aboutsummaryrefslogtreecommitdiff
path: root/chapters/tensor_ops.adoc
blob: b8527bf72d073cd6016190039833508b84761fe5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
//
// This confidential and proprietary software may be used only as
// authorised by a licensing agreement from ARM Limited
// (C) COPYRIGHT 2020-2022 ARM Limited
// ALL RIGHTS RESERVED
// The entire notice above must be reproduced on all authorised
// copies and copies may only be made to the extent permitted
// by a licensing agreement from ARM Limited.

=== Tensor Operators

==== ARGMAX

This returns the index with the largest value across the given axis of the input tensor.

include::{generated}/operators/ARGMAX.adoc[]

[source,c++]
----
ERROR_IF(axis < 0 || axis >= rank(shape1) || rank(shape1) > 4);
if (axis == 0) {
    left_shape = [];
} else {
    left_shape = shape1[0:axis - 1];
}
if (axis == rank(shape1)-1) {
    right_shape = [];
} else {
    right_shape = shape1[axis+1:rank(shape1) - 1];
}
ERROR_IF(flatten(left_shape, right_shape) != shape);
for_each(left_index in left_shape) {
    for_each(right_index in right_shape) {
        in_t max_value = minimum_value<in_t>;
        out_t max_index = 0;
        for (i = 0; i < shape[axis]; i++) {
            dim_t index = flatten(left_index, [i], right_index);
            in_t value = tensor_read<in_t>(input, shape1, index);
            if (value > max_value) { max_value = value; max_index = i; }
        }
        dim_t index = flatten(left_index, right_index);
        tensor_write<out_t>(output, shape, index, max_index);
    }
}
----

==== AVG_POOL2D

This performs an average pooling over the given input tensor.
A sliding window of size given by <kernel size> is passed over the input tensor, with the mean value being placed in the output tensor.
When calculating the average, only the number of valid input tensor values, but not padding, are used to calculate the divisor.

include::{generated}/operators/AVG_POOL2D.adoc[]

[source,c++]
----
ERROR_IF(in_out_t != int8_t && input_zp != 0); // Zero point only for int8_t
ERROR_IF(in_out_t != int8_t && output_zp != 0); // Zero point only for int8_t
ERROR_IF(kernel_y < 1 || kernel_x < 1); // kernel size must be >= 1
ERROR_IF(stride_y < 1 || stride_x < 1);
ERROR_IF(pad_top < 0 || pad_bottom < 0 || pad_left < 0 || pad_right < 0);
// Padding must be less than kernel size to avoid
// a divide-by-zero.
ERROR_IF(pad_right >= kernel_x || pad_left >= kernel_x);
ERROR_IF(pad_top >= kernel_y || pad_bottom >= kernel_y);
ERROR_IF(OH != idiv_check(IH + pad_top + pad_bottom - kernel_y, stride_y) + 1);
ERROR_IF(OW != idiv_check(IW + pad_left + pad_right - kernel_x, stride_x) + 1);

for_each(0 <= n < N, 0 <= oy < OH, 0 <= ox < OW, 0 <= c < C ) {
    in_out_t output_val;
    acc_t acc = 0;
    int count = 0;
    index_t iy = oy * stride_y - pad_top;
    index_t ix = ox * stride_x - pad_left;
    for_each(0 <= ky < kernel_y, 0 <= kx < kernel_x) {
        index_t y = iy + ky;
        index_t x = ix + kx;
        // Only values from the input tensor are used to calculate the
        // average, padding does not count
        if (0 <= y < IH and 0 <= x < IW) {
            count++;
            acc_t value = tensor_read<in_out_t>(input, [N,IH,IW,C], [n,y,x,c]);
            value = value - input_zp;
            acc = apply_add<acc_t>(acc, value);
        }
    }
    if (is_float(in_out_t)) {
        output_val = acc / (float)count;
    } else {
        scale_t scale = reciprocal_scale(count);
        acc = apply_scale_32(acc, scale.multiplier, scale.shift, false);
        output_val = (in_out_t)apply_clip<acc_t>(acc + output_zp, minimum<in_out_t>, maximum<in_out_t>)
    }
    tensor_write<in_out_t>(output, [N,OH,OW,C], [n,oy,ox,c], output_val);
}
----

