aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGiorgio Arena <giorgio.arena@arm.com>2020-10-15 17:39:41 +0100
committerGiorgio Arena <giorgio.arena@arm.com>2020-10-21 13:13:53 +0000
commit1e2af2acc4cb789ba4c0e6935a4581ce4a050609 (patch)
tree32aacf11e7f5deb271e2177f36920b57c9afa5ab
parented5fb39d1d9d3e56d26b621cd1d56ceb39270701 (diff)
downloadComputeLibrary-1e2af2acc4cb789ba4c0e6935a4581ce4a050609.tar.gz
COMPMID-3712 Remove OpenCL padding: CLDepthwiseConvolutionLayer3x3NHWCKernel FP16/32
Removed unused N from partial block loading macro Created utility to assert change in padding Signed-off-by: Giorgio Arena <giorgio.arena@arm.com> Change-Id: Ifdd30c66dbf5f2842c6b2d939000613d5011708e Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4192 Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
-rw-r--r--arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h1
-rw-r--r--arm_compute/core/Types.h22
-rw-r--r--arm_compute/core/Utils.h18
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution.cl384
-rw-r--r--src/core/CL/cl_kernels/gemm.cl26
-rw-r--r--src/core/CL/cl_kernels/gemm_helpers.h227
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl2
-rw-r--r--src/core/CL/cl_kernels/load_store_utility.h295
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp224
-rw-r--r--src/core/Utils.cpp24
-rw-r--r--tests/datasets/DepthwiseConvolutionLayerDataset.h4
11 files changed, 656 insertions, 571 deletions
diff --git a/arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h b/arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h
index 4ca6c0bf4a..db57439de0 100644
--- a/arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h
+++ b/arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h
@@ -107,7 +107,6 @@ public:
BorderSize border_size() const override;
private:
- unsigned int _num_rows_processed_per_iteration;
unsigned int _num_planes_processed_per_iteration;
};
} // namespace arm_compute
diff --git a/arm_compute/core/Types.h b/arm_compute/core/Types.h
index c0e0683fe6..42e42cc2d6 100644
--- a/arm_compute/core/Types.h
+++ b/arm_compute/core/Types.h
@@ -337,6 +337,28 @@ struct BorderSize
return size;
}
+ /** Check equality with another BorderSize struct
+ *
+ * @param[in] rhs other struct to check against
+ *
+ * @return true if they are equal
+ */
+ bool operator==(const BorderSize &rhs)
+ {
+ return (top == rhs.top) && (right == rhs.right) && (bottom == rhs.bottom) && (left == rhs.left);
+ }
+
+ /** Check non-equality with another BorderSize struct
+ *
+ * @param[in] rhs other struct to check against
+ *
+ * @return true if they are different
+ */
+ bool operator!=(const BorderSize &rhs)
+ {
+ return !(*this == rhs);
+ }
+
/** Limit this border size.
*
* @param[in] limit Border size to limit this border size to.
diff --git a/arm_compute/core/Utils.h b/arm_compute/core/Utils.h
index d2bc50c7c6..590bdf93c0 100644
--- a/arm_compute/core/Utils.h
+++ b/arm_compute/core/Utils.h
@@ -38,11 +38,14 @@
#include <sstream>
#include <string>
#include <type_traits>
+#include <unordered_map>
#include <utility>
#include <vector>
namespace arm_compute
{
+class ITensor;
+
/** Calculate the rounded up quotient of val / m.
*
* @param[in] val Value to divide and round up.
@@ -1091,6 +1094,21 @@ std::string string_from_pixel_value(const PixelValue &value, const DataType data
* @return DataType
*/
DataType data_type_from_name(const std::string &name);
+/** Stores padding information before configuring a kernel
+ *
+ * @param[in] tensors list of tensors to store the padding info for
+ *
+ * @return An unordered map where each tensor pointer is paired with its original padding info
+ */
+std::unordered_map<const ITensor *, PaddingSize> get_padding_info(std::initializer_list<const ITensor *> tensors);
+/** Check if the previously stored padding info has changed after configuring a kernel
+ *
+ * @param[in] padding_map an unordered map where each tensor pointer is paired with its original padding info
+ *
+ * @return true if any of the tensors has changed its paddings
+ */
+bool has_padding_changed(const std::unordered_map<const ITensor *, PaddingSize> &padding_map);
+
/** Input Stream operator for @ref DataType
*
* @param[in] stream Stream to parse
diff --git a/src/core/CL/cl_kernels/depthwise_convolution.cl b/src/core/CL/cl_kernels/depthwise_convolution.cl
index 1c032b144f..da22faabed 100644
--- a/src/core/CL/cl_kernels/depthwise_convolution.cl
+++ b/src/core/CL/cl_kernels/depthwise_convolution.cl
@@ -1474,6 +1474,19 @@ __kernel void dwc_MxN_native_fp_nhwc(
#define VEC_FLOAT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+#define FILL_ZERO_OUT_OF_BOUND_3(data_type, vec_size, basename, cond) \
+ ({ \
+ basename##0 = select(basename##0, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_DATA_TYPE(data_type, vec_size))((cond).s0)); \
+ basename##1 = select(basename##1, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_DATA_TYPE(data_type, vec_size))((cond).s1)); \
+ basename##2 = select(basename##2, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_DATA_TYPE(data_type, vec_size))((cond).s2)); \
+ })
+
+#define FILL_ZERO_OUT_OF_BOUND_4(data_type, vec_size, basename, cond) \
+ ({ \
+ FILL_ZERO_OUT_OF_BOUND_3(data_type, vec_size, basename, cond); \
+ basename##3 = select(basename##3, (VEC_DATA_TYPE(data_type, vec_size))0, (SELECT_DATA_TYPE(data_type, vec_size))((cond).s3)); \
+ })
+
#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
/** This function computes the depthwise convolution for NHWC data layout when the stride along the width or height is not 1.
