aboutsummaryrefslogtreecommitdiff
path: root/verif/generator/tosa_test_gen.py
diff options
context:
space:
mode:
Diffstat (limited to 'verif/generator/tosa_test_gen.py')
-rw-r--r--verif/generator/tosa_test_gen.py6868
1 files changed, 6868 insertions, 0 deletions
diff --git a/verif/generator/tosa_test_gen.py b/verif/generator/tosa_test_gen.py
new file mode 100644
index 0000000..0d5a881
--- /dev/null
+++ b/verif/generator/tosa_test_gen.py
@@ -0,0 +1,6868 @@
+#!/usr/bin/env python3
+
+# Copyright (c) 2020-2022, ARM Limited.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+import argparse
+import sys
+import re
+import os
+import subprocess
+import shlex
+import json
+import glob
+import math
+import queue
+import threading
+import traceback
+import math
+import itertools
+from copy import deepcopy
+
+from enum import IntEnum, Enum, unique
+
+import serializer.tosa_serializer as ts
+from serializer.tosa_serializer import *
+import tosa
+from generator.tosa_error_if import ErrorIf
+
+# Convenience variables to the flatc-generated types that should be enums, but aren't
+from tosa.DType import DType
+from tosa.Op import Op
+from tosa.ResizeMode import ResizeMode
+
+
+def valueToName(item, value):
+ """Get the name of an attribute with the given value.
+
+ This convenience function is needed to print meaningful names for
+ the values of the tosa.Op.Op and tosa.DType.DType classes.
+ This would not be necessary if they were subclasses of Enum, or
+ IntEnum, which, sadly, they are not.
+
+ Args:
+ item: The class, or object, to find the value in
+ value: The value to find
+
+ Example, to get the name of a DType value:
+
+ name = valueToName(DType, DType.INT8) # returns 'INT8'
+ name = valueToName(DType, 4) # returns 'INT8'
+
+ Returns:
+ The name of the first attribute found with a matching value,
+
+ Raises:
+ ValueError if the value is not found
+ """
+ for attr in dir(item):
+ if getattr(item, attr) == value:
+ return attr
+ raise ValueError(f'value ({value}) not found')
+
+def allDTypes(*, excludes=None):
+ """Get a set of all DType values, optionally excluding some values.
+
+ This convenience function is needed to provide a sequence of DType values.
+ This would be much easier if DType was a subclass of Enum, or IntEnum,
+ as we could then iterate over the values directly, instead of using
+ dir() to find the attributes and then check if they are what we want.
+
+ Args:
+ excludes: iterable of DTYPE values (e.g. [DType.INT8, DType.BOOL])
+
+ Returns:
+ A set of DType values
+ """
+ excludes = () if not excludes else excludes
+ return {getattr(DType, t) for t in dir(DType)
+ if not callable(getattr(DType, t)) and not t.startswith('__')
+ and getattr(DType, t) not in excludes}
+
+def usableDTypes(*, excludes=None):
+ """Get a set of usable DType values, optionally excluding some values.
+
+ Excludes (DType.UNKNOWN, DType.UINT8) in addition to the excludes
+ specified by the caller, as the serializer lib does not support them.
+ If you wish to include 'UNKNOWN' or 'UINT8' use allDTypes instead.