==== CONV2D

Performs a 2D convolution over the given tensor input, using the weight tensor.

include::{generated}/operators/CONV2D.adoc[]

[source,c++]
----
ERROR_IF(in_t != int8_t && input_zp != 0); // Zero point only for int8_t
ERROR_IF(weight_t != int8_t && weight_zp != 0);
ERROR_IF(pad_top < 0 || pad_bottom < 0 || pad_left < 0 || pad_right < 0);
ERROR_IF(stride_y < 1 || stride_x < 1);
ERROR_IF(dilation_y < 1 || dilation_x < 1);
ERROR_IF(OH != idiv_check(IH - 1 + pad_top + pad_bottom - (KH - 1) * dilation_y, stride_y) + 1);
ERROR_IF(OW != idiv_check(IW - 1 + pad_left + pad_right - (KW - 1) * dilation_x, stride_x) + 1);

pad = flatten([0,0], pad, [0,0]);
for_each(0 <= n < N, 0 <= oy < OH, 0 <= ox < OW; 0 <= oc < OC) {
    out_t acc = 0;
    index_t iy = oy * stride_y - pad_top;
    index_t ix = ox * stride_x - pad_left;
    for_each(0 <= ky < KH, 0 <= kx < KW, 0 <= ic < IC) {
        index_t y = iy + ky * dilation_y;
        index_t x = ix + kx * dilation_x;
        if (0 <= y < IH && 0 <= x < IW) {
            out_t value  = tensor_read<in_t>(input, [N,IH,IW,IC], [n,y,x,ic]);
            out_t weight = tensor_read<weight_t>(weight, [OC,KH,KW,IC], [oc,ky,kx,ic]);
            value  = value - input_zp;
            weight = weight - weight_zp;
            acc = apply_add<out_t>(acc, value * weight);
        }
    }
    acc = apply_add<out_t>(acc, bias[oc]);
    tensor_write<out_t>(output, [N,OH,OW,OC], [n,oy,ox,oc], acc);
}
----

==== CONV3D

Performs a 3D convolution over the given input tensor.

include::{generated}/operators/CONV3D.adoc[]

[source,c++]
----
ERROR_IF(in_t != int8_t && input_zp != 0); // Zero point only for int8_t
ERROR_IF(weight_t != int8_t && weight_zp != 0);
ERROR_IF(pad_d0 < 0 || pad_d1 < 0 || pad_top < 0 || pad_bottom < 0 || pad_left < 0 || pad_right < 0);
ERROR_IF(stride_d < 1 || stride_y < 1 || stride_x < 1);
ERROR_IF(dilation_d < 1 || dilation_y < 1 || dilation_x < 1);
ERROR_IF(OD != idiv_check(ID - 1 + pad_d0 + pad_d1      - (KD - 1) * dilation_d, stride_d) + 1);
ERROR_IF(OH != idiv_check(IH - 1 + pad_top + pad_bottom - (KH - 1) * dilation_y, stride_y) + 1);
ERROR_IF(OW != idiv_check(IW - 1 + pad_left + pad_right - (KW - 1) * dilation_x, stride_x) + 1);