@@ -1485,9 +1498,13 @@ __kernel void dwc_MxN_native_fp_nhwc(
* @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
* @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
* @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
+ * @note The dilation_x and dilation_y must be passed at compile time using -DDILATION_X and -DDILATION_Y: e.g. -DDILATION_X=1, -DDILATION_Y=1
* @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
* @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
* @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
+ * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1)
+ * @note In case of biases, -DHAS_BIAS must to be passed at compile
+ * @note If the output tensor has more than three dimensions, its third dimension must be passed at compile time using -DDST_DEPTH (e.g. -DDST_DEPTH=32)
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
@@ -1526,14 +1543,15 @@ __kernel void dwc_MxN_native_fp_nhwc(
__kernel void depthwise_convolution_3x3_nhwc(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights),
+ TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
+ ,
+ VECTOR_DECLARATION(biases)
#endif /* defined(HAS_BIAS) */
- int max_offset)
+)
{
- int x = get_global_id(0); // channels
- int y = get_global_id(1); // spatial coordinate x
+ int x_offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - PARTIAL_STORE_N0) % VEC_SIZE), 0) * sizeof(DATA_TYPE);
+ int y = get_global_id(1); // spatial coordinate x
#if defined(DST_DEPTH)
int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
int b = get_global_id(2) / (int)DST_DEPTH; // batch
@@ -1541,90 +1559,89 @@ __kernel void depthwise_convolution_3x3_nhwc(
int z = get_global_id(2); // spatial coordinate y
#endif // defined(DST_DEPTH)
- Vector weights = CONVERT_TO_VECTOR_STRUCT(weights);
+ __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offset;
#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE + b * src_stride_w;
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset + b * src_stride_w;
#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE;
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset;
#endif /* defined(DST_DEPTH) */
- int z_coord = 0;
- int4 offset = 0;
- int4 y_offset = ((int4)(y * CONV_STRIDE_X) + (int4)(0, DILATION_X * 1, DILATION_X * 2, DILATION_X * 3) - CONV_PAD_LEFT) * (int4)src_stride_y;
+ int3 src_coord_y = (int3)(y * CONV_STRIDE_X - CONV_PAD_LEFT) + (int3)(0, DILATION_X, 2 * DILATION_X);
+ int3 src_coord_z = (int3)(z * CONV_STRIDE_Y - CONV_PAD_TOP) + (int3)(0, DILATION_Y, 2 * DILATION_Y);
+
+ int3 src_offset_y = clamp(src_coord_y, (int3)0, (int3)(SRC_DIM_1 - 1));
+ int3 src_offset_z = clamp(src_coord_z, (int3)0, (int3)(SRC_DIM_2 - 1));
- // We compute 2x1x1 [C,W,H] elements
- VEC_FLOAT acc = 0;
+ // Use these vectors to check whether the unclamped load would have been out of bounds
+ src_coord_y = (src_offset_y != src_coord_y);
+ src_coord_z = (src_offset_z != src_coord_z);
+
+ src_offset_y *= (int3)src_stride_y;
+ src_offset_z *= (int3)src_stride_z;
+
+ // We compute VEC_SIZEx1x1 [C,W,H] elements
+ VEC_FLOAT acc0 = 0;
// Load weights
- VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z));
+ VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 0 * weights_stride_z));
+ VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 0 * weights_stride_z));
+ VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 0 * weights_stride_z));
+ VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 1 * weights_stride_z));
+ VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 1 * weights_stride_z));
+ VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 1 * weights_stride_z));
+ VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 2 * weights_stride_z));
+ VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 2 * weights_stride_z));
+ VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 2 * weights_stride_z));
// Load input values
// z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = y_offset + (int4)(z_coord * src_stride_z);
- offset = min(offset, (int4)max_offset);
-
- VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+ VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s0));
+ VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s1));
+ VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s2));
+
+ FILL_ZERO_OUT_OF_BOUND_3(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int3)src_coord_z.s0);
+
+ acc0 = fma(values0, w0, acc0);
+ acc0 = fma(values1, w1, acc0);
+ acc0 = fma(values2, w2, acc0);
// z == 1
- // z_coord can be only negative for z = 0 so we do not need to clamp it
- // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y;
- offset = y_offset + (int4)(z_coord * src_stride_z);
- VEC_FLOAT values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
+ values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s0));
+ values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s1));
+ values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s2));
+
+ FILL_ZERO_OUT_OF_BOUND_3(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int3)src_coord_z.s1);
+
+ acc0 = fma(values0, w3, acc0);
+ acc0 = fma(values1, w4, acc0);
+ acc0 = fma(values2, w5, acc0);
// z == 2
- // Offset can be out-of-bound so we need to check if it is greater than max_offset
- z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y * 2;
- offset = y_offset + (int4)(z_coord * src_stride_z);
- offset = min(offset, (int4)max_offset);
- VEC_FLOAT values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- acc = fma(values0, w0, acc);
- acc = fma(values1, w1, acc);
- acc = fma(values2, w2, acc);
-
- acc = fma(values3, w3, acc);
- acc = fma(values4, w4, acc);
- acc = fma(values5, w5, acc);
-
- acc = fma(values6, w6, acc);
- acc = fma(values7, w7, acc);
- acc = fma(values8, w8, acc);
+ values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s0));
+ values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s1));
+ values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s2));
+
+ FILL_ZERO_OUT_OF_BOUND_3(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int3)src_coord_z.s2);
+
+ acc0 = fma(values0, w6, acc0);
+ acc0 = fma(values1, w7, acc0);
+ acc0 = fma(values2, w8, acc0);
#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
- VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
- acc += bias_values;
+ __global uchar *biases_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offset;
+ VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases_addr);
+ acc0 += bias_values;
#endif // defined(HAS_BIAS)
#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + y * dst_step_y + z * dst_step_z;
#endif /* defined(DST_DEPTH) */
- VSTORE(VEC_SIZE)
- (ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc, A_VAL, B_VAL), 0, (__global DATA_TYPE *)(dst_addr));
+ acc0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc0, A_VAL, B_VAL);
+ STORE_VECTOR_SELECT(acc, DATA_TYPE, dst_addr, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
}
#endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
@@ -1641,6 +1658,12 @@ __kernel void depthwise_convolution_3x3_nhwc(
* @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
* @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
* @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size
+ * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1)
+ * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1)
+ * @note The size of the output's second dimension must be passed at compile time using -DDST_DIM_1 (e.g. -DDST_DIM_1=64)
+ * @note The size of the output's third dimension must be passed at compile time using -DDST_DIM_2 (e.g. -DDST_DIM_2=32)
+ * @note In case of biases, -DHAS_BIAS must to be passed at compile
+ * @note If the output tensor has more than three dimensions, its third dimension must be passed at compile time using -DDST_DEPTH (e.g. -DDST_DEPTH=32)
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
@@ -1679,14 +1702,15 @@ __kernel void depthwise_convolution_3x3_nhwc(
__kernel void depthwise_convolution_3x3_nhwc_stride1(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst),
- TENSOR3D_DECLARATION(weights),
+ TENSOR3D_DECLARATION(weights)
#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
+ ,
+ VECTOR_DECLARATION(biases)
#endif /* defined(HAS_BIAS) */
- int max_offset)
+)
{
- int x = get_global_id(0); // channels
- int y = get_global_id(1); // spatial coordinate x
+ int x_offset = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - PARTIAL_STORE_N0) % VEC_SIZE), 0) * sizeof(DATA_TYPE);
+ int y = get_global_id(1); // spatial coordinate x
#if defined(DST_DEPTH)
int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
int b = get_global_id(2) / (int)DST_DEPTH; // batch
@@ -1694,79 +1718,52 @@ __kernel void depthwise_convolution_3x3_nhwc_stride1(
int z = get_global_id(2); // spatial coordinate y
#endif // defined(DST_DEPTH)
- Vector weights = CONVERT_TO_VECTOR_STRUCT(weights);
+ __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x_offset;
#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE + b * src_stride_w;
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset + b * src_stride_w;
