aboutsummaryrefslogtreecommitdiff
path: root/verif/frameworks/tensor_gen.py
blob: d50bc74912f2b28b5fa78101bb52035ab9a06229 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (c) 2020-2023, ARM Limited.
# SPDX-License-Identifier: Apache-2.0
import enum

import numpy as np
import tensorflow as tf

# FIXME: replace hardcoded '* 2' with random integers, where possible

# The scaling factor for random numbers generated in input tensors.  The
# random numbers are calculated as:
# (np.random.rand() - RAND_SHIFT_FACTOR) * RAND_SCALE_FACTOR
# FIXME: improve range here
RAND_SCALE_FACTOR = 4.0
# Amount to add to random numbers
RAND_SHIFT_FACTOR = 0.5

RAND_INT_MIN = -128
RAND_INT_MAX = 128


class ElemSignedness(enum.Enum):
    ALL_RANGE = 1
    POSITIVE = 2
    NEGATIVE = 3


class TGen:
    """A collection of functions to build tensor value arguments for an operator"""

    def __init__(self):
        pass

    @staticmethod
    def getRand(shape, dtype, rng, elem_signedness=ElemSignedness.ALL_RANGE):
        if elem_signedness == ElemSignedness.POSITIVE:
            RAND_SHIFT_FACTOR = 0
        elif elem_signedness == ElemSignedness.NEGATIVE:
            RAND_SHIFT_FACTOR = 1
        else:
            RAND_SHIFT_FACTOR = 0.5

        if dtype == tf.float32:
            return np.float32(
                (rng.random(size=shape) - RAND_SHIFT_FACTOR) * RAND_SCALE_FACTOR
            )
        if dtype == tf.float16:
            return np.float16(
                (rng.random(size=shape) - RAND_SHIFT_FACTOR) * RAND_SCALE_FACTOR
            )
        if dtype == tf.int32:
            return np.int32(
                rng.integers(low=RAND_INT_MIN, high=RAND_INT_MAX, size=shape)
            )
        if dtype == tf.uint32:
            return np.uint32(rng.integers(low=0, high=RAND_INT_MAX, size=shape))
        if dtype == tf.bool:
            return np.bool_(rng.choice(a=[False, True], size=shape))
        if dtype == tf.complex64:
            return TGen.getRand(shape, np.float32, rng) + 1j * TGen.getRand(
                shape, np.float32, rng
            )

        raise Exception("Unsupported type: {}".format(dtype))

    @staticmethod
    def tgBasicPositive(op, shape, dtype, rng, elem_signedness=ElemSignedness.POSITIVE):
        return TGen.tgBasic(op, shape, dtype, rng, elem_signedness)

    @staticmethod
    def tgBasic(op, shape, dtype, rng, elem_signedness=ElemSignedness.ALL_RANGE):
        # Build random tensor placeholder node args of a given shape
        pl, const = op["operands"]

        tf_placeholders = []
        tf_consts = []

        for i in range(pl):
            tf_placeholders.append(
                (
                    "placeholder_{}".format(i),
                    TGen.getRand(shape, dtype, rng, elem_signedness),
                )
            )

        for i in range(const):
            tf_consts.append(
                ("const_{}".format(i), TGen.getRand(shape, dtype, rng, elem_signedness))
            )

        return tf_placeholders, tf_consts

    @staticmethod
    def tgBFuzz(op, shape, dtype, rng, fuzzed=[]):
        # Build random tensor placeholder node args of a given shape, optionally
        # fuzzing the arguments with random 1's to force broadcasting

        pl, const = op["operands"]

        assert const == 0

        fuzz_arg = rng.integers(0, pl + const)
        fuzz_idx = rng.integers(0, len(shape))

        tf_placeholders = []
        tf_consts = []
        for i in range(pl):
            if not fuzzed and i == fuzz_arg:
                # Insert the broadcast in one dimension index
                s_fuzz = list(shape)
                s_fuzz[fuzz_idx] = 1
                s_fuzz = tuple(s_fuzz)
                i_shape = s_fuzz
                # Record the fuzzed index.
                fuzzed.append(i)
            else:
                i_shape = shape
            tf_placeholders.append(
                ("placeholder_{}".format(i), TGen.getRand(i_shape, dtype, rng))
            )

        return tf_placeholders, tf_consts

    @staticmethod
    def tgConvCommon(op, ifm_shape, filter_shape, out_channels, dtype, rng):

