aboutsummaryrefslogtreecommitdiff
path: root/chapters/data_layout.adoc
blob: 0c5c4d60762e8ea7d85c1920e1d41037f6ffc98d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
//
// This confidential and proprietary software may be used only as
// authorised by a licensing agreement from ARM Limited
// (C) COPYRIGHT 2020-2022 ARM Limited
// ALL RIGHTS RESERVED
// The entire notice above must be reproduced on all authorised
// copies and copies may only be made to the extent permitted
// by a licensing agreement from ARM Limited.

=== Data Layout

==== CONCAT
Concatenate a list of tensors along a given axis.
No data conversion happens during a concat operation.

*Arguments:*

|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input1|shapes1[]|List of input tensors. All inputs must have the same rank and data type
|Attribute|int32_t|axis|-|Axis along which concatenation is to occur, in range from 0 to rank(shape)-1
|Output|in_out_t*|output|shape|Output tensor
|===

*Operation Function:*

[source,c]
----
ERROR_IF(axis < 0 || axis >= rank(shapes1[0]));
ERROR_IF(shape[axis] != sum(shape1[k][axis] for all k))
// The following checks ensure all inputs are compatible for concatenation
for_each(input_shape in shapes1) {
    ERROR_IF(rank(input_shape) != rank(shapes1[0]));
    for_each(index in input_shape) {
        ERROR_IF(input_shape[index] != shapes1[0][index] && index != axis);
    }
}
for_each(index1 in shape) {
    index2 = index1;
    for (tensor t = 0; t < length(input1); t++) {
        // Continue to concatenate along axis from each tensor
        // For each output location, we are looking for the
        // appropriate input tensor
        if (index2[axis] >= 0 && index2[axis] < shapes1[t][axis]) {
            in_out_t value = tensor_read<in_out_t>(input1[t], shapes1[t], index2);
            tensor_write<in_out_t>(output, shape, index1, value);
        }
        index2[axis] = index2[axis] - shapes1[t][axis];
    }
}

----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===

==== PAD

Pads a tensor along the borders of each dimension with a supplied value.
Returns a new tensor with the padding included.
The pad_const value includes the zero point if the tensor uses a zero point.

*Arguments:*

|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input1|shape1|Input tensor
|Attribute|int32_t|padding|[rank(input1),2]|Amount of padding to be done
|Attribute|in_out_t|pad_const|-|Constant value to be used as padding
|Output|in_out_t*|output|shape|Output tensor of same type as the input tensor
|===

*Operation Function:*

[source,c++]
----
// Padding sizes must be >= 0.
for_each(pad_size in padding) {
    ERROR_IF(pad_size < 0);
}
for_each(index in shape) {
    index1 = index;
    bool_t is_pad = false;
    for(i = 0; i < rank(shape); i++) {
        index1[i] = index1[i] - padding[i,0];
        if (index1[i] < 0 || index[i] >= length(shape[i])) {
            is_pad = true;
        }
    }
    in_out_t value = is_pad ? pad_const : tensor_read<in_out_t>(input1, shape1, index1);
    tensor_write<in_out_t>(output, shape, index, value);
}
----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===

==== RESHAPE

Returns a tensor with the same type/values as the input, with a new shape specified by the shape argument. Reshape may operate on tensors of any rank. No data conversion happens during a reshape operation.

*Arguments:*

|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input1|shape1|Input tensor
|Attribute|int32_t|new_shape|[rank(shape)]|List of values, with each element giving the size of the result tensor for the given dimension.
|Output|in_out_t*|output|shape|Output tensor of same type, size as the input tensor
|===

*Operation Function:*

[source,c++]
----
ERROR_IF(tensor_size(shape1) != tensor_size(shape));

for_each(index in shape) {
    // Calculate flattened index for the output location (index)
    size_t offset = tensor_index_to_offset(shape, index);
    // Now convert to the location in the input
    dim_t tmp_index = tensor_offset_to_index(shape1, offset);

    // Now read/write the value
    in_out_t val = tensor_read<in_out_t>(input, shape1, tmp_index);
    tensor_write<in_out_t>(output, shape, index, val);
}
----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===

==== REVERSE

Returns a tensor with the same type/values as the input, with the data reversed along the given axis. No data conversion happens during a reverse operation.

*Arguments:*

|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input|shape|Input tensor from 1 to 4 dims
|Attribute|int32_t|axis|-|Axis to reverse, in range from 0 to rank(shape)-1
|Output|in_out_t*|output|shape|Output tensor. Same shape as input tensor.
|===

*Operation Function:*

[source,c++]
----
ERROR_IF(axis < 0 || axis >= rank(shape));
for_each(index in shape) {
    tmp_index = index;
    tmp_index[axis] = shape[axis] - 1 - index[axis];
    in_out_t value = tensor_read<in_out_t>(input, shape, tmp_index);
    tensor_write<in_out_t>(output, shape, index, value);
}
----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===

==== SLICE

Extracts a slice of the input1 on the given axis, beginning at the start coordinates, and extending for size elements in each direction.
No data conversion happens during a slice operation.

*Arguments:*
|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input1|shape1|Input tensor with rank from 1 to 4
|Attribute|int32_t|start|[rank(input1)]|List of integer coordinates, of length equal to the rank of input1. Start coordinate for slicing.
|Attribute|int32_t|size|[rank(input1)]|List of integer size values, of length equal to the rank of input1. Size of the input to be used.
|Output|in_out_t*|output|shape|Output tensor of same type as the input tensor
|===

*Operation Function:*

[source,c++]
----
ERROR_IF(rank(input1) != length(start) || rank(input1) != length(size));
ERROR_IF(rank(input1) != rank(output))
// Sanity check the given coordinates, ensure start and end are
// within tensor bounds
for_each(index in rank(input1)) {
    ERROR_IF(start[index] < 0);
    ERROR_IF(size[index] <= 0); //Output must be positive size
    ERROR_IF(start[index] + size[index] > shape1[index]);
    ERROR_IF(shape[index] != size[index]);
}

for_each(index in shape) {
    tmp_index = index;
    for(i = 0; i < rank(shape); i++) {
       tmp_index[i] = index[i] + start[i];
    }
    in_out_t value = tensor_read<in_out_t>(input, shape1, tmp_index);
    tensor_write<in_out_t>(output, shape, index, value);
}
----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===

==== TILE

Replicates input1 multiples times along each dimension.

*Arguments:*

|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input1|shape1|Input tensor with rank from 1 to 4
|Attribute|int32_t|multiples|[rank(shape1)]|Number of times to replicate input1 in each dimension
|Output|in_out_t*|output|shape|Output tensor of same type, rank as the input tensor
|===

*Operation Function:*

[source,c++]
----
for_each(index in shape) {
    tmp_index = index;
    for(i = 0; i < rank(shape); i++) {
        ERROR_IF(shape1[i] * multiples[i] != shape[i]);
        tmp_index[i] = index[i] % shape1[i];
    }
    in_out_t value = tensor_read<in_out_t>(input, shape1, tmp_index);
    tensor_write<in_out_t>(output, shape, index, value);
}
----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===

==== TRANSPOSE

Permutes the dimensions of the input tensor input1 based on the perms argument.
Each value in the perms list must be a valid dimension of the input tensor and may not be repeated.

*Arguments:*

|===
|Argument|Type|Name|Shape|Description

|Input|in_out_t*|input1|shape1|Input tensor with minimum rank of one.
|Attribute|int32_t|perms|[rank(input1)]|List of integers of length equal to the rank of input1. Values must be valid dimensions within shape1, and may not be repeated.
|Output|in_out_t*|output|shape|Output tensor of same type, rank as the input tensor
|===

*Operation Function:*

[source,c++]
----
for_each(index in perms) {
    // Ensure each perms value is a valid value
    ERROR_IF(index >= rank(shape1));
    ERROR_IF(index < 0);
    // Ensure ranks aren't repeated
    ERROR_IF(indexes_used[index] == true);
    indexes_used[index] = true;
}

// Ensure that the output shapes have the properly
// permuted shapes
for(i = 0; i < rank(shape); i++) {
    ERROR_IF(shape1[perms[i]] != shape[i])
}

for_each(index in shape) {
    tmp_index = index;
    for(i = 0; i < rank(shape); i++) {
        tmp_index[perms[i]] = index[i]
    }
    in_out_t value = tensor_read<in_out_t>(input, shape1, tmp_index);
    tensor_write<in_out_t>(output, shape, index, value);
}
----

*Supported Data Types:*

|===
|Profile|Mode|in_out_t

|Any|Boolean|bool_t
|Any|signed 8|int8_t
|Any|signed 16|int16_t
|Any|signed 32|int32_t
|MI, MT|fp16|fp16_t
|MI, MT|bf16|bf16_t
|MI, MT|fp32|fp32_t
|===