#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * VEC_SIZE;
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offset;
#endif /* defined(DST_DEPTH) */
- int z_coord = 0;
- int4 offset = 0;
- int4 y_offset = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3) - (int)CONV_PAD_LEFT) * (int4)src_stride_y;
+ int4 src_coord_y = (int4)(y * NUM_ROWS_PROCESSED - CONV_PAD_LEFT) + V_OFFS4(int4);
+ int4 src_coord_z = (int4)(z * NUM_PLANES_PROCESSED - CONV_PAD_TOP) + V_OFFS4(int4);
+
+ int4 src_offset_y = clamp(src_coord_y, (int4)0, (int4)(SRC_DIM_1 - 1));
+ int4 src_offset_z = clamp(src_coord_z, (int4)0, (int4)(SRC_DIM_2 - 1));
+
+ // Use these vectors to check whether the unclamped load would have been out of bounds
+ src_coord_y = (src_offset_y != src_coord_y);
+ src_coord_z = (src_offset_z != src_coord_z);
+
+ src_offset_y *= (int4)src_stride_y;
+ src_offset_z *= (int4)src_stride_z;
- // We compute 2x2x2 [C,W,H] elements
+ // We compute VEC_SIZEx2x2 [C,W,H] elements
VEC_FLOAT acc0 = 0;
VEC_FLOAT acc1 = 0;
VEC_FLOAT acc2 = 0;
VEC_FLOAT acc3 = 0;
// Load weights
- VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z));
- VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z));
- VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z));
- VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z));
+ VEC_FLOAT w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 0 * weights_stride_z));
+ VEC_FLOAT w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 0 * weights_stride_z));
+ VEC_FLOAT w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 0 * weights_stride_z));
+ VEC_FLOAT w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 1 * weights_stride_z));
+ VEC_FLOAT w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 1 * weights_stride_z));
+ VEC_FLOAT w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 1 * weights_stride_z));
+ VEC_FLOAT w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 0 * weights_stride_y + 2 * weights_stride_z));
+ VEC_FLOAT w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y + 2 * weights_stride_z));
+ VEC_FLOAT w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y + 2 * weights_stride_z));
// Load input values
// z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = y_offset + (int4)(z_coord * src_stride_z);
- offset = min(offset, (int4)max_offset);
-
- VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_FLOAT values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
+ VEC_FLOAT values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s0));
+ VEC_FLOAT values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s1));
+ VEC_FLOAT values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s2));
+ VEC_FLOAT values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s0 + src_offset_y.s3));
- // z == 1
- // z_coord can be only negative for z = 0 so we do not need to clamp it
- // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
- offset = y_offset + (int4)(z_coord * src_stride_z);
- VEC_FLOAT values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_FLOAT values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 2
- // After z = 1 we can simply add src_stride_z to offset without updating z_coord
- // However offset can be out-of-bound so we need to check if it is greater than max_offset
- offset += (int4)src_stride_z;
- offset = min(offset, (int4)max_offset);
- VEC_FLOAT values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_FLOAT values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 3
- // After z = 1 we can simply add src_stride_z to offset without updating z_coord
- // However offset can be out-of-bound so we need to check if it is greater than max_offset
- offset += (int4)src_stride_z;
- offset = min(offset, (int4)max_offset);
- VEC_FLOAT values12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_FLOAT values13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_FLOAT values14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_FLOAT values15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
+ FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s0);
acc0 = fma(values0, w0, acc0);
acc0 = fma(values1, w1, acc0);
@@ -1775,45 +1772,69 @@ __kernel void depthwise_convolution_3x3_nhwc_stride1(
acc1 = fma(values2, w1, acc1);
acc1 = fma(values3, w2, acc1);
- acc0 = fma(values4, w3, acc0);
- acc0 = fma(values5, w4, acc0);
- acc0 = fma(values6, w5, acc0);
- acc1 = fma(values5, w3, acc1);
- acc1 = fma(values6, w4, acc1);
- acc1 = fma(values7, w5, acc1);
-
- acc0 = fma(values8, w6, acc0);
- acc0 = fma(values9, w7, acc0);
- acc0 = fma(values10, w8, acc0);
- acc1 = fma(values9, w6, acc1);
- acc1 = fma(values10, w7, acc1);
- acc1 = fma(values11, w8, acc1);
-
- acc2 = fma(values4, w0, acc2);
- acc2 = fma(values5, w1, acc2);
- acc2 = fma(values6, w2, acc2);
- acc3 = fma(values5, w0, acc3);
- acc3 = fma(values6, w1, acc3);
- acc3 = fma(values7, w2, acc3);
-
- acc2 = fma(values8, w3, acc2);
- acc2 = fma(values9, w4, acc2);
- acc2 = fma(values10, w5, acc2);
- acc3 = fma(values9, w3, acc3);
- acc3 = fma(values10, w4, acc3);
- acc3 = fma(values11, w5, acc3);
-
- acc2 = fma(values12, w6, acc2);
- acc2 = fma(values13, w7, acc2);
- acc2 = fma(values14, w8, acc2);
- acc3 = fma(values13, w6, acc3);
- acc3 = fma(values14, w7, acc3);
- acc3 = fma(values15, w8, acc3);
+ // z == 1
+ values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s0));
+ values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s1));
+ values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s2));
+ values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s1 + src_offset_y.s3));
+
+ FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s1);
+
+ acc0 = fma(values0, w3, acc0);
+ acc0 = fma(values1, w4, acc0);
+ acc0 = fma(values2, w5, acc0);
+ acc1 = fma(values1, w3, acc1);
+ acc1 = fma(values2, w4, acc1);
+ acc1 = fma(values3, w5, acc1);
+
+ acc2 = fma(values0, w0, acc2);
+ acc2 = fma(values1, w1, acc2);
+ acc2 = fma(values2, w2, acc2);
+ acc3 = fma(values1, w0, acc3);
+ acc3 = fma(values2, w1, acc3);
+ acc3 = fma(values3, w2, acc3);
+
+ // z == 2
+ values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s0));
+ values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s1));
+ values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s2));
+ values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s2 + src_offset_y.s3));
+
+ FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s2);
+
+ acc0 = fma(values0, w6, acc0);
+ acc0 = fma(values1, w7, acc0);
+ acc0 = fma(values2, w8, acc0);
+ acc1 = fma(values1, w6, acc1);
+ acc1 = fma(values2, w7, acc1);
+ acc1 = fma(values3, w8, acc1);
+
+ acc2 = fma(values0, w3, acc2);
+ acc2 = fma(values1, w4, acc2);
+ acc2 = fma(values2, w5, acc2);
+ acc3 = fma(values1, w3, acc3);
+ acc3 = fma(values2, w4, acc3);
+ acc3 = fma(values3, w5, acc3);
+
+ // z == 3
+ values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s0));
+ values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s1));
+ values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s2));
+ values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + src_offset_z.s3 + src_offset_y.s3));
+
+ FILL_ZERO_OUT_OF_BOUND_4(DATA_TYPE, VEC_SIZE, values, src_coord_y | (int4)src_coord_z.s3);
+
+ acc2 = fma(values0, w6, acc2);
+ acc2 = fma(values1, w7, acc2);
+ acc2 = fma(values2, w8, acc2);
+ acc3 = fma(values1, w6, acc3);
+ acc3 = fma(values2, w7, acc3);
+ acc3 = fma(values3, w8, acc3);
#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
+ __global uchar *biases_addr = biases_ptr + biases_offset_first_element_in_bytes + x_offset;
- VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
+ VEC_FLOAT bias_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)biases_addr);
acc0 += bias_values;
acc1 += bias_values;
@@ -1821,25 +1842,34 @@ __kernel void depthwise_convolution_3x3_nhwc_stride1(
acc3 += bias_values;
#endif // defined(HAS_BIAS)
+ int2 dst_offset_y = min((int2)(y * NUM_ROWS_PROCESSED) + V_OFFS2(int2), (int2)(DST_DIM_1 - 1)) * (int2)dst_stride_y;
+ int dst_coord_z = z * NUM_PLANES_PROCESSED;
+
#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z;
-#endif /* defined(DST_DEPTH) */
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + dst_coord_z * dst_stride_z + b * dst_stride_w;
+#else // defined(DST_DEPTH)
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offset + dst_coord_z * dst_stride_z;
+#endif // defined(DST_DEPTH)
- VSTORE(VEC_SIZE)
- (ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc0, A_VAL, B_VAL), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
- VSTORE(VEC_SIZE)
- (ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc1, A_VAL, B_VAL), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
+ /* Store vectors in reverse order along the Y. The Y offsets are calculated so that they are forced to be in bound.
+ * If only the first address is in bound, the Y offset of the second address will be brought back and there will be 2 writes in the same location for the same thread.
+ * Since the last vector to be written is always the valid one for that location, it overwrites the wrong values.