pad = flatten([0,0], pad, [0,0]);
for_each(0 <= n < N, 0 <= od < OD, 0 <= oy < OH, 0 <= ox < OW; 0 <= oc < OC) {
    out_t acc = 0;
    index_t id = od * stride_d - pad_d0;
    index_t iy = oy * stride_y - pad_top;
    index_t ix = ox * stride_x - pad_left;
    for_each(0 <= kd < KD, 0 <= ky < KH, 0 <= kx < KW, 0 <= ic < IC) {
        index_t d = id + kd * dilation_d;
        index_t y = iy + ky * dilation_y;
        index_t x = ix + kx * dilation_x;
        if (0 <= x < IW && 0 <= y < IH && 0 <= d < ID) {
            out_t value  = tensor_read<in_t>(input, [N,ID,IH,IW,IC], [n,d,y,x,ic]);
            out_t weight = tensor_read<weight_t>(weight,[OC,KD,KH,KW,IC],[oc,kd,ky,kx,ic]);
            value  = value - input_zp;
            weight = weight - weight_zp;
            acc = apply_add<out_t>(acc, value * weight);
        }
    }
    acc = apply_add<out_t>(acc, bias[oc]);
    tensor_write<out_t>(output, [N,OD,OH,OW,OC], [n,od,oy,ox,oc], acc);
}
----

==== DEPTHWISE_CONV2D

Performs 2D convolutions separately over each channel of the given tensor input, using the weight tensor.

include::{generated}/operators/DEPTHWISE_CONV2D.adoc[]

[source,c++]
----
ERROR_IF(in_t != int8_t && input_zp != 0); // Zero point only for int8_t
ERROR_IF(weight_t != int8_t && weight_zp != 0);
ERROR_IF(pad_top < 0 || pad_bottom < 0 || pad_left < 0 || pad_right < 0);
ERROR_IF(stride_y < 1 || stride_x < 1);
ERROR_IF(dilation_y < 1 || dilation_x < 1);
ERROR_IF(OH != idiv_check(IH - 1 + pad_top + pad_bottom - (KH - 1) * dilation_y, stride_y) + 1);
ERROR_IF(OW != idiv_check(IW - 1 + pad_left + pad_right - (KW - 1) * dilation_x, stride_x) + 1);

pad = flatten([0,0], pad, [0,0]);
for_each(0 <= n < N, 0 <= oy < OH, 0 <= ox < OW; 0 <= c < C, 0 <= m < M) {
    out_t acc = 0;
    index_t iy = oy * stride_y - pad_top;
    index_t ix = ox * stride_x - pad_left;
    for_each(0 <= ky < KH, 0 <= kx < KW) {
        index_t y = iy + ky * dilation_y;
        index_t x = ix + kx * dilation_x;
        if (0 <= y < IH && 0 <= x < IW) {
            out_t value  = tensor_read<in_t>(input, [N,IH,IW,C], [n,y,x,c]);
            out_t weight = tensor_read<weight_t>(weight, [KH,KW,C,M], [ky,kx,c,m]);
            value  = value - input_zp;
            weight = weight - weight_zp;
            acc = apply_add<out_t>(acc, value * weight);
        }
    }
    acc = apply_add<out_t>(acc, bias[(c * M) + m]);
    tensor_write<out_t>(output, [N,OH,OW,C * M], [n,oy,ox,c * M + m], acc);
}
----

==== FFT2D

Performs a batched complex 2D Fast Fourier Transform over the input.
The complex input values are constructed from the corresponding values in the input_real and input_imag tensors.
The resulting values in the output are split into the output_real and output_imag tensors.
No normalization is applied on either the forward or inverse versions of the operation.

// output[h][w] = \sum_{m=0}^{H-1}\sum_{n=0}^{W-1}input[m][n] * \exp\left(-2\pi i\left(\frac{mh}{H} + \frac{nw}{W}\right)\right)

.Calculation for the forward FFT2D calculation (inverse=false)
image::forward_fft2d.svg["forward FFT definition", align="center"]

// output[h][w] = \sum_{m=0}^{H-1}\sum_{n=0}^{W-1}input[m][n] * \exp\left(2\pi i\left(\frac{mh}{H} + \frac{nw}{W}\right)\right)

.Calculation for the inverse FFT2D calculation (inverse=true)
image::inverse_fft2d.svg["inverse FFT definition", align="center"]

include::{generated}/operators/FFT2D.adoc[]

[source,c++]
----
ERROR_IF(!power_of_two(H));
ERROR_IF(!power_of_two(W));

float sign_val = 1.0;

if (inverse) {
    sign_val = -1.0;
}

for_each(0 <= n < N, 0 <= oy < H, 0 <= ox < W) {
    in_out_t sum_real = 0.0;
    in_out_t sum_imag = 0.0;
    for_each(0 <= iy < H, 0 <= ix < W) {
        in_out_t val_real = tensor_read<in_out_t>(input_real, [N,H,W], [n,iy,ix]);
        in_out_t val_imag = tensor_read<in_out_t>(input_imag, [N,H,W], [n,iy,ix]);
        float_t a = sign_val * 2 * pi() * ((iy * oy) / H + (ix * ox) / W);
        sum_real += val_real * cos(a) + val_imag * sin(a);
        sum_imag += -val_real * sin(a) + val_imag * cos(a);
    }
    tensor_write<in_out_t>(output_real, [N,H,W], [n,oy,ox], sum_real);
    tensor_write<in_out_t>(output_imag, [N,H,W], [n,oy,ox], sum_imag);
}
----

==== FULLY_CONNECTED

Performs a fully connected network.

include::{generated}/operators/FULLY_CONNECTED.adoc[]

[source,c++]
----
ERROR_IF(in_t != int8_t && input_zp != 0); // Zero point only for int8_t
ERROR_IF(weight_t != int8_t && weight_zp != 0);
for_each(0 <= n < N, 0 <= oc < OC) {
    out_t acc = 0;
    for_each(0 <= ic < IC) {
        out_t value  = tensor_read<in_t>(input, [N,IC], [n,ic]);
        out_t weight = tensor_read<weight_t>(weight, [OC,IC], [oc,ic]);
        value  = value - input_zp;
        weight = weight - weight_zp;
        acc = apply_add<out_t>(acc, value * weight);
    }
    acc = apply_add<out_t>(acc, bias[oc]);
    tensor_write<out_t>(output, [N,OC], [n,oc], acc);
}
----

==== MATMUL

Performs two dimensional matrix multiplications. This allows both inputs to be activations, rather than reserving weights as an attribute in the FULLY_CONNECTED operator.

include::{generated}/operators/MATMUL.adoc[]

[source,c++]
----
ERROR_IF(in_t != int8_t && (A_zp != 0 || B_zp != 0)); // Zero point only for int8_t
for_each(0 <= n < N, 0 <= h < H, 0 <= w < W) {
    out_t acc = 0;
    for_each(0 <= c < C) {
        out_t value1 = tensor_read<in_t>(A, [N,H,C], [n,h,c]);
        out_t value2 = tensor_read<in_t>(B, [N,C,W], [n,c,w]);
        value1 = value1 - A_zp;
        value2 = value2 - B_zp;
        acc = apply_add<out_t>(acc, value1 * value2);
    }
    tensor_write<out_t>(output, [N,H,W], [n,h,w], acc);
}
----

==== MAX_POOL2D

This performs a max pooling over the given input tensor. A sliding window of size given by <kernel size> is passed over the input tensor, with the maximum value being placed in the output tensor.

include::{generated}/operators/MAX_POOL2D.adoc[]

[source,c++]
----
ERROR_IF(kernel_y < 1 || kernel_x < 1); // kernel size must be >= 1
ERROR_IF(stride_y < 1 || stride_x < 1);
ERROR_IF(pad_top < 0 || pad_bottom < 0 || pad_left < 0 || pad_right < 0);
// Padding must be less than kernel size, otherwise no
// input values will be used.
ERROR_IF(pad_right >= kernel_x || pad_left >= kernel_x);
ERROR_IF(pad_top >= kernel_y || pad_bottom >= kernel_y);
ERROR_IF(OH != idiv_check(IH + pad_top + pad_bottom - kernel_y, stride_y) + 1);
ERROR_IF(OW != idiv_check(IW + pad_left + pad_right - kernel_x, stride_x) + 1);

for_each(0 <= n < N, 0 <= oy < H, 0 <= ox < W, 0 <= c < C ) {
    in_out_t acc = minimum_value<in_out_t>;
    index_t iy = oy * stride_y - pad_top;
    index_t ix = ox * stride_x - pad_left;
    for_each( 0 <= ky < kernel_y, 0 <= kx < kernel_x ) {
        index_t y = iy + ky;
        index_t x = ix + kx;
        if (y >= 0 && y < IH && x >= 0 && x < IW) {
            in_out_t value = tensor_read<in_out_t>(input, [N,IH,IW,C], [n,y,x,c]);
            acc = apply_max(acc, value);
        }
    }
    tensor_write<in_out_t>(output, [N,OH,OW,C], [n,oy,ox,c], acc);
}
----

==== RFFT2D

Performs a batched 2D real-valued Fast Fourier Transform over the input where the input tensor consists of real values producing complex valued output.
The complex output values will be split into the output_real and output_imag tensor arguments.
RFFT2D takes advantage of Hermitian symmetry to only calculate the first half of the output.
Imaginary values with locations h=0,H/2 or w=0,W/2 are zero.

image::forward_fft2d.svg["forward FFT definition", align="center"]

include::{generated}/operators/RFFT2D.adoc[]

[source,c++]
----
ERROR_IF(!power_of_two(H));
ERROR_IF(!power_of_two(W));

for_each(0 <= n < N, 0 <= oy < H/2 + 1, 0 <= ox < W/2 + 1) {
    in_out_t sum_real = 0.0;
    in_out_t sum_imag = 0.0;
    for_each(0 <= iy < H, 0 <= ix < W) {
        in_out_t val_real = tensor_read<in_out_t>(input_real, [N,H,W], [n,iy,ix]);
        float_t a = 2 * pi() * ((iy * oy) / H + (ix * ox) / W);
        sum_real += val_real * cos(a);
        sum_imag += -val_real * sin(a);
    }
    tensor_write<in_out_t>(output_real, [N,H,W], [n,oy,ox], sum_real);
    tensor_write<in_out_t>(output_imag, [N,H,W], [n,oy,ox], sum_imag);
}
----

==== TRANSPOSE_CONV2D

Performs a 2D transposed convolution over the given tensor input, using the weights tensor.

include::{generated}/operators/TRANSPOSE_CONV2D.adoc[]

[source,c++]
----
ERROR_IF(in_t != int8_t  && input_zp != 0); // Zero point only allowed for int8_t
ERROR_IF(weight_t != int8_t && weight_zp != 0);
ERROR_IF(out_pad_top <= -KH || out_pad_bottom <= -KH);
ERROR_IF(out_pad_left <= -KW || out_pad_right <= -KW);
ERROR_IF(stride_y < 1 || stride_x < 1);
ERROR_IF(OH != (IH - 1) * stride_y + out_pad_top + out_pad_bottom + KH);
ERROR_IF(OW != (IW - 1) * stride_x + out_pad_left + out_pad_right + KW);

for_each(index in out_shape) {
    tensor_write<out_t>(output, [N,OH,OW,OC], index, bias[index[3]])
}
for_each(0 <= n < N, 0 <= iy < IH, 0 <= ix < IW, 0 <= oc < OC,
          0 <= ic < IC, 0 <= ky < KH,  0 <= kx < KW) {
    index_t oy = iy * stride_y + out_pad_top + ky;
    index_t ox = ix * stride_x + out_pad_left + kx;
    if (oy >= 0 && oy < OH && ox >= 0 && ox < OW) {
        out_t acc = tensor_read<out_t>(output, [N,OH,OW,OC], [n,oy,ox,oc]);
        out_t value = tensor_read<in_t>(input, [N,IH,IW,IC], [n,iy,ix,ic]);
        out_t weight = tensor_read<weight_t>(weight, [OC,KH,KW,IC], [oc,ky,kx,ic]);
        value = value - input_zp;
        weight = weight - weight_zp;
        acc = apply_add<out_t>(acc, value * weight);
        tensor_write<out_t>(output, [N,OH,OW,OC], [n,oy,ox,oc], acc);
    }
}
----