aboutsummaryrefslogtreecommitdiff
path: root/src/backends/tosaCommon/operatorMappings/TransposeConv2dOperator.cpp
blob: 81d58e04febcbd9c222595d4b9e4190309ab5a15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//
// Copyright © 2022-2024 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//

#include "TransposeConv2dOperator.hpp"

#include "layers/TransposeConvolution2dLayer.hpp"

TosaSerializationBasicBlock* ConvertTransposeConv2dToTosaOperator(const Layer* layer,
                                                                  const std::vector<const TensorInfo*>& inputs,
                                                                  const std::vector<const TensorInfo*>& outputs,
                                                                  const TransposeConvolution2dDescriptor* descriptor)
{
    std::string input0Name = std::string("input_");
    std::string input1Name = std::string("constant_") + GetUniqueTosaMappingID();
    std::string input2Name = std::string("constant_") + GetUniqueTosaMappingID();
    std::string outputName = std::string("output0_");
    std::string blockName  = std::string("Op_TRANSPOSE_CONV2D_block_") + GetUniqueTosaMappingID();

    // If a layer is present then the block will be used for execution, so input and output names need to be determined
    // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
    if(layer != nullptr)
    {
        input0Name = GenerateUniqueInputName(layer->GetInputSlot(0));
        outputName = GenerateUniqueOutputName(*layer);
    }

    std::vector<TosaSerializationTensor*> tensors;
    std::vector<TosaSerializationOperator*> operators;

    // Setup input tensor
    // Only add tensor if connected layer is an input layer.
    // As intermediate or constant tensors will be created separately.
    // There also can't be duplicate tensors.
    if(input0Name.find("input_") != std::string::npos)
    {
        std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
        DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());

        tensors.push_back(new TosaSerializationTensor(input0Name, inputShape0, inputDType0, {}));
    }

    // Setup weights tensor, constant data will get copied during SetConstantTensorData
    operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {input1Name}));

    // During validation the TensorInfo can be retrieved from the inputs.
    // During execution, it is only available through the layer so use m_Weight.
    if(layer == nullptr)
    {
        std::vector<int32_t> inputShape1 = GetTosaTensorShape(inputs[1]->GetShape());
        DType inputDType1 = ArmNNToDType(inputs[1]->GetDataType());

        tensors.push_back(new TosaSerializationTensor(input1Name, inputShape1, inputDType1, {}));
    }
    else
    {
        auto transposeConv2dLayer = PolymorphicDowncast<const TransposeConvolution2dLayer*>(layer);

        std::vector<int32_t> inputShape1 = GetTosaTensorShape(
                transposeConv2dLayer->m_Weight->GetTensorInfo().GetShape());
        DType inputDType1 = ArmNNToDType(transposeConv2dLayer->m_Weight->GetTensorInfo().GetDataType());

        std::vector<uint8_t> uint8Data = ConvertConstantTensorDataToBuffer(transposeConv2dLayer->m_Weight);
        tensors.push_back(new TosaSerializationTensor(input1Name, inputShape1, inputDType1, uint8Data));
    }

    // Setup bias operator and tensor, constant data will get copied during SetConstantTensorData
    operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {input2Name}));

    // During validation the TensorInfo can be retrieved from the inputs.
    // During execution, it is only available through the layer so use m_Bias.
    if(layer == nullptr && descriptor->m_BiasEnabled)
    {
        std::vector<int32_t> inputShape2 = GetTosaTensorShape(inputs[2]->GetShape());
        DType inputDType2 = ArmNNToDType(inputs[2]->GetDataType());

        tensors.push_back(new TosaSerializationTensor(input2Name, inputShape2, inputDType2, {}));
    }
    else if(descriptor->m_BiasEnabled)
    {
        auto transposeConv2dLayer = PolymorphicDowncast<const TransposeConvolution2dLayer*>(layer);

        std::vector<int32_t> inputShape2 = GetTosaTensorShape(
                transposeConv2dLayer->m_Bias->GetTensorInfo().GetShape());
        DType inputDType2 = ArmNNToDType(transposeConv2dLayer->m_Bias->GetTensorInfo().GetDataType());

        std::vector<uint8_t> uint8Data = ConvertConstantTensorDataToBuffer(transposeConv2dLayer->m_Bias);
        tensors.push_back(new TosaSerializationTensor(input2Name, inputShape2, inputDType2, uint8Data));
    }
    else
    {
        // If bias is disabled, create a constant bias tensor of 0's as three inputs are required.
        // The size of the bias must match the channels dimension, so get the correct index.
        unsigned int index = (descriptor->m_DataLayout == DataLayout::NHWC) ? 3 : 1;

        std::vector<uint8_t> uint8Data;
        std::vector<float> data(outputs[0]->GetShape()[index], 0.0f);

        TosaSerializationHandler::ConvertF32toU8(data, uint8Data);

        tensors.push_back(new TosaSerializationTensor(input2Name,
                                                      {static_cast<int32_t>(outputs[0]->GetShape()[index])},
                                                      DType_FP32,
                                                      uint8Data));
    }

    // Setup Output Tensor
    std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
    DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());

    tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));

    // Set up TRANSPOSE_CONV2D operator
    // The TOSA Reference Model pads the output shape, so it is added to output shape.
    // In Arm NN we pad the input shape, so it is taken away.
    // To offset this the negative padding value can be used.
    std::vector<int> pad = {-static_cast<int>(descriptor->m_PadTop),
                            -static_cast<int>(descriptor->m_PadBottom),
                            -static_cast<int>(descriptor->m_PadLeft),
                            -static_cast<int>(descriptor->m_PadRight)};
    std::vector<int> stride = {static_cast<int>(descriptor->m_StrideY),
                               static_cast<int>(descriptor->m_StrideX)};

    std::vector<int> outputShape;
    // If available use shape in descriptor otherwise use output shape.
    if (descriptor->m_OutputShape.size() == 4)
    {
        for (uint32_t i = 0; i < descriptor->m_OutputShape.size(); ++i)
        {
            outputShape.push_back(static_cast<int>(descriptor->m_OutputShape[i]));
        }
    }
    else
    {
        for (uint32_t i = 0; i < outputs[0]->GetNumDimensions(); ++i)
        {
            outputShape.push_back(static_cast<int>(outputs[0]->GetShape()[i]));
        }
    }

    TosaTransposeConvAttribute attribute(pad, stride, outputShape, 0, 0, false); // input_zp, weight_zp, local_bound

    auto* op = new TosaSerializationOperator(Op_TRANSPOSE_CONV2D,
                                             Attribute_TransposeConvAttribute,
                                             &attribute,
                                             {input0Name, input1Name, input2Name},
                                             {outputName});
    operators.push_back(op);

    // operatorInputNames/operatorOutputNames ends up being the same as
    // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
    return new TosaSerializationBasicBlock(blockName,                            // name
                                           mainName,                             // region name
                                           operators,                            // operators
                                           tensors,                              // tensors
                                           {input0Name, input1Name, input2Name}, // inputs
                                           {outputName});                        // outputs
}