+ */
+ values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc1, A_VAL, B_VAL);
+ STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_offset_y.s1, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
+
+ values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc0, A_VAL, B_VAL);
+ STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_offset_y.s0, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2)
+ if((dst_coord_z + 1) < DST_DIM_2)
#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
{
- VSTORE(VEC_SIZE)
- (ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc2, A_VAL, B_VAL), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + 1 * dst_stride_z));
- VSTORE(VEC_SIZE)
- (ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc3, A_VAL, B_VAL), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + 1 * dst_stride_z));
+ values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc3, A_VAL, B_VAL);
+ STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_stride_z + dst_offset_y.s1, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
+
+ values0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, acc2, A_VAL, B_VAL);
+ STORE_VECTOR_SELECT(values, DATA_TYPE, dst_addr + dst_stride_z + dst_offset_y.s0, VEC_SIZE, PARTIAL_STORE_N0, PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0)
}
}
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index f29f2c1b48..653aa5591c 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -1282,7 +1282,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
const bool cond_x = ((x + 1) * N0 >= N);
// Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
@@ -1628,7 +1628,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
const bool cond_x = ((x + 1) * N0 >= N);
// Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
@@ -2024,7 +2024,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
const bool cond_x = ((x + 1) * N0 >= N);
// Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
@@ -2333,7 +2333,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
const bool cond_x = ((x + 1) * N0 >= N);
// Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
@@ -2775,9 +2775,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
// Store output block
#if defined(MIXED_PRECISION)
CONVERT_BLOCK(M0, N0, DATA_TYPE, c, c_lp);
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#else // defined(MIXED_PRECISION)
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#endif // defined(MIXED_PRECISION)
#undef LHS_BLOCK_SIZE
@@ -3045,9 +3045,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
// Store output block
#if defined(MIXED_PRECISION)
CONVERT_BLOCK(M0, N0, DATA_TYPE, c, c_lp);
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#else // defined(MIXED_PRECISION)
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#endif // defined(MIXED_PRECISION)
#undef LHS_BLOCK_SIZE
@@ -3539,9 +3539,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
// Store output block
#if defined(MIXED_PRECISION)
CONVERT_BLOCK(M0, N0, DATA_TYPE, c, c_lp);
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#else // defined(MIXED_PRECISION)
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#endif // defined(MIXED_PRECISION)
#undef LHS_BLOCK_SIZE
@@ -3906,9 +3906,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
// Store output block
#if defined(MIXED_PRECISION)
CONVERT_BLOCK(M0, N0, DATA_TYPE, c, c_lp);
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c_lp, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#else // defined(MIXED_PRECISION)
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#endif // defined(MIXED_PRECISION)
#undef LHS_BLOCK_SIZE
@@ -4287,7 +4287,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
const bool cond_x = ((x + 1) * N0 >= N);
// Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
diff --git a/src/core/CL/cl_kernels/gemm_helpers.h b/src/core/CL/cl_kernels/gemm_helpers.h
index 1e020e106f..2534204f2f 100644
--- a/src/core/CL/cl_kernels/gemm_helpers.h
+++ b/src/core/CL/cl_kernels/gemm_helpers.h
@@ -708,233 +708,6 @@
#define CALCULATE_Z_OFFSET(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y) CALCULATE_Z_OFFSET_STR(M0, DATA_TYPE, Z, Y, HEIGHT_GEMM3D, DEPTH_GEMM3D, CROSS_PLANE_PAD, STRIDE_Y)
/** @} */ // end of group CALCULATE_Z_OFFSET
-/** Store the 0 to (n-1)th rows of the given variables
- * @name STORE_ROW_n
- *
- * @param[in] N0 The width of the passed in vector. Supported: 1, 2, 3, 4, 8, 16
- * @param[in] DATA_TYPE The data type of the vectors
- * @param[in] BASENAME The basename of the variables
- * @param[in] PTR The base pointer
- * @param[in] STRIDE_Y The stride value in y-axis direction
- * @param[in] Z The offset in z-axis direction
- * @{
- */
-#define STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##0, 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0));
-
-#define STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##1, 0, (__global DATA_TYPE *)(PTR + 1 * STRIDE_Y + Z##1));
-
-#define STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##2, 0, (__global DATA_TYPE *)(PTR + 2 * STRIDE_Y + Z##2));
-
-#define STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##3, 0, (__global DATA_TYPE *)(PTR + 3 * STRIDE_Y + Z##3));
-
-#define STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##4, 0, (__global DATA_TYPE *)(PTR + 4 * STRIDE_Y + Z##4));
-
-#define STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##5, 0, (__global DATA_TYPE *)(PTR + 5 * STRIDE_Y + Z##5));
-
-#define STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##6, 0, (__global DATA_TYPE *)(PTR + 6 * STRIDE_Y + Z##6));
-
-#define STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##7, 0, (__global DATA_TYPE *)(PTR + 7 * STRIDE_Y + Z##7));
-
-#define STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##8, 0, (__global DATA_TYPE *)(PTR + 8 * STRIDE_Y + Z##8));
-
-#define STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##9, 0, (__global DATA_TYPE *)(PTR + 9 * STRIDE_Y + Z##9));
-
-#define STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##A, 0, (__global DATA_TYPE *)(PTR + 10 * STRIDE_Y + Z##A));
-
-#define STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##B, 0, (__global DATA_TYPE *)(PTR + 11 * STRIDE_Y + Z##B));
-
-#define STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##C, 0, (__global DATA_TYPE *)(PTR + 12 * STRIDE_Y + Z##C));
-
-#define STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##D, 0, (__global DATA_TYPE *)(PTR + 13 * STRIDE_Y + Z##D));
-
-#define STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##E, 0, (__global DATA_TYPE *)(PTR + 14 * STRIDE_Y + Z##E));
-
-#define STORE_ROW_16(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (BASENAME##F, 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F));
-/** @} */ // end of groupd STORE_ROW_n
-
-/** Convert and store the 0th to (n-1)th rows of the given variables
- * @name CONVERT_STORE_ROW_n
- *
- * @param[in] N0 The size of the vectors
- * @param[in] DATA_TYPE The data type of the vectors
- * @param[in] BASENAME The basename of the variables
- * @param[in] PTR The base pointer
- * @param[in] STRIDE_Y The stride value in y-axis direction
- * @param[in] Z The offset in z-axis direction
- * @{
- */
-#define CONVERT_STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##0), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0));
-
-#define CONVERT_STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##1), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 1 * STRIDE_Y + Z##1));
-
-#define CONVERT_STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##2), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 2 * STRIDE_Y + Z##2));
-
-#define CONVERT_STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##3), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 3 * STRIDE_Y + Z##3));
-
-#define CONVERT_STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##4), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 4 * STRIDE_Y + Z##4));
-
-#define CONVERT_STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##5), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 5 * STRIDE_Y + Z##5));
-
-#define CONVERT_STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##6), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 6 * STRIDE_Y + Z##6));
-
-#define CONVERT_STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##7), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 7 * STRIDE_Y + Z##7));
-
-#define CONVERT_STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##8), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 8 * STRIDE_Y + Z##8));
-
-#define CONVERT_STORE_ROW_10(N0, DATA, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##9), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 9 * STRIDE_Y + Z##9));
-
-#define CONVERT_STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##A), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 10 * STRIDE_Y + Z##A));
-
-#define CONVERT_STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##B), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 11 * STRIDE_Y + Z##B));
-
-#define CONVERT_STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##C), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 12 * STRIDE_Y + Z##C));
-
-#define CONVERT_STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##D), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 13 * STRIDE_Y + Z##D));
-
-#define CONVERT_STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##E), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 14 * STRIDE_Y + Z##E));
-
-#define CONVERT_STORE_ROW_16(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- CONVERT_STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
- VSTORE(N0) \
- (CONVERT_SAT((BASENAME##F), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F));
-
-/** @} */ // end of groupd CONVERT_STORE_ROW_n
-
-/** Store a block of the given size M0xN0
- * @name STORE_BLOCK
- *
- * Supported cases are M0=1,2,3,...,16 and N0=2,3,4,8,16.
- * The data to store is expected to have consecutive names for each row.
- * E.g., for M0=3 and basename=c, the expected names are c0, c1 and c2.
- * The Z offset is expected to have consecutive names.
- * E.g., for M0=3 and Z=zin, the expected z offset names are zin0, zin1 and zin2.
- *
- * @param[in] M0 The number of rows to store
- * @param[in] N0 The size of each vector
- * @param[in] DATA_TYPE The data type of the vectors
- * @param[in] BASENAME The basename of the variables
- * @param[in] PTR The base pointer
- * @param[in] STRIDE_Y The stride value in y-axis direction
- * @param[in] Z The offset in z-axis direction
- * @{
- */
-#define STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
-#define STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
-/** @} */ // end of group STORE_BLOCK
-
-/** Convert and store a block of the given size M0xN0
- * @name CONVERT_STORE_BLOCK
- *
- * Supported cases are M0=1,2,3,...,16 and N0=2,3,4,8,16.
- * The data to store is expected to have consecutive names for each row.
- * E.g., for M0=3 and basename=c, the expected names are c0, c1 and c2.
