + (src1_stride_y / sizeof(float));
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
+
+ // Reset accumulators
+ float4 c0 = 0.0f;
+ float4 c1 = 0.0f;
+ float4 c2 = 0.0f;
+ float4 c3 = 0.0f;
+
+ for(; src_addr_b <= (src_end_addr_b - (int)(8 * H0)); src_addr_a += 8 * V0, src_addr_b += 8 * H0)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = vload4(0, src_addr_a);
+ float4 b0 = vload4(0, src_addr_b);
+
+ c0 += (float4)a0.s0 * b0;
+ c1 += (float4)a0.s1 * b0;
+ c2 += (float4)a0.s2 * b0;
+ c3 += (float4)a0.s3 * b0;
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a + 4 * V0);
+ b0 = vload4(0, src_addr_b + 4 * H0);
+
+ c0 += (float4)a0.s0 * b0;
+ c1 += (float4)a0.s1 * b0;
+ c2 += (float4)a0.s2 * b0;
+ c3 += (float4)a0.s3 * b0;
+ }
+
+ for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * V0, src_addr_b += 4 * H0)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = vload4(0, src_addr_a);
+ float4 b0 = vload4(0, src_addr_b);
+
+ c0 += (float4)a0.s0 * b0;
+ c1 += (float4)a0.s1 * b0;
+ c2 += (float4)a0.s2 * b0;
+ c3 += (float4)a0.s3 * b0;
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(4, float, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
+
+ LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(4, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(4, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(4, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, VEC_SIZE, c, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store 4x4 block
+ vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
+}
+
+/** This OpenCL kernel is optimized for Bifrost and tt computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
+ *
+ * @note The number of rows of the *un-reshaped* matrix B (K) must be passed at compile time using -DK
+ * @note The optional alpha's value need to be passed at compile time using -DALPHA
+ * @note The multiplication factor for the transposition width (H0) must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int x = get_global_id(0) / H0;
+ int y = get_global_id(1) / V0;
+ int z = get_global_id(2);
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % V0) * 4;
+ const int offset_row_b = (get_global_id(0) % H0) * 4;
+
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global float *src_addr_a = (__global float *)(src0_ptr + src0_addr_in_bytes);
+ __global float *src_addr_b = (__global float *)(src1_ptr + src1_addr_in_bytes);
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
+
+ // Reset accumulators
+ float4 c0 = 0.0f;
+ float4 c1 = 0.0f;
+ float4 c2 = 0.0f;
+ float4 c3 = 0.0f;
+
+ int i = 0;
+ for(; i <= (int)(K - 4); i += 4)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = vload4(0, src_addr_a);
+ float4 b0 = vload4(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 4 * H0;
+
+ c0.s0 = fma(a0.s0, b0.s0, c0.s0);
+ c0.s1 = fma(a0.s0, b0.s1, c0.s1);
+ c0.s2 = fma(a0.s0, b0.s2, c0.s2);
+ c0.s3 = fma(a0.s0, b0.s3, c0.s3);
+
+ c1.s0 = fma(a0.s1, b0.s0, c1.s0);
+ c1.s1 = fma(a0.s1, b0.s1, c1.s1);
+ c1.s2 = fma(a0.s1, b0.s2, c1.s2);
+ c1.s3 = fma(a0.s1, b0.s3, c1.s3);
+
+ c2.s0 = fma(a0.s2, b0.s0, c2.s0);
+ c2.s1 = fma(a0.s2, b0.s1, c2.s1);
+ c2.s2 = fma(a0.s2, b0.s2, c2.s2);
+ c2.s3 = fma(a0.s2, b0.s3, c2.s3);
+
+ c3.s0 = fma(a0.s3, b0.s0, c3.s0);
+ c3.s1 = fma(a0.s3, b0.s1, c3.s1);
+ c3.s2 = fma(a0.s3, b0.s2, c3.s2);
+ c3.s3 = fma(a0.s3, b0.s3, c3.s3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a);
+ b0 = vload4(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 4 * H0;
+
+ c0.s0 = fma(a0.s0, b0.s0, c0.s0);
+ c0.s1 = fma(a0.s0, b0.s1, c0.s1);
+ c0.s2 = fma(a0.s0, b0.s2, c0.s2);
+ c0.s3 = fma(a0.s0, b0.s3, c0.s3);
+
+ c1.s0 = fma(a0.s1, b0.s0, c1.s0);
+ c1.s1 = fma(a0.s1, b0.s1, c1.s1);
+ c1.s2 = fma(a0.s1, b0.s2, c1.s2);
+ c1.s3 = fma(a0.s1, b0.s3, c1.s3);
+
+ c2.s0 = fma(a0.s2, b0.s0, c2.s0);
+ c2.s1 = fma(a0.s2, b0.s1, c2.s1);
+ c2.s2 = fma(a0.s2, b0.s2, c2.s2);
+ c2.s3 = fma(a0.s2, b0.s3, c2.s3);
+
+ c3.s0 = fma(a0.s3, b0.s0, c3.s0);
+ c3.s1 = fma(a0.s3, b0.s1, c3.s1);
+ c3.s2 = fma(a0.s3, b0.s2, c3.s2);
+ c3.s3 = fma(a0.s3, b0.s3, c3.s3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a);
+ b0 = vload4(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 4 * H0;
+
+ c0.s0 = fma(a0.s0, b0.s0, c0.s0);
+ c0.s1 = fma(a0.s0, b0.s1, c0.s1);
+ c0.s2 = fma(a0.s0, b0.s2, c0.s2);
+ c0.s3 = fma(a0.s0, b0.s3, c0.s3);
+
+ c1.s0 = fma(a0.s1, b0.s0, c1.s0);
+ c1.s1 = fma(a0.s1, b0.s1, c1.s1);
+ c1.s2 = fma(a0.s1, b0.s2, c1.s2);
+ c1.s3 = fma(a0.s1, b0.s3, c1.s3);
+
+ c2.s0 = fma(a0.s2, b0.s0, c2.s0);
+ c2.s1 = fma(a0.s2, b0.s1, c2.s1);
+ c2.s2 = fma(a0.s2, b0.s2, c2.s2);
+ c2.s3 = fma(a0.s2, b0.s3, c2.s3);
+
+ c3.s0 = fma(a0.s3, b0.s0, c3.s0);
+ c3.s1 = fma(a0.s3, b0.s1, c3.s1);
+ c3.s2 = fma(a0.s3, b0.s2, c3.s2);
+ c3.s3 = fma(a0.s3, b0.s3, c3.s3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a);