+
+ Args:
+ excludes: iterable of DType values (e.g. [DType.INT8, DType.BOOL])
+
+ Returns:
+ A set of DType values
+ """
+ omit = {DType.UNKNOWN, DType.UINT8}
+ omit.update(excludes if excludes else ())
+ return allDTypes(excludes=omit)
+
+def product(shape):
+ value = 1
+ for n in shape:
+ value *= n
+ return value
+
+
+class TosaQuantGen:
+ """QuantizedInfo random generator helper functions. Specify with 'qgen': in the operator defintion"""
+
+ def __init__(self):
+ pass
+
+ @staticmethod
+ def getQinfo(testGen, dtype, error_name=None):
+
+ if dtype == DType.INT8:
+ return testGen.randInt(-128, 128)
+ elif dtype == DType.UINT8:
+ return testGen.randInt(0, 256)
+ elif error_name in [ErrorIf.InputZeroPointNotZero, ErrorIf.WeightZeroPointNotZero, ErrorIf.OutputZeroPointNotZero]:
+ zero_point = testGen.randInt(-128, 128)
+ if zero_point == 0:
+ zero_point = 1
+ return zero_point
+ return 0
+
+ @staticmethod
+ def qgUnary(testGen, op, dtype, error_name=None):
+ qinfo = ts.TosaSerializerQuantInfo()
+ if error_name == ErrorIf.InputZeroPointNotZero:
+ qinfo.UnaryQuantInfo(
+ TosaQuantGen.getQinfo(testGen, dtype, error_name), TosaQuantGen.getQinfo(testGen, dtype)
+ )
+ elif error_name == ErrorIf.OutputZeroPointNotZero:
+ qinfo.UnaryQuantInfo(
+ TosaQuantGen.getQinfo(testGen, dtype), TosaQuantGen.getQinfo(testGen, dtype, error_name)
+ )
+ else:
+ qinfo.UnaryQuantInfo(
+ TosaQuantGen.getQinfo(testGen, dtype), TosaQuantGen.getQinfo(testGen, dtype)
+ )
+ return qinfo
+
+ @staticmethod
+ def qgConv(testGen, op, dtype_or_dtypeList, error_name=None):
+ qinfo = ts.TosaSerializerQuantInfo()
+ if isinstance(dtype_or_dtypeList, list):
+ # a list of [input, weights, accumulator] dtypes
+ dtypeList = dtype_or_dtypeList
+ else:
+ # an int, [input, weights, accumulator] dtypes are the same
+ dtypeList = [dtype_or_dtypeList] * 3
+
+ if error_name == ErrorIf.InputZeroPointNotZero:
+ input_zp = TosaQuantGen.getQinfo(testGen, dtypeList[0], error_name)
+ weights_zp = TosaQuantGen.getQinfo(testGen, dtypeList[1])
+ elif error_name == ErrorIf.WeightZeroPointNotZero:
+ input_zp = TosaQuantGen.getQinfo(testGen, dtypeList[0])
+ weights_zp = TosaQuantGen.getQinfo(testGen, dtypeList[1], error_name)
+ else:
+ input_zp = TosaQuantGen.getQinfo(testGen, dtypeList[0])
+ weights_zp = TosaQuantGen.getQinfo(testGen, dtypeList[1])
+
+ qinfo.ConvQuantInfo(input_zp, weights_zp)
+ return qinfo
+
+ @staticmethod
+ def qgMatmul(testGen, op, dtype, error_name=None):
+ qinfo = ts.TosaSerializerQuantInfo()
+ if error_name == ErrorIf.InputZeroPointNotZero:
+ qinfo.MatMulQuantInfo(
+ TosaQuantGen.getQinfo(testGen, dtype, error_name), TosaQuantGen.getQinfo(testGen, dtype, error_name)
+ )
+ else:
+ qinfo.MatMulQuantInfo(
+ TosaQuantGen.getQinfo(testGen, dtype), TosaQuantGen.getQinfo(testGen, dtype)
+ )
+ return qinfo
+
+ @staticmethod
+ def qgPad(testGen, op, dtype, error_name=None):
+ qinfo = ts.TosaSerializerQuantInfo()
+ if error_name == ErrorIf.InputZeroPointNotZero:
+ qinfo.PadQuantInfo(TosaQuantGen.getQinfo(testGen, dtype, error_name))
+ else:
+ qinfo.PadQuantInfo(TosaQuantGen.getQinfo(testGen, dtype))
+ return qinfo
+
+ @staticmethod
+ def computeMultiplierAndShift(scaleFp, scale32):
+ # Derived from computeMultiplierAndShiftTosaScale32
+ # Provide a floating-point scaling factor and the scale32 parameter
+ # to compute the multiplier and shift
+
+ if scale32:
+ scaleBits = 31
+ else:
+ scaleBits = 15
+
+ m, shift = math.frexp(scaleFp)
+
+ if scaleFp < 0.0:
+ m = -m
+
+ multiplier = round(m * (1 << scaleBits))
+ assert multiplier <= (1 << scaleBits)
+
+ if multiplier == (1 << scaleBits):
+ multiplier = multiplier // 2
+ shift = shift + 1
+
+ shift = (-shift) + scaleBits
+ #print('scalefp {} scaleBits {} m {} mult {} shift {}'.format(scaleFp, scaleBits, m, multiplier, shift))
+
+ # Adjust multiplier such that shift is in allowed value range.