- * The Z offset is expected to have consecutive names.
- * E.g., for M0=3 and Z=zin, the expected z offset names are zin0, zin1 and zin2.
- *
- * @param[in] M0 The number of rows to store
- * @param[in] N0 The size of each vector
- * @param[in] DATA_TYPE The data type of the vectors
- * @param[in] BASENAME The basename of the variables
- * @param[in] PTR The base pointer
- * @param[in] STRIDE_Y The stride value in y-axis direction
- * @param[in] Z The offset in z-axis direction
- * @{
- */
-#define CONVERT_STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) CONVERT_STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
-#define CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) CONVERT_STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
-/** @} */ // end of group CONVERT_STORE_BLOCK
-
/** Scale the rows in the given variables (BASENAME0 to BASENAMEn-1)
* @name SCALE_ROW_n
*
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
index da92548634..9bdd5a2d0e 100644
--- a/src/core/CL/cl_kernels/gemmlowp.cl
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -1096,7 +1096,7 @@ __kernel void gemmlowp_mm_native(IMAGE_DECLARATION(lhs),
const bool cond_x = ((x + 1) * N0 >= N);
// Store output block
- STORE_BLOCK_BOUNDARY_AWARE(M0, N0, int, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, cond_y, cond_x);
+ STORE_BLOCK_BOUNDARY_AWARE(M0, N0, int, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
}
#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
diff --git a/src/core/CL/cl_kernels/load_store_utility.h b/src/core/CL/cl_kernels/load_store_utility.h
index cb833d016b..84b6d2e275 100644
--- a/src/core/CL/cl_kernels/load_store_utility.h
+++ b/src/core/CL/cl_kernels/load_store_utility.h
@@ -21,6 +21,234 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
+
+/** Store the 0 to (n-1)th rows of the given variables
+ * @name STORE_ROW_n
+ *
+ * @param[in] N0 The width of the passed in vector. Supported: 1, 2, 3, 4, 8, 16
+ * @param[in] DATA_TYPE The data type of the vectors
+ * @param[in] BASENAME The basename of the variables
+ * @param[in] PTR The base pointer
+ * @param[in] STRIDE_Y The stride value in y-axis direction
+ * @param[in] Z The offset in z-axis direction
+ * @{
+ */
+#define STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##0, 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0));
+
+#define STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##1, 0, (__global DATA_TYPE *)(PTR + 1 * STRIDE_Y + Z##1));
+
+#define STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##2, 0, (__global DATA_TYPE *)(PTR + 2 * STRIDE_Y + Z##2));
+
+#define STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##3, 0, (__global DATA_TYPE *)(PTR + 3 * STRIDE_Y + Z##3));
+
+#define STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##4, 0, (__global DATA_TYPE *)(PTR + 4 * STRIDE_Y + Z##4));
+
+#define STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##5, 0, (__global DATA_TYPE *)(PTR + 5 * STRIDE_Y + Z##5));
+
+#define STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##6, 0, (__global DATA_TYPE *)(PTR + 6 * STRIDE_Y + Z##6));
+
+#define STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##7, 0, (__global DATA_TYPE *)(PTR + 7 * STRIDE_Y + Z##7));
+
+#define STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##8, 0, (__global DATA_TYPE *)(PTR + 8 * STRIDE_Y + Z##8));
+
+#define STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##9, 0, (__global DATA_TYPE *)(PTR + 9 * STRIDE_Y + Z##9));
+
+#define STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##A, 0, (__global DATA_TYPE *)(PTR + 10 * STRIDE_Y + Z##A));
+
+#define STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##B, 0, (__global DATA_TYPE *)(PTR + 11 * STRIDE_Y + Z##B));
+
+#define STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##C, 0, (__global DATA_TYPE *)(PTR + 12 * STRIDE_Y + Z##C));
+
+#define STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##D, 0, (__global DATA_TYPE *)(PTR + 13 * STRIDE_Y + Z##D));
+
+#define STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##E, 0, (__global DATA_TYPE *)(PTR + 14 * STRIDE_Y + Z##E));
+
+#define STORE_ROW_16(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (BASENAME##F, 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F));
+/** @} */ // end of groupd STORE_ROW_n
+
+/** Convert and store the 0th to (n-1)th rows of the given variables
+ * @name CONVERT_STORE_ROW_n
+ *
+ * @param[in] N0 The size of the vectors
+ * @param[in] DATA_TYPE The data type of the vectors
+ * @param[in] BASENAME The basename of the variables
+ * @param[in] PTR The base pointer
+ * @param[in] STRIDE_Y The stride value in y-axis direction
+ * @param[in] Z The offset in z-axis direction
+ * @{
+ */
+#define CONVERT_STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##0), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 0 * STRIDE_Y + Z##0));
+
+#define CONVERT_STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_1(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##1), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 1 * STRIDE_Y + Z##1));
+
+#define CONVERT_STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_2(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##2), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 2 * STRIDE_Y + Z##2));
+
+#define CONVERT_STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_3(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##3), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 3 * STRIDE_Y + Z##3));
+
+#define CONVERT_STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_4(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##4), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 4 * STRIDE_Y + Z##4));
+
+#define CONVERT_STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_5(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##5), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 5 * STRIDE_Y + Z##5));
+
+#define CONVERT_STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_6(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##6), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 6 * STRIDE_Y + Z##6));
+
+#define CONVERT_STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_7(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##7), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 7 * STRIDE_Y + Z##7));
+
+#define CONVERT_STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_8(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##8), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 8 * STRIDE_Y + Z##8));
+
+#define CONVERT_STORE_ROW_10(N0, DATA, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_9(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##9), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 9 * STRIDE_Y + Z##9));
+
+#define CONVERT_STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_10(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##A), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 10 * STRIDE_Y + Z##A));
+
+#define CONVERT_STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_11(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##B), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 11 * STRIDE_Y + Z##B));
+
+#define CONVERT_STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_12(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##C), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 12 * STRIDE_Y + Z##C));
+
+#define CONVERT_STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_13(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##D), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 13 * STRIDE_Y + Z##D));
+
+#define CONVERT_STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_14(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##E), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 14 * STRIDE_Y + Z##E));
+
+#define CONVERT_STORE_ROW_16(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ CONVERT_STORE_ROW_15(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) \
+ VSTORE(N0) \
+ (CONVERT_SAT((BASENAME##F), VEC_DATA_TYPE(DATA_TYPE, N0)), 0, (__global DATA_TYPE *)(PTR + 15 * STRIDE_Y + Z##F));
+
+/** @} */ // end of groupd CONVERT_STORE_ROW_n
+
+/** Store a block of the given size M0xN0
+ * @name STORE_BLOCK
+ *
+ * Supported cases are M0=1,2,3,...,16 and N0=2,3,4,8,16.
+ * The data to store is expected to have consecutive names for each row.
+ * E.g., for M0=3 and basename=c, the expected names are c0, c1 and c2.
+ * The Z offset is expected to have consecutive names.
+ * E.g., for M0=3 and Z=zin, the expected z offset names are zin0, zin1 and zin2.
+ *
+ * @param[in] M0 The number of rows to store
+ * @param[in] N0 The size of each vector
+ * @param[in] DATA_TYPE The data type of the vectors
+ * @param[in] BASENAME The basename of the variables
+ * @param[in] PTR The base pointer
+ * @param[in] STRIDE_Y The stride value in y-axis direction
+ * @param[in] Z The offset in z-axis direction
+ * @{
+ */
+#define STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+#define STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+/** @} */ // end of group STORE_BLOCK
+
+/** Convert and store a block of the given size M0xN0
+ * @name CONVERT_STORE_BLOCK
+ *
+ * Supported cases are M0=1,2,3,...,16 and N0=2,3,4,8,16.
+ * The data to store is expected to have consecutive names for each row.
+ * E.g., for M0=3 and basename=c, the expected names are c0, c1 and c2.