+ b0 = vload4(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 4 * H0;
+
+ c0.s0 = fma(a0.s0, b0.s0, c0.s0);
+ c0.s1 = fma(a0.s0, b0.s1, c0.s1);
+ c0.s2 = fma(a0.s0, b0.s2, c0.s2);
+ c0.s3 = fma(a0.s0, b0.s3, c0.s3);
+
+ c1.s0 = fma(a0.s1, b0.s0, c1.s0);
+ c1.s1 = fma(a0.s1, b0.s1, c1.s1);
+ c1.s2 = fma(a0.s1, b0.s2, c1.s2);
+ c1.s3 = fma(a0.s1, b0.s3, c1.s3);
+
+ c2.s0 = fma(a0.s2, b0.s0, c2.s0);
+ c2.s1 = fma(a0.s2, b0.s1, c2.s1);
+ c2.s2 = fma(a0.s2, b0.s2, c2.s2);
+ c2.s3 = fma(a0.s2, b0.s3, c2.s3);
+
+ c3.s0 = fma(a0.s3, b0.s0, c3.s0);
+ c3.s1 = fma(a0.s3, b0.s1, c3.s1);
+ c3.s2 = fma(a0.s3, b0.s2, c3.s2);
+ c3.s3 = fma(a0.s3, b0.s3, c3.s3);
+ }
+
+ for(; i < (int)K; ++i)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = vload4(0, src_addr_a);
+ float4 b0 = vload4(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 4 * H0;
+
+ c0.s0 = fma(a0.s0, b0.s0, c0.s0);
+ c0.s1 = fma(a0.s0, b0.s1, c0.s1);
+ c0.s2 = fma(a0.s0, b0.s2, c0.s2);
+ c0.s3 = fma(a0.s0, b0.s3, c0.s3);
+
+ c1.s0 = fma(a0.s1, b0.s0, c1.s0);
+ c1.s1 = fma(a0.s1, b0.s1, c1.s1);
+ c1.s2 = fma(a0.s1, b0.s2, c1.s2);
+ c1.s3 = fma(a0.s1, b0.s3, c1.s3);
+
+ c2.s0 = fma(a0.s2, b0.s0, c2.s0);
+ c2.s1 = fma(a0.s2, b0.s1, c2.s1);
+ c2.s2 = fma(a0.s2, b0.s2, c2.s2);
+ c2.s3 = fma(a0.s2, b0.s3, c2.s3);
+
+ c3.s0 = fma(a0.s3, b0.s0, c3.s0);
+ c3.s1 = fma(a0.s3, b0.s1, c3.s1);
+ c3.s2 = fma(a0.s3, b0.s2, c3.s2);
+ c3.s3 = fma(a0.s3, b0.s3, c3.s3);
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(4, float, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
+
+ LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(4, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(4, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(4, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(4, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(4, ACTIVATION_TYPE, float, VEC_SIZE, c, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store 4x4 block
+ vstore4(c0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore4(c1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore4(c2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore4(c3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
+}
+
+#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
+/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
+ *
+ * @note The number of rows of the *un-reshaped* matrix B (K) must be passed at compile time using -DK
+ * @note The optional alpha's value need to be passed at compile time using -DALPHA
+ * @note The multiplication factor for the transposition width (H0) must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int x = get_global_id(0) / H0;
+ int y = get_global_id(1) / V0;
+ int z = get_global_id(2);
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % V0) * 4;
+ const int offset_row_b = (get_global_id(0) % H0) * 8;
+
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
+ __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
+
+ // Compute end row address for matrix B
+ __global half *src_end_addr_b = src_addr_b + (src1_stride_y / sizeof(half));
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
+
+ // Reset accumulators
+ half8 c0 = 0.0f;
+ half8 c1 = 0.0f;
+ half8 c2 = 0.0f;
+ half8 c3 = 0.0f;
+
+ for(; src_addr_b <= (src_end_addr_b - (int)(16 * H0)); src_addr_a += 8 * V0, src_addr_b += 16 * H0)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ half4 a0 = vload4(0, src_addr_a);
+ half8 b0 = vload8(0, src_addr_b);
+
+ c0 += (half8)a0.s0 * b0;
+ c1 += (half8)a0.s1 * b0;
+ c2 += (half8)a0.s2 * b0;
+ c3 += (half8)a0.s3 * b0;
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a + 4 * V0);
+ b0 = vload8(0, src_addr_b + 8 * H0);
+
+ c0 += (half8)a0.s0 * b0;
+ c1 += (half8)a0.s1 * b0;
+ c2 += (half8)a0.s2 * b0;
+ c3 += (half8)a0.s3 * b0;
+ }
+
+ for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * V0, src_addr_b += 8 * H0)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ half4 a0 = vload4(0, src_addr_a);
+ half8 b0 = vload8(0, src_addr_b);
+
+ c0 += (half8)a0.s0 * b0;
+ c1 += (half8)a0.s1 * b0;
+ c2 += (half8)a0.s2 * b0;
+ c3 += (half8)a0.s3 * b0;
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(4, half, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
+
+ LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, half, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(4, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(4, half, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(4, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, VEC_SIZE, c, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store 4x8 block
+ vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
+}
+
+/** This OpenCL kernel computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1) while accumulating the result in a 32 floating point variable.