+ if shift == 0:
+ multiplier = multiplier // 4
+ shift = shift + 2
+ elif shift == 1:
+ multiplier = multiplier // 2
+ shift = shift + 1
+ elif shift == 63:
+ multiplier = multiplier * 2
+ shift = shift - 1
+
+ assert multiplier <= (1 << scaleBits)
+ assert shift >= 2 and shift <= 62
+
+ return multiplier, shift
+
+
+class TosaTensorGen:
+ """Tensor generators create a shape list for the placeholder and const tensor
+ data operands for the operator. The actual random data is generated separately for each test."""
+
+ def __init__(self):
+ pass
+
+ @staticmethod
+ def tgBasic(testGen, opName, rank, error_name=None):
+ pl, const = opName["operands"]
+ shape = testGen.makeShape(rank)
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ shape = TosaErrorIfArgGen.eiRestrictDimensions(shape)
+
+ shape_list = []
+ for i in range(pl + const):
+ shape_list.append(shape.copy())
+
+ if error_name == ErrorIf.RankMismatch:
+ if rank == 1 and i != 1:
+ shape = testGen.makeShape(rank + testGen.rng.choice([1, 2, 3]))
+ elif i != 1:
+ shape = testGen.makeShape(rank + testGen.rng.choice([-1, 1]))
+
+ return shape_list
+
+ @staticmethod
+ def tgNHWC(testGen, opName, rank, error_name=None):
+ pl, const = opName["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 4
+
+ shape = testGen.makeShape(rank)
+
+ # Constrict the batch size?
+ if testGen.args.max_batch_size:
+ shape[0] = (shape[0] % testGen.args.max_batch_size) + 1
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name and error_name != ErrorIf.MaxDimExceeded:
+ shape = TosaErrorIfArgGen.eiRestrictDimensions(shape)
+
+ shape_list = []
+ for i in range(pl + const):
+ shape_list.append(shape.copy())
+
+ return shape_list
+
+ @staticmethod
+ def tgScatter(testGen, opName, rank, error_name=None):
+ pl, const = opName["operands"]
+
+ assert pl == 2
+ assert const == 0
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 3
+
+ values_in_shape = testGen.makeShape(rank)
+
+ # ignore max batch size if target shape is set
+ if testGen.args.max_batch_size and not testGen.args.target_shapes:
+ values_in_shape[0] = (values_in_shape[0] % testGen.args.max_batch_size) + 1
+
+ W = testGen.randInt(
+ testGen.args.tensor_shape_range[0], testGen.args.tensor_shape_range[1]
+ )
+ # Constrict W if one dimension is too large to keep tensor size reasonable
+ if max(values_in_shape) > 5000:
+ W = testGen.randInt(0, 16)
+
+ input_shape = [values_in_shape[0], W, values_in_shape[2]]
+
+ shape_list = []
+ shape_list.append(values_in_shape.copy())
+ shape_list.append(input_shape.copy())
+
+ return shape_list
+
+ @staticmethod
+ def tgBroadcastFuzz(testGen, op, rank, error_name=None):
+ shape = testGen.makeShape(rank)
+
+ pl, const = op["operands"]
+
+ shape_list = []
+
+ # Choose one of the inputs to broadcast
+ # Note: Simplifies OutputShaper code if we don't change first shape for errors
+ bcast_idx = testGen.randInt(0 if error_name == None else 1, pl + const)
+ for i in range(pl + const):
+ shape_bcast = shape.copy()
+
+ # If the chosen input, pick a random index to broadcast
+ if i == bcast_idx:
+ fuzz_idx = testGen.randInt(0, rank)
+ if error_name == ErrorIf.DimensionMismatch:
+ shape_bcast[fuzz_idx] += 1
+ elif error_name == ErrorIf.RankMismatch:
+ # Add one rank to the shape (or more for rank of 1)
+ extra_ranks = testGen.rng.choice([1, 2, 3]) if rank == 1 else 1
+ shape_bcast = np.concatenate((shape_bcast, testGen.makeShape(extra_ranks)))
+ if rank != 1:
+ # Either keep the extra rank, or remove it
+ new_len = testGen.rng.choice([-2, len(shape_bcast)])
+ shape_bcast = shape_bcast[:new_len]
+ else:
+ shape_bcast[fuzz_idx] = 1
+
+ shape_list.append(shape_bcast)
+
+ return shape_list
+
+ @staticmethod
+ def tgConv2D(testGen, op, rank, error_name=None):
+ pl, const = op["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 4
+
+ # IFM dimensions are NHWC
+ ifm_shape = testGen.makeShape(rank)
+
+ # Constrict the batch size?