+ * The Z offset is expected to have consecutive names.
+ * E.g., for M0=3 and Z=zin, the expected z offset names are zin0, zin1 and zin2.
+ *
+ * @param[in] M0 The number of rows to store
+ * @param[in] N0 The size of each vector
+ * @param[in] DATA_TYPE The data type of the vectors
+ * @param[in] BASENAME The basename of the variables
+ * @param[in] PTR The base pointer
+ * @param[in] STRIDE_Y The stride value in y-axis direction
+ * @param[in] Z The offset in z-axis direction
+ * @{
+ */
+#define CONVERT_STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) CONVERT_STORE_ROW_##M0(N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+#define CONVERT_STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z) CONVERT_STORE_BLOCK_STR(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
+/** @} */ // end of group CONVERT_STORE_BLOCK
+
/** Partially store the 0 to (n-1)th rows of the given variables
* @name STORE_ROW_PARTIAL_n
* Within each row, store the lower @p STORE_N0 elements of vectors of width @p N0
@@ -157,26 +385,25 @@
* @param[in] Z The offset in z-axis direction
* @param[in] PARTIAL_STORE_M0 The partial size in y, for partial blocks. Supported range: [1, @p M0)
* @param[in] PARTIAL_STORE_N0 The partial size in x, for partial blocks. Supported range: [1, @p N0)
- * @param[in] N Total number of columns. Used to detect if current block is at the boundary in x.
* @param[in] PARTIAL_COND_Y Condition on the y axis to perform the partial store Y. True to use PARTIAL_STORE_M0 rather than M0.
* @param[in] PARTIAL_COND_X Condition on the x axis to perform the partial store X. True to use PARTIAL_STORE_N0 rather than N0.
*/
-#define STORE_BLOCK_PARTIAL_IN_X_AND_Y(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X) \
- if(!(PARTIAL_COND_X) && !(PARTIAL_COND_Y)) \
- { \
- STORE_BLOCK_PARTIAL(M0, N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
- } \
- else if((PARTIAL_COND_Y) && !(PARTIAL_COND_X)) \
- { \
- STORE_BLOCK_PARTIAL(PARTIAL_STORE_M0, N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
- } \
- else if(!(PARTIAL_COND_Y) && (PARTIAL_COND_X)) \
- { \
- STORE_BLOCK_PARTIAL(M0, PARTIAL_STORE_N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
- } \
- else \
- { \
- STORE_BLOCK_PARTIAL(PARTIAL_STORE_M0, PARTIAL_STORE_N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
+#define STORE_BLOCK_PARTIAL_IN_X_AND_Y(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ if(!(PARTIAL_COND_X) && !(PARTIAL_COND_Y)) \
+ { \
+ STORE_BLOCK_PARTIAL(M0, N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
+ } \
+ else if((PARTIAL_COND_Y) && !(PARTIAL_COND_X)) \
+ { \
+ STORE_BLOCK_PARTIAL(PARTIAL_STORE_M0, N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
+ } \
+ else if(!(PARTIAL_COND_Y) && (PARTIAL_COND_X)) \
+ { \
+ STORE_BLOCK_PARTIAL(M0, PARTIAL_STORE_N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
+ } \
+ else \
+ { \
+ STORE_BLOCK_PARTIAL(PARTIAL_STORE_M0, PARTIAL_STORE_N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
}
/** Store a block that can only be partial in x but not y.
*
@@ -195,17 +422,16 @@
* @param[in] STRIDE_Y The stride value in y-axis direction
* @param[in] Z The offset in z-axis direction
* @param[in] PARTIAL_STORE_N0 The partial size in x, for partial blocks. Supported range: [1, @p N0)
- * @param[in] N Total number of columns. Used to detect if current block is at the boundary in x.
* @param[in] PARTIAL_COND_X Condition on the x axis to perform the partial store X. True to use PARTIAL_STORE_N0 rather than N0.
*/
-#define STORE_BLOCK_PARTIAL_IN_X(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_N0, N, PARTIAL_COND_X) \
- if(!(PARTIAL_COND_X)) \
- { \
- STORE_BLOCK_PARTIAL(M0, N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
- } \
- else \
- { \
- STORE_BLOCK_PARTIAL(M0, PARTIAL_STORE_N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
+#define STORE_BLOCK_PARTIAL_IN_X(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_N0, PARTIAL_COND_X) \
+ if(!(PARTIAL_COND_X)) \
+ { \
+ STORE_BLOCK_PARTIAL(M0, N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
+ } \
+ else \
+ { \
+ STORE_BLOCK_PARTIAL(M0, PARTIAL_STORE_N0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z); \
}
/** Store a block that can only be partial in y but not x.
*
@@ -286,36 +512,35 @@
* @param[in] Z The offset in z-axis direction
* @param[in] PARTIAL_STORE_M0 The partial size in y, for partial blocks. Supported: [0, @p M0)
* @param[in] PARTIAL_STORE_N0 The partial size in x, for partial blocks. Supported: [0, @p N0)
- * @param[in] N Total number of columns. Used to detect if current block is at the boundary in x.
* @param[in] PARTIAL_COND_Y Condition on the y axis to perform the partial store Y. True to use PARTIAL_STORE_M0 rather than M0.
* @param[in] PARTIAL_COND_X Condition on the x axis to perform the partial store X. True to use PARTIAL_STORE_N0 rather than N0.
* @{
*/
#if PARTIAL_STORE_M0 == 0 && PARTIAL_STORE_N0 == 0
// Case1: No partial blocks in either x or y
-#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X) \
+#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
#elif PARTIAL_STORE_M0 > 0 && PARTIAL_STORE_N0 == 0
// Case2: Partial blocks in y
-#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X) \
+#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
STORE_BLOCK_PARTIAL_IN_Y(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_COND_Y)
#elif PARTIAL_STORE_M0 == 0 && PARTIAL_STORE_N0 > 0
// Case3: Partial blocks in x
-#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X) \
- STORE_BLOCK_PARTIAL_IN_X(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_N0, N, PARTIAL_COND_X)
+#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ STORE_BLOCK_PARTIAL_IN_X(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_N0, PARTIAL_COND_X)
#else // PARTIAL_STORE_M0 == 0 && PARTIAL_STORE_N0 == 0
// Case4: Partial blocks in both x and y
-#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X) \
- STORE_BLOCK_PARTIAL_IN_X_AND_Y(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X)
+#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
+ STORE_BLOCK_PARTIAL_IN_X_AND_Y(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X)
#endif // PARTIAL_STORE_M0 == 0 && PARTIAL_STORE_N0 == 0
#else // defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
-#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, N, PARTIAL_COND_Y, PARTIAL_COND_X) \
+#define STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z, PARTIAL_STORE_M0, PARTIAL_STORE_N0, PARTIAL_COND_Y, PARTIAL_COND_X) \
STORE_BLOCK(M0, N0, DATA_TYPE, BASENAME, PTR, STRIDE_Y, Z)
#endif // defined(PARTIAL_STORE_M0) && defined(PARTIAL_STORE_N0)
@@ -362,5 +587,5 @@
* @{
*/
#define STORE_VECTOR_SELECT(basename, data_type, ptr, vec_size, leftover, cond) \
- STORE_BLOCK_PARTIAL_IN_X(1, vec_size, data_type, basename, ptr, 0, 0, leftover, 0, cond)
+ STORE_BLOCK_PARTIAL_IN_X(1, vec_size, data_type, basename, ptr, 0, 0, leftover, cond)
/** @} */ // end of group STORE_VECTOR_SELECT \ No newline at end of file
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
index 5a0d2d0a62..876ef1ec5d 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
@@ -124,37 +124,33 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
{
- const size_t weights_width = 3;
- const size_t weights_height = 3;
-
- // Get convolved dimensions
- const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(
- *input, TensorInfo(TensorShape(weights_width, weights_height), 1, weights->data_type()).set_data_layout(DataLayout::NCHW), conv_info, depth_multiplier, dilation);
+ ARM_COMPUTE_UNUSED(weights);
+ ARM_COMPUTE_UNUSED(depth_multiplier);
- auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));
+ const bool is_stride_1_dilation_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1) && dilation.x() == 1 && dilation.y() == 1);
+ unsigned int num_rows_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
- const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
- const bool is_stride_1_dilation_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1) && dilation.x() == 1 && dilation.y() == 1);