+ *
+ * @note The number of rows of the *un-reshaped* matrix B (K) must be passed at compile time using -DK
+ * @note The optional alpha's value need to be passed at compile time using -DALPHA
+ * @note The multiplication factor for the transposition width (H0) must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_interleaved_transposed_f16_acc32(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int x = get_global_id(0) / H0;
+ int y = get_global_id(1) / V0;
+ int z = get_global_id(2);
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % V0) * 4;
+ const int offset_row_b = (get_global_id(0) % H0) * 8;
+
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
+ __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
+
+ // Compute end row address for matrix B
+ __global half *src_end_addr_b = src_addr_b + (src1_stride_y / sizeof(half));
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
+
+ // Reset accumulators
+ float8 c0 = 0.0f;
+ float8 c1 = 0.0f;
+ float8 c2 = 0.0f;
+ float8 c3 = 0.0f;
+
+ for(; src_addr_b <= (src_end_addr_b - (int)(16 * H0)); src_addr_a += 8 * V0, src_addr_b += 16 * H0)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = convert_float4(vload4(0, src_addr_a));
+ float8 b0 = convert_float8(vload8(0, src_addr_b));
+
+ c0 += (float8)a0.s0 * b0;
+ c1 += (float8)a0.s1 * b0;
+ c2 += (float8)a0.s2 * b0;
+ c3 += (float8)a0.s3 * b0;
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = convert_float4(vload4(0, src_addr_a + 4 * V0));
+ b0 = convert_float8(vload8(0, src_addr_b + 8 * H0));
+
+ c0 += (float8)a0.s0 * b0;
+ c1 += (float8)a0.s1 * b0;
+ c2 += (float8)a0.s2 * b0;
+ c3 += (float8)a0.s3 * b0;
+ }
+
+ for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * V0, src_addr_b += 8 * H0)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ float4 a0 = convert_float4(vload4(0, src_addr_a));
+ float8 b0 = convert_float8(vload8(0, src_addr_b));
+
+ c0 += (float8)a0.s0 * b0;
+ c1 += (float8)a0.s1 * b0;
+ c2 += (float8)a0.s2 * b0;
+ c3 += (float8)a0.s3 * b0;
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(4, float, c, ALPHA);
+#endif // defined(ALPHA)
+
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
+
+ LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+ float8 bias_f0 = convert_float8(bias0);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, float, bias_f, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(4, c, bias_f0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+ float8 bias_f0 = convert_float8(bias0);
+ float8 bias_f1 = convert_float8(bias1);
+ float8 bias_f2 = convert_float8(bias2);
+ float8 bias_f3 = convert_float8(bias3);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(4, float, bias_f, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(4, c, bias_f);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ half8 c_h0 = convert_half8(c0);
+ half8 c_h1 = convert_half8(c1);
+ half8 c_h2 = convert_half8(c2);
+ half8 c_h3 = convert_half8(c3);
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, VEC_SIZE, c_h, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store 4x8 block
+ vstore8(c_h0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore8(c_h1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore8(c_h2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore8(c_h3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
+}
+
+/** This OpenCL kernel optimized for Bifrost architectures computes the matrix multiplication between matrix A reshaped (src0) and matrix B reshaped (src1)
+ *
+ * @note The number of rows of the *un-reshaped* matrix B (K) must be passed at compile time using -DK
+ * @note The optional alpha's value need to be passed at compile time using -DALPHA
+ * @note The multiplication factor for the transposition width (H0) must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DV0 (e.g. -DV0=2)
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the output has to be reinterpreted as a 3D tensor (e.g. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_interleaved_transposed_f16_bifrost(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int x = get_global_id(0) / H0;
+ int y = get_global_id(1) / V0;
+ int z = get_global_id(2);
+
+ // Offset
+ const int offset_row_a = (get_global_id(1) % V0) * 4;
+ const int offset_row_b = (get_global_id(0) % H0) * 8;
+
+ // src_addr_a = address of matrix A
+ // src_addr_b = address of matrix B
+ int src0_addr_in_bytes = z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
+ int src1_addr_in_bytes = x * src1_stride_y + src1_offset_first_element_in_bytes;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src1_addr_in_bytes += (z % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src1_addr_in_bytes += z * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ __global half *src_addr_a = (__global half *)(src0_ptr + src0_addr_in_bytes);
+ __global half *src_addr_b = (__global half *)(src1_ptr + src1_addr_in_bytes);
+
+ src_addr_a += offset_row_a;
+ src_addr_b += offset_row_b;
+
+ // Reset accumulators
+ half8 c0 = 0.0f;
+ half8 c1 = 0.0f;
+ half8 c2 = 0.0f;
+ half8 c3 = 0.0f;
+
+ int i = 0;
+ for(; i <= (int)(K - 4); i += 4)
+ {
+#if V0 == 1
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ half8 a0 = vload8(0, src_addr_a);
+ half8 b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 8 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+
+ // Load values from matrix B (transposed)
+ b0 = vload8(0, src_addr_b);
+
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s4, b0, c0);
+ c1 = fma((half8)a0.s5, b0, c1);
+ c2 = fma((half8)a0.s6, b0, c2);
+ c3 = fma((half8)a0.s7, b0, c3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload8(0, src_addr_a);
+ b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 8 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+
+ // Load values from matrix B (transposed)
+ b0 = vload8(0, src_addr_b);
+
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s4, b0, c0);
+ c1 = fma((half8)a0.s5, b0, c1);
+ c2 = fma((half8)a0.s6, b0, c2);
+ c3 = fma((half8)a0.s7, b0, c3);
+#else // V0 == 1
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ half4 a0 = vload4(0, src_addr_a);
+ half8 b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a);
+ b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a);
+ b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ a0 = vload4(0, src_addr_a);
+ b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+#endif // V0 == 1
+ }
+
+ for(; i < (int)K; ++i)
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ half4 a0 = vload4(0, src_addr_a);
+ half8 b0 = vload8(0, src_addr_b);
+
+ src_addr_a += 4 * V0;
+ src_addr_b += 8 * H0;
+
+ c0 = fma((half8)a0.s0, b0, c0);
+ c1 = fma((half8)a0.s1, b0, c1);
+ c2 = fma((half8)a0.s2, b0, c2);
+ c3 = fma((half8)a0.s3, b0, c3);
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * 4) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * 4)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(4, half, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(4, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
+
+ LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, half, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(4, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)4 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(4, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(4, half, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(4, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(4, ACTIVATION_TYPE, half, VEC_SIZE, c, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store 4x8 block
+ vstore8(c0, 0, (__global half *)(dst_addr + 0 * dst_stride_y + zout.s0));
+ vstore8(c1, 0, (__global half *)(dst_addr + 1 * dst_stride_y + zout.s1));
+ vstore8(c2, 0, (__global half *)(dst_addr + 2 * dst_stride_y + zout.s2));
+ vstore8(c3, 0, (__global half *)(dst_addr + 3 * dst_stride_y + zout.s3));
+}
+
+#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
+
+#endif // defined(K) && defined(H0) && defined(V0)
+
+#if defined(K) && defined(N0) && (M0)
+#if defined(DATA_TYPE)
+#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, N0)
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped.