+ if testGen.args.max_batch_size:
+ ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
+
+ # Get the filter height/width from the operator parameters
+ filter_hw = op["filter"]
+
+ # Generate a random OFM depth
+ ofm_depth = testGen.makeShape(1)[0]
+
+ # The filter dimensions are OHWI
+ filter_shape = np.asarray([ofm_depth, filter_hw[0], filter_hw[1], ifm_shape[3]])
+
+ # The bias is OC
+ bias_shape = np.asarray([ofm_depth])
+
+ return [ifm_shape, filter_shape, bias_shape]
+
+ @staticmethod
+ def tgConv3D(testGen, op, rank, error_name=None):
+ pl, const = op["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 5
+
+ # IFM dimensions are NDHWC
+ ifm_shape = testGen.makeShape(rank)
+
+ # Constrict the batch size?
+ if testGen.args.max_batch_size:
+ ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
+
+ # Get the filter depth/height/width from the operator parameters
+ filter_dhw = op["filter"]
+
+ # Generate a random OFM channel
+ ofm_channel = testGen.makeShape(1)[0]
+
+ # The filter dimensions are ODHWI
+ filter_shape = np.asarray(
+ [ofm_channel, filter_dhw[0], filter_dhw[1], filter_dhw[2], ifm_shape[4]]
+ )
+
+ # The bias is OC
+ bias_shape = np.asarray([ofm_channel])
+
+ return [ifm_shape, filter_shape, bias_shape]
+
+ @staticmethod
+ def tgTransposeConv2D(testGen, op, rank, error_name=None):
+ pl, const = op["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 4
+
+ # IFM dimensions are NHWC
+ ifm_shape = testGen.makeShape(rank)
+
+ # Constrict the batch size?
+ if testGen.args.max_batch_size:
+ ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
+
+ # Get the filter height/width from the operator parameters
+ filter_hw = op["filter"]
+
+ # Generate a random OFM depth
+ ofm_depth = testGen.makeShape(1)[0]
+
+ # The filter dimensions are OHWI
+ filter_shape = np.asarray([ofm_depth, filter_hw[0], filter_hw[1], ifm_shape[3]])
+
+ # The bias is OC
+ bias_shape = np.asarray([ofm_depth])
+
+ return [ifm_shape, filter_shape, bias_shape]
+
+ @staticmethod
+ def tgDepthwiseConv2D(testGen, op, rank, error_name=None):
+ pl, const = op["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 4
+ assert pl == 1 and const == 2
+
+ # IFM dimensions are NHWC
+ ifm_shape = testGen.makeShape(rank)
+
+ # Constrict the batch size?