        # Take the shape and generate an input and filter
        tf_placeholders = []
        tf_consts = []
        tf_placeholders.append(("placeholder_0", TGen.getRand(ifm_shape, dtype, rng)))
        tf_consts.append(("const_0", TGen.getRand(filter_shape, dtype, rng)))

        try:
            bias = op["bias"]
        except KeyError:
            bias = False

        if bias:
            # bias is 1D and size == output channels
            bias_shape = (out_channels,)
            tf_consts.append(("const_1", TGen.getRand(bias_shape, dtype, rng)))

        return tf_placeholders, tf_consts

    @staticmethod
    def tgConv2d(op, ifm_shape, dtype, rng):

        # Require rank 4 shape
        if len(ifm_shape) != 4:
            return [], []

        filter_h, filter_w = op["filter"]

        # TODO: Hard-code the test by making the OFM depth 2x the IFM depth.
        # Could randomize this in the future.
        out_channels = ifm_shape[3] * 2
        filter_shape = (filter_h, filter_w, ifm_shape[3], out_channels)

        return TGen.tgConvCommon(op, ifm_shape, filter_shape, out_channels, dtype, rng)

    @staticmethod
    def tgDepthwiseConv2d(op, ifm_shape, dtype, rng):

        # Require rank 4 shape
        if len(ifm_shape) != 4:
            return [], []

        filter_h, filter_w = op["filter"]

        # TODO: Hard-code the test by making the channel_multiplier=2.
        # Could randomize this in the future.
        filter_shape = (filter_h, filter_w, ifm_shape[3], 2)
        out_channels = ifm_shape[3] * 2

        return TGen.tgConvCommon(op, ifm_shape, filter_shape, out_channels, dtype, rng)

    @staticmethod
    def tgTransposeConv2d(op, ifm_shape, dtype, rng):

        # Require rank 4 shape
        if len(ifm_shape) != 4:
            return [], []

        filter_h, filter_w = op["filter"]

        # TODO: Hard-code the test by making the IFM depth 2x the OFM depth.
        # Could randomize this in the future.
        out_channels = ifm_shape[3] * 2
        filter_shape = (filter_h, filter_w, out_channels, ifm_shape[3])

        return TGen.tgConvCommon(op, ifm_shape, filter_shape, out_channels, dtype, rng)

    @staticmethod
    def tgConv3d(op, ifm_shape, dtype, rng):

        # Require rank 5 shape
        if len(ifm_shape) != 5:
            return [], []

        filter_d, filter_h, filter_w = op["filter"]

        # TODO: Hard-code the test by making the OFM depth 2x the IFM depth.
        # Could randomize this in the future.
        in_channels = ifm_shape[4]
        out_channels = in_channels * 2
        filter_shape = (filter_d, filter_h, filter_w, in_channels, out_channels)

        return TGen.tgConvCommon(op, ifm_shape, filter_shape, out_channels, dtype, rng)

    @staticmethod
    def tgPooling(op, shapes, dtype, rng):
        # Pooling does nothing special except filter out non-rank-4 tensors
        if len(shapes) != 4:
            return [], []

        return TGen.tgBasic(op, shapes, dtype, rng)

    @staticmethod
    def tgMatmul(op, ifm_shape, dtype, rng):
        # Take the shape and generate an input and filter
        tf_placeholders = []
        tf_consts = []

        if len(ifm_shape) < 2:
            return [], []