+ *
+ * @note This OpenCL kernel works with floating point data types (F16/F32)
+ * @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
+ * @note The number of elements processed along the x and y directions must be passed at compile time using -DN0 and -DM0
+ * @note The number of matrix A columns and the optional alpha's value need to be passed at compile time using -DK and -DALPHA
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements for the output tensor (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int idx = get_global_id(0) * N0;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * M0;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx * sizeof(DATA_TYPE);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ int end_row_vec_a = src_addr.s0 + (K * sizeof(DATA_TYPE));
+
+ VECTOR_TYPE acc0 = 0.0f;
+#if M0 > 1
+ VECTOR_TYPE acc1 = 0.0f;
+#endif // M0 > 1
+#if M0 > 2
+ VECTOR_TYPE acc2 = 0.0f;
+#endif // M0 > 2
+#if M0 > 3
+ VECTOR_TYPE acc3 = 0.0f;
+#endif // M0 > 3
+
+ for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(DATA_TYPE)); src_addr += (int2)(2 * sizeof(DATA_TYPE), 2 * src1_stride_y))
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ LOAD_BLOCK(M0, 2, DATA_TYPE, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ VECTOR_TYPE b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
+ VECTOR_TYPE b1 = VLOAD(N0)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
+
+ // Accumulate
+ acc0 += b0 * (VECTOR_TYPE)a0.s0;
+ acc0 += b1 * (VECTOR_TYPE)a0.s1;
+#if M0 > 1
+ acc1 += b0 * (VECTOR_TYPE)a1.s0;
+ acc1 += b1 * (VECTOR_TYPE)a1.s1;
+#endif // M0 > 1
+#if M0 > 2
+ acc2 += b0 * (VECTOR_TYPE)a2.s0;
+ acc2 += b1 * (VECTOR_TYPE)a2.s1;
+#endif // M0 > 2
+#if M0 > 3
+ acc3 += b0 * (VECTOR_TYPE)a3.s0;
+ acc3 += b1 * (VECTOR_TYPE)a3.s1;
+#endif // M0 > 3
+ }
+
+ for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(DATA_TYPE), src1_stride_y))
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if M0 > 1
+ DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // M0 > 1
+#if M0 > 2
+ DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // M0 > 2
+#if M0 > 3
+ DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // M0 > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ VECTOR_TYPE b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
+
+ // Accumulate
+ acc0 += b0 * (VECTOR_TYPE)a0;
+#if M0 > 1
+ acc1 += b0 * (VECTOR_TYPE)a1;
+#endif // M0 > 1
+#if M0 > 2
+ acc2 += b0 * (VECTOR_TYPE)a2;
+#endif // M0 > 2
+#if M0 > 3
+ acc3 += b0 * (VECTOR_TYPE)a3;
+#endif // M0 > 3
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, acc, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK(1, N0, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, acc, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(M0, N0, DATA_TYPE, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, acc, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store output block
+ STORE_BLOCK(M0, N0, DATA_TYPE, acc, dst_addr, dst_stride_y, zout.s);
+}
+#endif // defined(DATA_TYPE)
+
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
+ *
+ * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
+ * @note The number of elements processed along the x and y directions must be passed at compile time using -DN0 and -DM0.
+ * This kernel optimally uses -DN0=4.
+ * @note The number of matrix A columns must be passed at compile time using -DK.
+ * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int idx = get_global_id(0) * N0;
+
+ // Compute starting address for matrix A and matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * M0;
+
+ // Update address for matrix B
+ src_addr.s1 += idx * sizeof(float);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize accumulators
+ float4 acc0 = 0.0f;
+
+#if M0 > 1
+ float4 acc1 = 0.0f;
+#endif // M0 > 1
+
+#if M0 > 2
+ float4 acc2 = 0.0f;
+#endif // M0 > 2
+
+#if M0 > 3
+ float4 acc3 = 0.0f;
+#endif // M0 > 3
+
+ // A and B src indices get incremented at the same time.
+ int i = 0;
+ for(; i <= ((int)K - 4); i += 4)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ LOAD_BLOCK(M0, 4, float, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A and matrix B
+ float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ float4 a1 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ float4 a2 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ float4 a3 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
+ acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
+ acc0.s2 = fma(a0.s0, b0.s2, acc0.s2);
+ acc0.s3 = fma(a0.s0, b0.s3, acc0.s3);
+
+#if M0 > 1
+
+ acc1.s0 = fma(a1.s0, b0.s0, acc1.s0);
+ acc1.s1 = fma(a1.s0, b0.s1, acc1.s1);
+ acc1.s2 = fma(a1.s0, b0.s2, acc1.s2);
+ acc1.s3 = fma(a1.s0, b0.s3, acc1.s3);
+
+#endif // M0 > 1
+#if M0 > 2
+
+ acc2.s0 = fma(a2.s0, b0.s0, acc2.s0);
+ acc2.s1 = fma(a2.s0, b0.s1, acc2.s1);
+ acc2.s2 = fma(a2.s0, b0.s2, acc2.s2);
+ acc2.s3 = fma(a2.s0, b0.s3, acc2.s3);
+
+#endif // M0 > 2
+#if M0 > 3
+
+ acc3.s0 = fma(a3.s0, b0.s0, acc3.s0);
+ acc3.s1 = fma(a3.s0, b0.s1, acc3.s1);
+ acc3.s2 = fma(a3.s0, b0.s2, acc3.s2);
+ acc3.s3 = fma(a3.s0, b0.s3, acc3.s3);
+#endif // M0 > 3
+
+ // Load values from matrix A and matrix B
+ b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0.s1, b0.s0, acc0.s0);
+ acc0.s1 = fma(a0.s1, b0.s1, acc0.s1);
+ acc0.s2 = fma(a0.s1, b0.s2, acc0.s2);
+ acc0.s3 = fma(a0.s1, b0.s3, acc0.s3);
+
+#if M0 > 1
+