+ if testGen.args.max_batch_size:
+ ifm_shape[0] = (ifm_shape[0] % testGen.args.max_batch_size) + 1
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ ifm_shape = TosaErrorIfArgGen.eiRestrictDimensions(ifm_shape, max_dim=24, max_items=10000)
+
+ # Get the filter height/width from the operator parameters
+ # Filter is KH, HW, C, M
+ filter_hw = op["filter"]
+
+ # Generate a random OFM depth, but don't let it get too big because
+ # the output depth is M * C
+ filter_m = (
+ testGen.makeShape(1)[0] % (testGen.args.tensor_shape_range[1] // 4)
+ ) + 1
+
+ # The filter dimensions are HWCM
+ filter_shape = np.asarray([filter_hw[0], filter_hw[1], ifm_shape[3], filter_m])
+
+ # The bias is M * C
+ bias_shape = np.asarray([ifm_shape[3] * filter_m])
+
+ return [ifm_shape, filter_shape, bias_shape]
+
+ @staticmethod
+ def tgFullyConnected(testGen, op, rank, error_name=None):
+ pl, const = op["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 2
+
+ input_shape = testGen.makeShape(rank)
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ input_shape = TosaErrorIfArgGen.eiRestrictDimensions(input_shape)
+
+ filter_oc = testGen.rng.integers(
+ low=testGen.args.tensor_shape_range[0],
+ high=testGen.args.tensor_shape_range[1],
+ size=1,
+ )[0]
+ filter_shape = np.asarray([filter_oc, input_shape[1]])
+
+ bias_shape = np.asarray([filter_oc])
+
+ return [input_shape, filter_shape, bias_shape]
+
+ @staticmethod
+ def tgMatmul(testGen, op, rank, error_name=None):
+ pl, const = op["operands"]
+
+ if error_name != ErrorIf.WrongRank:
+ assert rank == 3
+ assert pl == 2 and const == 0
+
+ a_shape = testGen.makeShape(rank)
+
+ # Constrict the overall size of the shape when creating ERROR_IF tests
+ if error_name:
+ a_shape = TosaErrorIfArgGen.eiRestrictDimensions(a_shape)
+
+ # Get a random number for b_oc even if target shape is defined
+ b_oc = np.int32(
+ testGen.rng.integers(
+ low=testGen.args.tensor_shape_range[0],
+ high=testGen.args.tensor_shape_range[1],
+ size=1,
+ )
+ )[0]
+ # If N or H is large let b_oc be 1 to reduce output tensor size
+ if max(a_shape) > 1000:
+ b_oc = 1
+
+ b_shape = np.asarray([a_shape[0], a_shape[2], b_oc])
+ return [a_shape, b_shape]
+
+ @staticmethod
+ def tgConcat(testGen, opName, rank, error_name=None):
+ pl, const = opName["operands"]
+ shape = testGen.makeShape(rank)
+
+ # Create extra tensors to concat.
+ # Take into account value of pl when getting maximum number of concats
+ num_tensors = testGen.randInt(0, 4)
+ shape_list = []
+ for i in range(pl + const + num_tensors):
+ if error_name == ErrorIf.ConcatInputRankMismatch and i != 0:
+ remove = testGen.rng.choice([True, False])
+ wrongShape = shape.copy()
+
+ if remove and len(shape) > 1:
+ wrongShape = wrongShape[1:]
+ else:
+ wrongShape = list(wrongShape)
+ wrongShape.append(testGen.rng.integers(1, 10))
+
+ shape_list.append(wrongShape)
+ else:
+ shape_list.append(shape.copy())
+
+ return shape_list
+
+ @staticmethod
+ def tgConcatConstInput(testGen, shapeList, axis, error_name=None):
+ if error_name in [ErrorIf.AxisSmallerZero, ErrorIf.AxisLargerRank, ErrorIf.ConcatInputRankMismatch]:
+ return shapeList
+
+ # Split concat shape along axis to allow for multiple const inputs
+ # without making too many large tensors
+ if len(shapeList) == 2 or shapeList[0][axis] < len(shapeList):
+ # If axis can't be split we still need to invalidate other dimensions
+ if error_name == ErrorIf.ConcatInputDimMismatch:
+ for shape in shapeList[1:]:
+ # Negative test shapeLists are created individually for each test,
+ # so no need to copy the shape before altering it.