+ Window win{};
+ Status err{};
- const unsigned int num_rows_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
- const unsigned int num_elems_accessed_per_iteration = is_qasymm ? 4 : (8 / input->element_size());
- const unsigned int num_rows_read_per_iteration = num_rows_processed_per_iteration + 2;
- const unsigned int num_rows_written_per_iteration = std::ceil(num_rows_processed_per_iteration / static_cast<float>(conv_info.stride().first));
+ if(is_data_type_quantized_asymmetric(input->data_type()))
+ {
+ const unsigned int num_elems_accessed_per_iteration = 4;
+ const unsigned int num_rows_read_per_iteration = num_rows_processed_per_iteration + 2;
+ const unsigned int num_rows_written_per_iteration = std::ceil(num_rows_processed_per_iteration / static_cast<float>(conv_info.stride().first));
- BorderSize border_size;
- border_size = BorderSize(conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
+ BorderSize border_size;
+ border_size = BorderSize(conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
- // Configure kernel window
- Window win = calculate_max_window(*output, Steps(num_elems_accessed_per_iteration, num_rows_written_per_iteration));
+ // Configure kernel window
+ win = calculate_max_window(*output, Steps(num_elems_accessed_per_iteration, num_rows_written_per_iteration));
- AccessWindowStatic input_access(input, 0, -border_size.top, ceil_to_multiple(input->dimension(0), num_elems_accessed_per_iteration),
- ceil_to_multiple(input->dimension(1) + border_size.bottom, num_rows_read_per_iteration));
- AccessWindowRectangle output_access(output, 0, 0, num_elems_accessed_per_iteration, num_rows_written_per_iteration);
+ AccessWindowStatic input_access(input, 0, -border_size.top, ceil_to_multiple(input->dimension(0), num_elems_accessed_per_iteration),
+ ceil_to_multiple(input->dimension(1) + border_size.bottom, num_rows_read_per_iteration));
+ AccessWindowRectangle output_access(output, 0, 0, num_elems_accessed_per_iteration, num_rows_written_per_iteration);
- bool window_changed = false;
+ bool window_changed = false;
- if(is_qasymm)
- {
if((output_multipliers != nullptr) && (output_shifts != nullptr))
{
AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_accessed_per_iteration);
@@ -166,27 +162,28 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
Status err = ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "output_multipliers and output_shifts must be non-nullptr for quantized input");
return std::make_pair(err, win);
}
+
+ if(bias != nullptr)
+ {
+ AccessWindowHorizontal bias_access(bias, 0, num_elems_accessed_per_iteration);
+ window_changed = window_changed || update_window_and_padding(win, bias_access);
+ }
+ output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
+
+ err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
}
else
{
- AccessWindowStatic weights_access(weights, 0, 0, ceil_to_multiple(weights->dimension(0), num_elems_accessed_per_iteration), weights->dimension(1));
- window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
- }
-
- if(bias != nullptr)
- {
- AccessWindowHorizontal bias_access(bias, 0, num_elems_accessed_per_iteration);
- window_changed = window_changed || update_window_and_padding(win, bias_access);
+ unsigned int num_elems_accessed_per_iteration = adjust_vec_size(4 / input->element_size(), input->dimension(0));
+ win = calculate_max_window(*output, Steps(num_elems_accessed_per_iteration, num_rows_processed_per_iteration));
}
- output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
CLDepthwiseConvolutionLayer3x3NHWCKernel::CLDepthwiseConvolutionLayer3x3NHWCKernel()
- : _num_rows_processed_per_iteration(1), _num_planes_processed_per_iteration(1)
+ : _num_planes_processed_per_iteration(1)
{
}
@@ -211,15 +208,16 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
conv_info, depth_multiplier, act_info, dilation,
(output_multipliers != nullptr) ? output_multipliers->info() : nullptr,
(output_shifts != nullptr) ? output_shifts->info() : nullptr));
+
+ auto padding_info = get_padding_info({ input, weights, biases, output });
+
auto win_config = validate_and_configure_window(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(),
conv_info, depth_multiplier, dilation,
(output_multipliers != nullptr) ? output_multipliers->info() : nullptr,
(output_shifts != nullptr) ? output_shifts->info() : nullptr);
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
-
- const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
- const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
+ const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
+ const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel;
@@ -228,31 +226,37 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
_weights = weights;
_biases = biases;
_conv_stride_y = conv_info.stride().second;
- _num_rows_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
_num_planes_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
_output_multipliers = output_multipliers;
_output_shifts = output_shifts;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
- // If QASYMM8 and the 8 bit dot product is available, force _num_planes_processed_per_iteration to 1
- if(is_dot8_supported && _is_quantized)
+ if(_is_quantized)
{
- _num_planes_processed_per_iteration = 1;
- }
+ _border_size = BorderSize(is_stride_1 ? 0 : conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
- _border_size = BorderSize(_is_quantized && is_stride_1 ? 0 : conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
+ // If QASYMM8 and the 8 bit dot product is available, force _num_planes_processed_per_iteration to 1
+ if(is_dot8_supported)
+ {
+ _num_planes_processed_per_iteration = 1;
+ }
+ }
- const unsigned int num_elems_accessed_per_iteration = _is_quantized ? 4 : (8 / input->info()->element_size());
+ unsigned int num_elems_accessed_per_iteration = _is_quantized ? 4 : adjust_vec_size(4 / input->info()->element_size(), input->info()->dimension(0));
+ unsigned int num_rows_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
CLBuildOptions build_opts;
+ build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_input->info()->data_type()));
build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
- build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_accessed_per_iteration));
+ build_opts.add_option("-DSRC_DIM_1=" + support::cpp11::to_string(_input->info()->dimension(1)));
build_opts.add_option("-DSRC_DIM_2=" + support::cpp11::to_string(_input->info()->dimension(2)));
build_opts.add_option("-DCONV_PAD_TOP=" + support::cpp11::to_string(conv_info.pad_top()));
build_opts.add_option("-DCONV_PAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left()));
- build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
- build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
+ build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(input->info()->dimension(0) % num_elems_accessed_per_iteration));
+ build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
+ build_opts.add_option_if(_input->info()->tensor_shape().total_size_upper(3) > 1,
+ "-DDST_DEPTH=" + support::cpp11::to_string(static_cast<int>(std::ceil(_output->info()->dimension(2) / static_cast<float>(_num_planes_processed_per_iteration)))));
if(_is_quantized)
{
@@ -291,7 +295,6 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
}
- build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type()));
build_opts.add_option("-DWEIGHTS_PROMOTED_TYPE=" + get_cl_promoted_type_from_data_type(weights->info()->data_type()));
}
@@ -299,22 +302,23 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
{
build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
- build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_input->info()->data_type()));
}
if(is_stride_1_dilation_1)
{
- build_opts.add_option("-DNUM_ROWS_PROCESSED=" + support::cpp11::to_string(_num_rows_processed_per_iteration));
+ build_opts.add_option("-DNUM_ROWS_PROCESSED=" + support::cpp11::to_string(num_rows_processed_per_iteration));
build_opts.add_option("-DNUM_PLANES_PROCESSED=" + support::cpp11::to_string(_num_planes_processed_per_iteration));