+ acc1.s0 = fma(a1.s1, b0.s0, acc1.s0);
+ acc1.s1 = fma(a1.s1, b0.s1, acc1.s1);
+ acc1.s2 = fma(a1.s1, b0.s2, acc1.s2);
+ acc1.s3 = fma(a1.s1, b0.s3, acc1.s3);
+
+#endif // M0 > 1
+#if M0 > 2
+
+ acc2.s0 = fma(a2.s1, b0.s0, acc2.s0);
+ acc2.s1 = fma(a2.s1, b0.s1, acc2.s1);
+ acc2.s2 = fma(a2.s1, b0.s2, acc2.s2);
+ acc2.s3 = fma(a2.s1, b0.s3, acc2.s3);
+
+#endif // M0 > 2
+#if M0 > 3
+
+ acc3.s0 = fma(a3.s1, b0.s0, acc3.s0);
+ acc3.s1 = fma(a3.s1, b0.s1, acc3.s1);
+ acc3.s2 = fma(a3.s1, b0.s2, acc3.s2);
+ acc3.s3 = fma(a3.s1, b0.s3, acc3.s3);
+#endif // M0 > 3
+
+ // Load values from matrix A and matrix B
+ b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0.s2, b0.s0, acc0.s0);
+ acc0.s1 = fma(a0.s2, b0.s1, acc0.s1);
+ acc0.s2 = fma(a0.s2, b0.s2, acc0.s2);
+ acc0.s3 = fma(a0.s2, b0.s3, acc0.s3);
+
+#if M0 > 1
+
+ acc1.s0 = fma(a1.s2, b0.s0, acc1.s0);
+ acc1.s1 = fma(a1.s2, b0.s1, acc1.s1);
+ acc1.s2 = fma(a1.s2, b0.s2, acc1.s2);
+ acc1.s3 = fma(a1.s2, b0.s3, acc1.s3);
+
+#endif // M0 > 1
+#if M0 > 2
+
+ acc2.s0 = fma(a2.s2, b0.s0, acc2.s0);
+ acc2.s1 = fma(a2.s2, b0.s1, acc2.s1);
+ acc2.s2 = fma(a2.s2, b0.s2, acc2.s2);
+ acc2.s3 = fma(a2.s2, b0.s3, acc2.s3);
+
+#endif // M0 > 2
+#if M0 > 3
+
+ acc3.s0 = fma(a3.s2, b0.s0, acc3.s0);
+ acc3.s1 = fma(a3.s2, b0.s1, acc3.s1);
+ acc3.s2 = fma(a3.s2, b0.s2, acc3.s2);
+ acc3.s3 = fma(a3.s2, b0.s3, acc3.s3);
+#endif // M0 > 3
+
+ // Load values from matrix A and matrix B
+ b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0.s3, b0.s0, acc0.s0);
+ acc0.s1 = fma(a0.s3, b0.s1, acc0.s1);
+ acc0.s2 = fma(a0.s3, b0.s2, acc0.s2);
+ acc0.s3 = fma(a0.s3, b0.s3, acc0.s3);
+
+#if M0 > 1
+
+ acc1.s0 = fma(a1.s3, b0.s0, acc1.s0);
+ acc1.s1 = fma(a1.s3, b0.s1, acc1.s1);
+ acc1.s2 = fma(a1.s3, b0.s2, acc1.s2);
+ acc1.s3 = fma(a1.s3, b0.s3, acc1.s3);
+
+#endif // M0 > 1
+#if M0 > 2
+
+ acc2.s0 = fma(a2.s3, b0.s0, acc2.s0);
+ acc2.s1 = fma(a2.s3, b0.s1, acc2.s1);
+ acc2.s2 = fma(a2.s3, b0.s2, acc2.s2);
+ acc2.s3 = fma(a2.s3, b0.s3, acc2.s3);
+
+#endif // M0 > 2
+#if M0 > 3
+
+ acc3.s0 = fma(a3.s3, b0.s0, acc3.s0);
+ acc3.s1 = fma(a3.s3, b0.s1, acc3.s1);
+ acc3.s2 = fma(a3.s3, b0.s2, acc3.s2);
+ acc3.s3 = fma(a3.s3, b0.s3, acc3.s3);
+#endif // M0 > 3
+
+ src_addr.s0 += 4 * sizeof(float);
+ }
+
+ for(; i < (int)K; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if M0 > 1
+ float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // M0 > 1
+#if M0 > 2
+ float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // M0 > 2
+#if M0 > 3
+ float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // M0 > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0, b0.s0, acc0.s0);
+ acc0.s1 = fma(a0, b0.s1, acc0.s1);
+ acc0.s2 = fma(a0, b0.s2, acc0.s2);
+ acc0.s3 = fma(a0, b0.s3, acc0.s3);
+#if M0 > 1
+ acc1.s0 = fma(a1, b0.s0, acc1.s0);
+ acc1.s1 = fma(a1, b0.s1, acc1.s1);
+ acc1.s2 = fma(a1, b0.s2, acc1.s2);
+ acc1.s3 = fma(a1, b0.s3, acc1.s3);
+#endif // M0 > 1
+#if M0 > 2
+ acc2.s0 = fma(a2, b0.s0, acc2.s0);
+ acc2.s1 = fma(a2, b0.s1, acc2.s1);
+ acc2.s2 = fma(a2, b0.s2, acc2.s2);
+ acc2.s3 = fma(a2, b0.s3, acc2.s3);
+#endif // M0 > 2
+#if M0 > 3
+ acc3.s0 = fma(a3, b0.s0, acc3.s0);
+ acc3.s1 = fma(a3, b0.s1, acc3.s1);
+ acc3.s2 = fma(a3, b0.s2, acc3.s2);
+ acc3.s3 = fma(a3, b0.s3, acc3.s3);
+#endif // M0 > 3
+
+ src_addr.s0 += sizeof(float);
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, float, acc, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float));
+
+ LOAD_BLOCK(1, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, acc, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)4 * sizeof(float)) + (get_global_id(1) * (uint)M0 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(M0, 4, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias
+ ADD_BLOCK(M0, acc, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, float, VEC_SIZE, acc, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store the output block
+ vstore4(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
+#if M0 > 1
+ vstore4(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
+#endif // M0 > 1
+#if M0 > 2
+ vstore4(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
+#endif // M0 > 2
+#if M0 > 3
+ vstore4(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
+#endif // M0 > 3
+}
+
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
+ *
+ * @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
+ * This OpenCL kernel is optimized for Bifrost when the number of matrix B columns is less or equal to 1000.
+ * @note The number of elements processed along the x and y directions must be passed at compile time using -DN0 and -DM0.
+ * This kernel optimally uses -DN0=2.
+ * @note The number of matrix A columns must be passed at compile time using -DK.
+ * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha if alpha!=1.0f.
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Requires 2 N0, C vect2, A vect4, B (2 vload2) // to fix for M0 > 1
+ int idx = get_global_id(0) * N0;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * M0;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx * sizeof(float);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize accumulators
+ float2 acc0 = 0.0f;
+#if M0 > 1
+ float2 acc1 = 0.0f;
+#endif // M0 > 1
+#if M0 > 2
+ float2 acc2 = 0.0f;
+#endif // M0 > 2
+#if M0 > 3
+ float2 acc3 = 0.0f;
+#endif // M0 > 3
+
+ // A and B src indices get incremented at the same time.
+ int i = 0;
+ for(; i <= ((int)K - 8); i += 8)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + zin.s0));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float8 a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b1 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b2 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b3 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b4 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b5 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b6 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ float2 b7 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0.s0, b0.s0, acc0.s0);
+ acc0.s0 = fma(a0.s1, b1.s0, acc0.s0);
+ acc0.s0 = fma(a0.s2, b2.s0, acc0.s0);
+ acc0.s0 = fma(a0.s3, b3.s0, acc0.s0);
+ acc0.s0 = fma(a0.s4, b4.s0, acc0.s0);
+ acc0.s0 = fma(a0.s5, b5.s0, acc0.s0);
+ acc0.s0 = fma(a0.s6, b6.s0, acc0.s0);
+ acc0.s0 = fma(a0.s7, b7.s0, acc0.s0);
+
+ acc0.s1 = fma(a0.s0, b0.s1, acc0.s1);
+ acc0.s1 = fma(a0.s1, b1.s1, acc0.s1);
+ acc0.s1 = fma(a0.s2, b2.s1, acc0.s1);
+ acc0.s1 = fma(a0.s3, b3.s1, acc0.s1);
+ acc0.s1 = fma(a0.s4, b4.s1, acc0.s1);
+ acc0.s1 = fma(a0.s5, b5.s1, acc0.s1);
+ acc0.s1 = fma(a0.s6, b6.s1, acc0.s1);
+ acc0.s1 = fma(a0.s7, b7.s1, acc0.s1);
+
+#if M0 > 1
+#if defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+ acc1.s0 = fma(a0.s0, b0.s0, acc1.s0);
+ acc1.s0 = fma(a0.s1, b1.s0, acc1.s0);
+ acc1.s0 = fma(a0.s2, b2.s0, acc1.s0);
+ acc1.s0 = fma(a0.s3, b3.s0, acc1.s0);
+ acc1.s0 = fma(a0.s4, b4.s0, acc1.s0);
+ acc1.s0 = fma(a0.s5, b5.s0, acc1.s0);
+ acc1.s0 = fma(a0.s6, b6.s0, acc1.s0);
+ acc1.s0 = fma(a0.s7, b7.s0, acc1.s0);
+
+ acc1.s1 = fma(a0.s0, b0.s1, acc1.s1);
+ acc1.s1 = fma(a0.s1, b1.s1, acc1.s1);
+ acc1.s1 = fma(a0.s2, b2.s1, acc1.s1);
+ acc1.s1 = fma(a0.s3, b3.s1, acc1.s1);
+ acc1.s1 = fma(a0.s4, b4.s1, acc1.s1);
+ acc1.s1 = fma(a0.s5, b5.s1, acc1.s1);
+ acc1.s1 = fma(a0.s6, b6.s1, acc1.s1);
+ acc1.s1 = fma(a0.s7, b7.s1, acc1.s1);
+#endif // M0 > 1
+#if M0 > 2
+#if defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+ acc2.s0 = fma(a0.s0, b0.s0, acc2.s0);
+ acc2.s0 = fma(a0.s1, b1.s0, acc2.s0);
+ acc2.s0 = fma(a0.s2, b2.s0, acc2.s0);
+ acc2.s0 = fma(a0.s3, b3.s0, acc2.s0);
+ acc2.s0 = fma(a0.s4, b4.s0, acc2.s0);
+ acc2.s0 = fma(a0.s5, b5.s0, acc2.s0);
+ acc2.s0 = fma(a0.s6, b6.s0, acc2.s0);
+ acc2.s0 = fma(a0.s7, b7.s0, acc2.s0);
+
+ acc2.s1 = fma(a0.s0, b0.s1, acc2.s1);
+ acc2.s1 = fma(a0.s1, b1.s1, acc2.s1);
+ acc2.s1 = fma(a0.s2, b2.s1, acc2.s1);
+ acc2.s1 = fma(a0.s3, b3.s1, acc2.s1);
+ acc2.s1 = fma(a0.s4, b4.s1, acc2.s1);
+ acc2.s1 = fma(a0.s5, b5.s1, acc2.s1);
+ acc2.s1 = fma(a0.s6, b6.s1, acc2.s1);
+ acc2.s1 = fma(a0.s7, b7.s1, acc2.s1);
+#endif // M0 > 2
+#if M0 > 3
+#if defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ a0 = vload8(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+ acc3.s0 = fma(a0.s0, b0.s0, acc3.s0);
+ acc3.s0 = fma(a0.s1, b1.s0, acc3.s0);
+ acc3.s0 = fma(a0.s2, b2.s0, acc3.s0);
+ acc3.s0 = fma(a0.s3, b3.s0, acc3.s0);
+ acc3.s0 = fma(a0.s4, b4.s0, acc3.s0);
+ acc3.s0 = fma(a0.s5, b5.s0, acc3.s0);
+ acc3.s0 = fma(a0.s6, b6.s0, acc3.s0);
+ acc3.s0 = fma(a0.s7, b7.s0, acc3.s0);
+
+ acc3.s1 = fma(a0.s0, b0.s1, acc3.s1);
+ acc3.s1 = fma(a0.s1, b1.s1, acc3.s1);
+ acc3.s1 = fma(a0.s2, b2.s1, acc3.s1);
+ acc3.s1 = fma(a0.s3, b3.s1, acc3.s1);
+ acc3.s1 = fma(a0.s4, b4.s1, acc3.s1);
+ acc3.s1 = fma(a0.s5, b5.s1, acc3.s1);
+ acc3.s1 = fma(a0.s6, b6.s1, acc3.s1);
+ acc3.s1 = fma(a0.s7, b7.s1, acc3.s1);
+#endif // M0 > 3
+
+ src_addr.s0 += sizeof(float) * 8;
+ }
+ // float size increment
+ for(; i < (int)K; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if M0 > 1
+ float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // M0 > 1
+#if M0 > 2
+ float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // M0 > 2
+#if M0 > 3
+ float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // M0 > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Multiply and accumulate
+ acc0.s0 = fma(a0, b0.s0, acc0.s0);
+ acc0.s1 = fma(a0, b0.s1, acc0.s1);
+#if M0 > 1
+ acc1.s0 = fma(a1, b0.s0, acc1.s0);
+ acc1.s1 = fma(a1, b0.s1, acc1.s1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2.s0 = fma(a2, b0.s0, acc2.s0);
+ acc2.s1 = fma(a2, b0.s1, acc2.s1);
+#endif // M0 > 2
+#if M0 > 3
+ acc3.s0 = fma(a3, b0.s0, acc3.s0);
+ acc3.s1 = fma(a3, b0.s1, acc3.s1);
+#endif // M0 > 3
+
+ src_addr.s0 += sizeof(float);
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, float, acc, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float));
+
+ LOAD_BLOCK(1, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, acc, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)2 * sizeof(float)) + (get_global_id(1) * (uint)M0 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(M0, 2, float, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, float, bias, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias
+ ADD_BLOCK(M0, acc, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, float, VEC_SIZE, acc, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store the output block
+ vstore2(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y + zout.s0));
+#if M0 > 1
+ vstore2(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y + zout.s1));
+#endif // M0 > 1
+#if M0 > 2
+ vstore2(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y + zout.s2));
+#endif // M0 > 2
+#if M0 > 3
+ vstore2(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y + zout.s3));
+#endif // M0 > 3
+}
+
+#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
+ *
+ * @note This OpenCL kernel works with the 16-bit floating point data type (half) and accumulating the result in a 32 floating point variable.
+ * @note The number of elements processed along the x and y directions must be passed at compile time using -DN0 and -DM0.
+ * This kernel optimally uses -DN0=4.
+ * @note The number of matrix A columns must be passed at compile time using -DK.
+ * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_floating_point_f16_bifrost_acc32(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int idx = get_global_id(0) * N0;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * M0;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx * sizeof(half);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ float8 acc0 = 0.0h;
+#if M0 > 1
+ float8 acc1 = 0.0h;
+#endif // M0 > 1
+#if M0 > 2
+ float8 acc2 = 0.0h;
+#endif // M0 > 2
+#if M0 > 3
+ float8 acc3 = 0.0h;
+#endif // M0 > 3
+
+ int i = 0;
+ for(; i <= ((int)K - 4); i += 4)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ LOAD_BLOCK(M0, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+
+ // Accumulate
+ acc0 = fma(b0, (float8)a0.s0, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (float8)a1.s0, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (float8)a2.s0, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (float8)a3.s0, acc3);
+#endif // M0 > 3
+
+ b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (float8)a0.s1, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (float8)a1.s1, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (float8)a2.s1, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (float8)a3.s1, acc3);
+#endif // M0 > 3
+
+ b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (float8)a0.s2, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (float8)a1.s2, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (float8)a2.s2, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (float8)a3.s2, acc3);
+#endif // M0 > 3
+
+ b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (float8)a0.s3, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (float8)a1.s3, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (float8)a2.s3, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (float8)a3.s3, acc3);
+#endif // M0 > 3
+
+ src_addr.s0 += 4 * sizeof(half);
+ }
+
+ for(; i < (int)K; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if M0 > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // M0 > 1
+#if M0 > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // M0 > 2
+#if M0 > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // M0 > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ float8 b0 = convert_float8(vload8(0, (__global half *)(src1_ptr + src_addr.s1)));
+
+ src_addr += (int2)(sizeof(half), src1_stride_y);
+
+ // Accumulate
+ acc0 = fma(b0, (float8)a0, acc0); // b0 * (half8)a0;
+#if M0 > 1
+ acc1 = fma(b0, (float8)a1, acc1); // b0 * (half8)a1;
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (float8)a2, acc2); // b0 * (half8)a2;
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (float8)a3, acc3); // b0 * (half8)a3;
+#endif // M0 > 3
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, float, acc, ALPHA);
+#endif // defined(ALPHA)
+
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
+
+ LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+ float8 bias_f0 = convert_float8(bias0);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, float, bias_f, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, acc, bias_f0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)M0 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(M0, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+ float8 bias_f0 = convert_float8(bias0);
+#if M0 > 1
+ float8 bias_f1 = convert_float8(bias1);
+#endif // M0 > 1
+#if M0 > 2
+ float8 bias_f2 = convert_float8(bias2);
+#endif // M0 > 2
+#if M0 > 3
+ float8 bias_f3 = convert_float8(bias3);
+#endif // M0 > 3
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, float, bias_f, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias
+ ADD_BLOCK(M0, acc, bias_f);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+ half8 acc_h0 = convert_half8(acc0);
+#if M0 > 1
+ half8 acc_h1 = convert_half8(acc1);
+#endif // M0 > 1
+#if M0 > 2
+ half8 acc_h2 = convert_half8(acc2);
+#endif // M0 > 2
+#if M0 > 3
+ half8 acc_h3 = convert_half8(acc3);
+#endif // M0 > 3
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, half, VEC_SIZE, acc_h, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store the output block
+ STORE_BLOCK(M0, 8, half, acc_h, dst_addr, dst_stride_y, zout.s);
+}
+
+/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
+ *
+ * @note This OpenCL kernel works with the 16-bit floating point data type (half) and uses the fma units.
+ * @note The number of elements processed along the x and y directions must be passed at compile time using -DN0 and -DM0.
+ * This kernel optimally uses -DN0=4.
+ * @note The number of matrix A columns must be passed at compile time using -DK.
+ * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
+ * @note In case the matrix B has 3 dimensions and the matrix A more than 3, in order to avoid out-of-bounds reads, the number of channels of matrix B must be passed at compile time using MATRIX_B_DEPTH (e.g. -DMATRIX_B_DEPTH=16)
+ * This case can happen when GEMM is used to perform the element-wise multiplication through a batched matrix multiplication (2D Winograd) and we have multiple inputs (e.g. a = [K, M, 16, Batches], b = [N, K, 16])
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src2_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] src2_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] src2_step_x (Optional) src2_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src2_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] src2_step_y (Optional) src2_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src2_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] src0_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
+ * @param[in] src2_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] src_cross_plane_pad (Optional) Bottom paddings in unit of elements for the input tensor (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_floating_point_f16_bifrost(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+#if defined(BETA)
+ IMAGE_DECLARATION(src2),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint src0_stride_z,
+ uint src1_stride_z,
+#if defined(BETA)
+ uint src2_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint src_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ int idx = get_global_id(0) * N0;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * M0;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx * sizeof(half);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ uint4 zin = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zin = min(DEPTH_GEMM3D - 1, zin);
+
+ // Add offset due to the cross plane paddings
+ zin *= (src_cross_plane_pad * src0_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply src0_stride_z by DEPTH_GEMM3D
+ src_addr.s0 += get_global_id(2) * src0_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ src_addr.s0 += get_global_id(2) * src0_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ src_addr.s1 += (get_global_id(2) % MATRIX_B_DEPTH) * src1_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ src_addr.s1 += get_global_id(2) * src1_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ half8 acc0 = 0.0h;
+#if M0 > 1
+ half8 acc1 = 0.0h;
+#endif // M0 > 1
+#if M0 > 2
+ half8 acc2 = 0.0h;
+#endif // M0 > 2
+#if M0 > 3
+ half8 acc3 = 0.0h;
+#endif // M0 > 3
+
+ int i = 0;
+ for(; i <= ((int)K - 4); i += 4)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ LOAD_BLOCK(M0, 4, half, a, src0_ptr, src_addr.s0, src0_stride_y, zin.s);
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ half4 a1 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ half4 a2 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ half4 a3 = vload4(0, (__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+
+ // Accumulate
+ acc0 = fma(b0, (half8)a0.s0, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (half8)a1.s0, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (half8)a2.s0, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (half8)a3.s0, acc3);
+#endif // M0 > 3
+
+ b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (half8)a0.s1, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (half8)a1.s1, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (half8)a2.s1, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (half8)a3.s1, acc3);
+#endif // M0 > 3
+
+ b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (half8)a0.s2, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (half8)a1.s2, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (half8)a2.s2, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (half8)a3.s2, acc3);
+#endif // M0 > 3
+
+ b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
+ src_addr.s1 += src1_stride_y;
+ acc0 = fma(b0, (half8)a0.s3, acc0);
+#if M0 > 1
+ acc1 = fma(b0, (half8)a1.s3, acc1);
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (half8)a2.s3, acc2);
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (half8)a3.s3, acc3);
+#endif // M0 > 3
+
+ src_addr.s0 += 4 * sizeof(half);
+ }
+
+ for(; i < (int)K; ++i)
+ {
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y + zin.s0));
+#if M0 > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y + zin.s1));
+#endif // M0 > 1
+#if M0 > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y + zin.s2));
+#endif // M0 > 2
+#if M0 > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y + zin.s3));
+#endif // M0 > 3
+#else // defined(REINTERPRET_INPUT_AS_3D)
+ // Load values from matrix A
+ half a0 = *((__global half *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
+#if M0 > 1
+ half a1 = *((__global half *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
+#endif // M0 > 1
+#if M0 > 2
+ half a2 = *((__global half *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
+#endif // M0 > 2
+#if M0 > 3
+ half a3 = *((__global half *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
+#endif // M0 > 3
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Load values from matrix B
+ half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
+
+ src_addr += (int2)(sizeof(half), src1_stride_y);
+
+ // Accumulate
+ acc0 = fma(b0, (half8)a0, acc0); // b0 * (half8)a0;
+#if M0 > 1
+ acc1 = fma(b0, (half8)a1, acc1); // b0 * (half8)a1;
+#endif // M0 > 1
+#if M0 > 2
+ acc2 = fma(b0, (half8)a2, acc2); // b0 * (half8)a2;
+#endif // M0 > 2
+#if M0 > 3
+ acc3 = fma(b0, (half8)a3, acc3); // b0 * (half8)a3;
+#endif // M0 > 3
+ }
+
+ int z = get_global_id(2);
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Compute dst address
+ __global uchar *dst_addr = offset(&dst, 0, 0);
+
+ uint4 zout = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zout) is calculated dividing M (get_global_id(1) * M0) by HEIGHT_GEMM3D
+ zout = ((uint4)(0, 1, 2, 3) + (uint4)(get_global_id(1) * M0)) / (uint4)HEIGHT_GEMM3D;
+ zout = min(DEPTH_GEMM3D - 1, zout);
+
+ // Add offset due to the cross plane paddings
+ zout *= (dst_cross_plane_pad * dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, half, acc, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zero, 0);
+
+#if defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half));
+
+ LOAD_BLOCK(1, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, half, bias, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, acc, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *src2_addr = src2_ptr + src2_offset_first_element_in_bytes + (get_global_id(0) * (uint)8 * sizeof(half)) + (get_global_id(1) * (uint)M0 * src2_stride_y) + get_global_id(
+ 2) * src2_stride_z;
+
+ LOAD_BLOCK(M0, 8, half, bias, src2_addr, 0, src2_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, half, bias, BETA);
+#endif // UNIT_BIAS
+
+ // acc = acc + bias
+ ADD_BLOCK(M0, acc, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, half, VEC_SIZE, acc, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store the output block
+ STORE_BLOCK(M0, 8, half, acc, dst_addr, dst_stride_y, zout.s);
+}
+#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
+
+#endif // defined(K) && defined(N0) && (M0) \ No newline at end of file
diff --git a/src/core/CL/cl_kernels/load_store_utility.h b/src/core/CL/cl_kernels/load_store_utility.h
index 84b6d2e275..56b1538c6f 100644
--- a/src/core/CL/cl_kernels/load_store_utility.h
+++ b/src/core/CL/cl_kernels/load_store_utility.h
@@ -538,11 +538,6 @@
#endif // PARTIAL_STORE_M0 == 0 && PARTIAL_STORE_N0 == 0
-#else // defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
-
-#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
- STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
-
#endif // defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
/** @} */ // end of group STORE_BLOCK_BOUNDARY_AWARE
diff --git a/src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp b/src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp
index aa69ed06d1..fd0978230d 100644
--- a/src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp
@@ -96,7 +96,7 @@ inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *i
const int k = reshape_info.k();
const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
- rhs_info.n0 = 16 / input1->element_size();
+ rhs_info.n0 = max_cl_vector_width / input1->element_size();
rhs_info.k0 = 1;
rhs_info.h0 = mult_transpose1xW_width;
rhs_info.interleave = false;
@@ -354,6 +354,12 @@ void CLGEMMMatrixMultiplyKernel::configure(const CLCompileContext &compile_conte
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
+ const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(1) : input0->info()->dimension(1);
+ const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(2) : input0->info()->dimension(2);
+
+ const unsigned int m0 = num_elements_processed.y();
+ const unsigned int n0 = num_elements_processed.x();
+
// Create build options
CLBuildOptions build_opts;
@@ -363,8 +369,8 @@ void CLGEMMMatrixMultiplyKernel::configure(const CLCompileContext &compile_conte
build_opts.add_option_if(reshape_info.broadcast_bias(), "-DBROADCAST_BIAS");
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
- build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
- build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
+ build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
+ build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
build_opts.add_option_if(activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(activation_info.activation())));
build_opts.add_option_if(activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(activation_info.a()));
@@ -378,9 +384,9 @@ void CLGEMMMatrixMultiplyKernel::configure(const CLCompileContext &compile_conte
const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
- build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(input1->info()->dimension(0)));
- build_opts.add_option("-DMULT_TRANSPOSE1XW_WIDTH=" + support::cpp11::to_string(mult_transpose1xW_width));
- build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));
+ build_opts.add_option("-DK=" + support::cpp11::to_string(input1->info()->dimension(0) / (n0 * mult_transpose1xW_width)));
+ build_opts.add_option("-DH0=" + support::cpp11::to_string(mult_transpose1xW_width));
+ build_opts.add_option("-DV0=" + support::cpp11::to_string(mult_interleave4x4_height));
if(is_data_type_float(data_type) && is_bifrost)
{
@@ -398,7 +404,7 @@ void CLGEMMMatrixMultiplyKernel::configure(const CLCompileContext &compile_conte
}
else // The input tensors have not been reshaped
{
- build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(input0->info()->dimension(0)));
+ build_opts.add_option("-DK=" + support::cpp11::to_string(input0->info()->dimension(0)));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
// Create kernels according to the architecture, data type and input size.
@@ -431,8 +437,8 @@ void CLGEMMMatrixMultiplyKernel::configure(const CLCompileContext &compile_conte
{
kernel_name = "gemm_mm_floating_point";
}
- build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_Y=" + support::cpp11::to_string(num_elements_processed.y()));
- build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_X=" + support::cpp11::to_string(num_elements_processed.x()));
+ build_opts.add_option("-DM0=" + support::cpp11::to_string(m0));
+ build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
}
// Create kernel