+ shape[(axis + 1) % len(shape)] += testGen.rng.integers(5, 10)
+ return shapeList
+
+ # Create copy of shape we are going to split (so we don't alter shapeList)
+ shape = shapeList[0].copy()
+ # Add original shape as first input
+ new_shapeList = [shape.copy()]
+ length_on_axis = shape[axis]
+ remaining_length = length_on_axis
+ for i in range(len(shapeList) - 2):
+ # Calculate split on axis and remaining value
+ split_shape_val = int(shape[axis] / 2)
+ remaining_length = remaining_length - split_shape_val
+
+ # Append new shape, and set remaining shape
+ shape[axis] = split_shape_val
+ new_shapeList.append(shape.copy())
+
+ # invalidate dimensions
+ if error_name == ErrorIf.ConcatInputDimMismatch:
+ shape[(axis + 1) % len(shape)] += testGen.rng.integers(5, 10)
+ else:
+ shape[axis] = remaining_length
+
+ if i == len(shapeList) - 3:
+ new_shapeList.append(shape.copy())
+
+ return new_shapeList
+
+
+class TosaArgGen:
+ """Argument generators create exhaustive or random lists of attributes for operators that take
+ attributes or other parameters. The return value is a list of (descriptive_name, [arglist])
+ tuples where the descriptive_name is appended to the test name and the arglist is expanded
+ as arguments to the operator build function."""
+
+ def __init__(self):
+ pass
+
+ @staticmethod
+ def agNone(testGen, opName, shapeList, dtype, error_name=None):
+ """A trivial argument generator for operators that don't take any
+ non-tensor arguments"""
+ return [("", [])]
+
+ @staticmethod
+ def agAxis(testGen, opName, shapeList, dtype, error_name=None):
+ """Build the axis argument for operators that take a single axis"""
+ axes = []
+ shape = shapeList[0]
+
+ if error_name == ErrorIf.AxisSmallerZero:
+ small_axis = testGen.rng.integers(-5, 0)
+ axes.append(("axis{}".format(small_axis), [small_axis]))
+ elif error_name == ErrorIf.AxisLargerRank:
+ large_axis = testGen.rng.integers(len(shape) + 1, len(shape) + 10)
+ axes.append(("axis{}".format(large_axis), [large_axis]))
+ else:
+ for a in range(0, len(shape)):
+ axes.append(("axis{}".format(a), [a]))
+
+ return axes
+
+ @staticmethod
+ def agConv(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ ifm_shape = shapeList[0]
+ filter_shape = shapeList[1]
+ # determine the kernel shape from the operator name (e.g. "conv2d_3x3" => [3,3])
+ k = [int(x) for x in opName.split("_")[-1].split("x")]
+
+ # Check the rank
+ rank = 5 if opName.startswith("conv3d") else 4
+ if error_name != ErrorIf.WrongRank:
+ assert len(ifm_shape) == rank
+ assert len(filter_shape) == rank
+
+ # kernel rank omits batch and channels
+ k_rank = rank - 2
+ assert len(k) == k_rank
+
+ # Generate comprehensive argument lists
+ # - except for named errors, which use specific invalid value(s)
+ if error_name == ErrorIf.PadSmallerZero:
+ p_vals = [testGen.rng.choice(range(-5, 0))]
+ else:
+ p_vals = [x for x in range(0, testGen.args.max_conv_padding + 1)]
+ paddings = {x for x in itertools.product(*([p_vals] * k_rank * 2))}
+ if error_name == ErrorIf.StrideSmallerOne:
+ # Can't use stride=0, as it is used to derive output shape, as a divisor
+ s_vals = [testGen.rng.choice(range(-5, 0))]
+ else:
+ s_vals = [x for x in range(1, testGen.args.max_conv_stride + 1)]
+ strides = {x for x in itertools.product(*([s_vals] * k_rank))}
+ if error_name == ErrorIf.DilationSmallerOne:
+ d_vals = [testGen.rng.choice(range(-5, 1))]
+ else:
+ d_vals = [x for x in range(1, testGen.args.max_conv_dilation + 1)]
+ dilations = {x for x in itertools.product(*([d_vals] * k_rank))}
+
+ if not error_name:
+ # add some oversize argument values
+ if max(ifm_shape) < 64:
+ bigPadding = 9
+ paddings.update({x for x in itertools.product(*([[0, bigPadding]] * (k_rank * 2)))})
+ bigStride = 8
+ strides.update({x for x in itertools.product(*([[1, bigStride]] * k_rank))})
+ bigDilation = 7
+ dilations.update({x for x in itertools.product(*([[1, bigDilation]] * k_rank))})
+
+ # There are too many parameter combinations, so generate them sparsely,
+ # very sparse for negative tests
+ sparsity_factor = 2 if error_name else 100
+ sparsity = len(paddings) * len(strides) * len(dilations) // sparsity_factor + 1
+ # If there are only a small number of tests, just select them all
+ if sparsity < 13:
+ sparsity = 1
+ # To get a variety of parameter combinations sparsity should not be a multiple of 2, 3 or 5
+ while sparsity % 2 == 0 or sparsity % 3 == 0 or sparsity % 5 == 0:
+ sparsity += 1
+
+ n = 0
+ for s in sorted(list(strides)):
+ for p in sorted(list(paddings)):
+ for d in sorted(list(dilations)):
+ if (n % sparsity == 0
+ # padding must not exceed the kernel size ?