+ build_opts.add_option("-DDST_DIM_1=" + support::cpp11::to_string(_output->info()->dimension(1)));
build_opts.add_option("-DDST_DIM_2=" + support::cpp11::to_string(_output->info()->dimension(2)));
+ build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string((input->info()->dimension(1) + conv_info.pad_left() + conv_info.pad_right()) % num_rows_processed_per_iteration));
}
else
{
build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(conv_info.stride().first));
build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
+ build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
+ build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
}
- build_opts.add_option_if(_input->info()->tensor_shape().total_size_upper(3) > 1,
- "-DDST_DEPTH=" + support::cpp11::to_string(static_cast<int>(std::ceil(_output->info()->dimension(2) / static_cast<float>(_num_planes_processed_per_iteration)))));
std::string kernel_name;
// Create kernel
@@ -331,12 +335,11 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
kernel_name += (is_stride_1_dilation_1 ? "_stride1" : "");
}
- build_opts.add_option_if(input->info()->data_type() == DataType::F16, "-DIS_F16");
- build_opts.add_option_if(input->info()->data_type() == DataType::F32, "-DIS_F32");
-
ICLKernel::configure_internal(win_config.second);
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
+ ARM_COMPUTE_ERROR_ON(!_is_quantized && has_padding_changed(padding_info));
+
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
@@ -364,7 +367,6 @@ Status CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(const ITensorInfo *inp
(output_multipliers != nullptr) ? output_multipliers->clone().get() : nullptr,
(output_shifts != nullptr) ? output_shifts->clone().get() : nullptr)
.first);
-
return Status{};
}
@@ -373,23 +375,11 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::run(const Window &window, cl::Com
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
- // Collapse window
- Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
- const size_t total_batches = _input->info()->tensor_shape().total_size_upper(3);
+ const size_t total_batches = _input->info()->tensor_shape().total_size_upper(3);
- Window win = window_collapsed;
+ Window win = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
win.set(Window::DimZ, Window::Dimension(0, std::ceil(_output->info()->dimension(2) / static_cast<float>(_num_planes_processed_per_iteration)) * total_batches, 1));
- // Create input window and adjust
- Window win_in = win;
- win_in.set_dimension_step(Window::DimY, _num_rows_processed_per_iteration);
- win_in.set_dimension_step(Window::DimZ, _conv_stride_y);
-
- ARM_COMPUTE_ERROR_ON((win_in.y().step() < window.y().step()) || (win_in.z().step() < window.z().step()));
-
- Window slice_in = win_in.first_slice_window_4D();
- Window slice_out = win.first_slice_window_4D();
-
unsigned int idx = 2 * num_arguments_per_4D_tensor() + (_is_quantized ? num_arguments_per_2D_tensor() : num_arguments_per_3D_tensor());
if(_is_quantized)
@@ -409,60 +399,64 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::run(const Window &window, cl::Com
add_1D_tensor_argument(idx, _biases, win_biases);
}
- // Calculate the max_offset.
- // max_offset is the offset for the last NOT valid value in the Z dimension (spatial dimension Y for NHWC)
- // |******************|
- // | pad_top |
- // |******************|
- // | |
- // | plane0 |
- // | batch0 |
- // |__________________|
- // |******************| Batch 0
- // | pad_bottom |
- // | pad_top |
- // |******************|
- // | |
- // | plane1 |
- // | batch0 |
- // |__________________|-----> max_offset
- // |******************|
- // | pad_bottom |
- // | pad_top |
- // |******************|
- // | |
- // | plane0 |
- // | batch1 |
- // |__________________|
- // |******************| Batch 1
- // | pad_bottom |
- // | pad_top |
- // |******************|
- // | |
- // | plane1 |
- // | batch1 |
- // |__________________|
- // | pad_bottom |
- // |******************|
- const int max_offset = _input->info()->strides_in_bytes().z() * _input->info()->dimension(2) - (_input->info()->padding().bottom + _input->info()->padding().top) *
- _input->info()->strides_in_bytes().y();
- _kernel.setArg(idx, max_offset);
+ if(_is_quantized)
+ {
+ // Calculate the max_offset.
+ // max_offset is the offset for the last NOT valid value in the Z dimension (spatial dimension Y for NHWC)
+ // |******************|
+ // | pad_top |
+ // |******************|
+ // | |
+ // | plane0 |
+ // | batch0 |
+ // |__________________|
+ // |******************| Batch 0
+ // | pad_bottom |
+ // | pad_top |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | batch0 |
+ // |__________________|-----> max_offset
+ // |******************|
+ // | pad_bottom |
+ // | pad_top |
+ // |******************|
+ // | |
+ // | plane0 |
+ // | batch1 |
+ // |__________________|
+ // |******************| Batch 1
+ // | pad_bottom |
+ // | pad_top |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | batch1 |
+ // |__________________|
+ // | pad_bottom |
+ // |******************|
+ const int max_offset = _input->info()->strides_in_bytes().z() * _input->info()->dimension(2) - (_input->info()->padding().bottom + _input->info()->padding().top) *
+ _input->info()->strides_in_bytes().y();
+ _kernel.setArg(idx, max_offset);
+ }
+ Window slice = win.first_slice_window_4D();
do
{
unsigned int idx = 0;
- add_4D_tensor_argument(idx, _input, slice_in);
- add_4D_tensor_argument(idx, _output, slice_out);
+ add_4D_tensor_argument(idx, _input, slice);
+ add_4D_tensor_argument(idx, _output, slice);
if(_is_quantized)
{
- add_2D_tensor_argument(idx, _weights, slice_out);
+ add_2D_tensor_argument(idx, _weights, slice);
}
else
{
- add_3D_tensor_argument(idx, _weights, slice_out);
+ add_3D_tensor_argument(idx, _weights, slice);
}
- enqueue(queue, *this, slice_out, lws_hint());
+ enqueue(queue, *this, slice, lws_hint());
}
- while(win.slide_window_slice_4D(slice_out) && win_in.slide_window_slice_4D(slice_in));
+ while(win.slide_window_slice_4D(slice));
}
} // namespace arm_compute
diff --git a/src/core/Utils.cpp b/src/core/Utils.cpp
index 3c8e735c40..c877e8fd1f 100644
--- a/src/core/Utils.cpp
+++ b/src/core/Utils.cpp
@@ -495,6 +495,30 @@ std::pair<int32_t, int32_t> get_quantized_activation_min_max(ActivationLayerInfo
return std::make_pair(min_activation, max_activation);
}
+std::unordered_map<const ITensor *, PaddingSize> get_padding_info(std::initializer_list<const ITensor *> tensors)
+{
+ std::unordered_map<const ITensor *, PaddingSize> res;
+
+ for(const ITensor *tensor : tensors)
+ {
+ if(tensor)
+ {
+ res.insert({ tensor, tensor->info()->padding() });
+ }
+ }
+
+ return res;
+}
+
+bool has_padding_changed(const std::unordered_map<const ITensor *, PaddingSize> &padding_map)
+{
+ return std::find_if(padding_map.begin(), padding_map.end(), [](const std::pair<const ITensor *, PaddingSize> &padding_info)
+ {
+ return (padding_info.first->info()->padding() != padding_info.second);
+ })
+ != padding_map.end();
+}
+
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
void print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim)
{
diff --git a/tests/datasets/DepthwiseConvolutionLayerDataset.h b/tests/datasets/DepthwiseConvolutionLayerDataset.h
index 5d516b5dd1..ed596d6d45 100644
--- a/tests/datasets/DepthwiseConvolutionLayerDataset.h
+++ b/tests/datasets/DepthwiseConvolutionLayerDataset.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2019 Arm Limited.
+ * Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -162,7 +162,7 @@ public:
SmallDepthwiseConvolutionLayerDataset3x3()
{
add_config(TensorShape(3U, 3U, 2U), Size2D(3U, 3U), PadStrideInfo(1, 1, 0, 0));
- add_config(TensorShape(7U, 7U, 3U, 2U), Size2D(3U, 3U), PadStrideInfo(1, 1, 0, 0));
+ add_config(TensorShape(7U, 8U, 3U, 2U), Size2D(3U, 3U), PadStrideInfo(1, 1, 0, 0));
add_config(TensorShape(21U, 31U, 9U, 4U), Size2D(3U, 3U), PadStrideInfo(1, 1, 1, 0));
// Asymmetric padding
add_config(TensorShape(33U, 27U, 11U), Size2D(3U, 3U), PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR));