aboutsummaryrefslogtreecommitdiff
path: root/chapters/ewise_unary.adoc
blob: f630a485efaf896b406f9f653c2a01aaba707524 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//
// This confidential and proprietary software may be used only as
// authorised by a licensing agreement from ARM Limited
// (C) COPYRIGHT 2020-2022 ARM Limited
// ALL RIGHTS RESERVED
// The entire notice above must be reproduced on all authorised
// copies and copies may only be made to the extent permitted
// by a licensing agreement from ARM Limited.

=== Elementwise Unary Operators

==== ABS

Elementwise absolute value operation

include::{generated}/operators/ABS.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|+infinity|+infinity|+0|+0|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    if (in_out_t == float_t && value1 == -0.0) {
        value1 = 0.0;
    }
    if (value1 < 0.0)
        value1 = apply_sub<in_out_t>(0, value1);
    tensor_write<in_out_t>(output, shape, index, value1);
}
----

==== BITWISE_NOT

Elementwise bitwise NOT of input tensor.

include::{generated}/operators/BITWISE_NOT.adoc[]

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    in_out_t result = ~value1;
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== CEIL

Elementwise ceiling operation

include::{generated}/operators/CEIL.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|-infinity|+infinity|-0|+0|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    in_out_t result = apply_ceil<in_out_t>(value1);
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== CLZ

Elementwise count leading zeros operation

include::{generated}/operators/CLZ.adoc[]

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    in_out_t result = count_leading_zeros(value1);
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== EXP

Elementwise e to the x operation

include::{generated}/operators/EXP.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|+0|+infinity|1|1|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    in_out_t result = apply_exp<in_out_t>(value1);
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== FLOOR

Elementwise floor operation

include::{generated}/operators/FLOOR.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|-infinity|+infinity|-0|+0|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    in_out_t result = apply_floor<in_out_t>(value1);
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== LOG

Elementwise natural logarithm operation

include::{generated}/operators/LOG.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|NaN|+infinity|-infinity|-infinity|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    in_out_t result = apply_log<in_out_t>(value1);
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== LOGICAL_NOT

Elementwise logical NOT of input.

include::{generated}/operators/LOGICAL_NOT.adoc[]

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape1, index);
    in_out_t result = !value1;
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== NEGATE

Elementwise negation operation

include::{generated}/operators/NEGATE.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|+infinity|-infinity|+0|-0|NaN
|===

[source,c++]
----
ERROR_IF(in_out_t != int8_t && input1_zp != 0) // Zero point only for int8_t
ERROR_IF(in_out_t != int8_t && output_zp != 0) // Zero point only for int8_t
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape, index);
    acc_t value = (acc_t)value1 - input1_zp;
    value = apply_sub<acc_t>(0, value);
    in_out_t result = (in_out_t)apply_clip<acc_t>(value + output_zp, minimum<in_out_t>, maximum<in_out_t>);
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== RECIPROCAL

Elementwise reciprocal operation. For integer operation, a TABLE should be used with the appropriate ranges.

include::{generated}/operators/RECIPROCAL.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|-0|+0|-infinity|+infinity|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape1, index);
    in_out_t result = 1.0 / value1;
    tensor_write<in_out_t>(output, shape, index, result);
}
----

==== RSQRT

Elementwise reciprocal square root operation. For integer operation, a TABLE should be used with the appropriate ranges.

include::{generated}/operators/RSQRT.adoc[]

*Floating-point behavior:*
|===
|Input|-infinity|+infinity|-0|+0|NaN

|Output|NaN|+0|-infinity|+infinity|NaN
|===

[source,c++]
----
for_each(index in shape) {
    in_out_t value1 = tensor_read<in_out_t>(input1, shape1, index);
    in_out_t result;
    if (value1 < 0) {
        result = NaN;
    }
    else {
        result = 1.0 / apply_sqrt<in_out_t>(value1);
    }
    tensor_write<in_out_t>(output, shape, index, result);
}
----