        # For ifm_shape = [..., N, K]
        # Generate rhs tensor with shape [..., K x (2 * N)]
        tf_placeholders.append(("placeholder_0", TGen.getRand(ifm_shape, dtype, rng)))

        shape_rhs = list(ifm_shape)
        shape_rhs[-2] = ifm_shape[-1]
        shape_rhs[-1] = ifm_shape[-2] * 2
        tf_placeholders.append(
            (
                "placeholder_1",
                TGen.getRand(shape_rhs, dtype, rng),
            )
        )

        return tf_placeholders, tf_consts

    @staticmethod
    def tgOneHot(op, shape, dtype, rng):
        # Build random tensor placeholder node args of a given shape
        pl, const = op["operands"]

        assert pl == 3 and const == 1

        tf_placeholders = []
        tf_consts = []

        # depth
        depth = np.int32(rng.integers(low=1, high=32, size=None))
        tf_consts.append(("const_0", depth))

        # indices
        indices = np.int32(rng.integers(low=0, high=depth, size=shape))
        tf_placeholders.append(("placeholder_0", indices))

        # on_value
        tf_placeholders.append(("placeholder_1", TGen.getRand(None, dtype, rng)))

        # off_value
        tf_placeholders.append(("placeholder_2", TGen.getRand(None, dtype, rng)))

        return tf_placeholders, tf_consts

    @staticmethod
    def tgSelect(op, shape, dtype, rng):
        # Build random tensor placeholder node args of a given shape
        pl, const = op["operands"]
        assert pl == 3 and const == 0

        tf_placeholders = []
        tf_consts = []

        # selector
        tf_placeholders.append(("placeholder_0", TGen.getRand(None, tf.bool, rng)))
        # inputs
        tf_placeholders.append(("placeholder_1", TGen.getRand(shape, dtype, rng)))
        tf_placeholders.append(("placeholder_2", TGen.getRand(shape, dtype, rng)))

        return tf_placeholders, tf_consts

    @staticmethod
    def tgRecurrent(op, ifm_shape, dtype, rng):
        # Require rank 3 shape for recurrent networks
        if len(ifm_shape) != 3:
            return [], []
        pl, const = op["operands"]

        tf_placeholders = []
        tf_consts = []

        for i in range(pl):
            tf_placeholders.append(
                ("placeholder_{}".format(i), TGen.getRand(ifm_shape, dtype, rng))
            )

        for i in range(const):
            tf_consts.append(
                ("const_{}".format(i), TGen.getRand(ifm_shape, dtype, rng))
            )

        return tf_placeholders, tf_consts

    @staticmethod
    def tgRFFT2d(op, shape, dtype, rng):
        # Require rank 3 shape
        if len(shape) != 3:
            return [], []

        return TGen.tgBasic(op, shape, dtype, rng)

    @staticmethod
    def tgComplexComponents(op, shape, dtype, rng):
        # Temporarily require up to rank 3 shape, due to
        # slice maximum rank limitiation.
        if len(shape) > 3:
            return [], []

        return TGen.tgBasic(op, shape, dtype, rng)

    @staticmethod
    def tgBroadcastTo(op, shape, dtype, rng):

        pl, const = op["operands"]

        assert pl == 1
        assert const == 1

        tf_placeholders = []
        tf_consts = []

        shape_list = list(shape)
        t_shape_list = []
        s_shape_list = []
        for i in range(len(shape)):
            dim = shape_list[i]
            if rng.integers(0, 1) == 0:
                # append dim in s_shape_list, and 1 in t_shape_list unless it is still empty
                s_shape_list.append(dim)
                if len(t_shape_list) > 0:
                    t_shape_list.append(1)
            else:
                # append 1 in s_shape_list, and dim in t_shape_list
                s_shape_list.append(1)
                t_shape_list.append(dim)

        # if t_shape_list is empty, then insert 1
        if len(t_shape_list) == 0:
            t_shape_list.append(1)

        tf_placeholders.append(
            ("placeholder_0", TGen.getRand(tuple(t_shape_list), dtype, rng))
        )

        tf_consts.append(("shape", tuple(s_shape_list)))

        return tf_placeholders, tf_consts