+ # and p[0] < k[0] and p[1] < k[0] and p[2] < k[1] and p[3] < k[1]
+ # and (k_rank < 3 or (p[4] < k[2] and p[5] < k[2]))
+ # the padded shape must exceed the kernel size
+ and (ifm_shape[1] + p[0] + p[1]) > k[0] and (ifm_shape[2] + p[2] + p[3]) > k[1]
+ and (k_rank < 3 or ((ifm_shape[3] + p[4] + p[5]) > k[2]))
+ # the padded shape must exceed the dilation
+ and (ifm_shape[1] + p[0] + p[1]) > d[0] and (ifm_shape[2] + p[2] + p[3]) > d[1]
+ and (k_rank < 3 or ((ifm_shape[3] + p[4] + p[5]) > d[2]))
+ ):
+ arg_list.append(
+ (
+ "st{}_pad{}_dilat{}".format(
+ "".join([str(x) for x in s]),
+ "".join([str(x) for x in p]),
+ "".join([str(x) for x in d]),
+ ),
+ [s, p, d],
+ )
+ )
+ n += 1
+
+ return arg_list
+
+ @staticmethod
+ def agTransposeConv2D(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ ifm_shape = shapeList[0]
+ filter_shape = shapeList[1]
+
+ # Must be rank 4
+ if error_name != ErrorIf.WrongRank:
+ assert len(ifm_shape) == 4
+ assert len(filter_shape) == 4
+
+ # Generate comprehensive argument lists
+ # - except for named errors, which use specific invalid value(s)
+ if error_name == ErrorIf.PadSmallerZero:
+ p_vals = [testGen.rng.choice(range(-5, 0))]
+ else:
+ p_vals = [x for x in range(0, testGen.args.max_conv_padding + 1)]
+ paddings = {x for x in itertools.product(*([p_vals] * 2))}
+ if error_name == ErrorIf.StrideSmallerOne:
+ # Can't use stride=0, as it is used to derive output shape, as a divisor
+ s_vals = [testGen.rng.choice(range(-5, 0))]
+ else:
+ s_vals = [x for x in range(1, testGen.args.max_conv_stride + 1)]
+ strides = {x for x in itertools.product(*([s_vals] * 2))}
+ if error_name == ErrorIf.DilationSmallerOne:
+ d_vals = [testGen.rng.choice(range(-5, 1))]
+ else:
+ d_vals = [x for x in range(1, testGen.args.max_conv_dilation + 1)]
+ dilations = {x for x in itertools.product(*([d_vals] * 2))}
+
+ if not error_name:
+ # add some oversize argument values
+ if max(ifm_shape) < 64:
+ bigPadding = 9
+ paddings.update({x for x in itertools.product(*([[0, bigPadding]] * 2))})
+ bigStride = 8
+ strides.update({x for x in itertools.product(*([[1, bigStride]] * 2))})
+ bigDilation = 7
+ dilations.update({x for x in itertools.product(*([[1, bigDilation]] * 2))})
+
+ # There are too many parameter combinations, so generate them sparsely,
+ # very sparse for negative tests
+ sparsity_factor = 2 if error_name else 100
+ sparsity = len(paddings) * len(strides) * len(dilations) // sparsity_factor + 1
+ # If there are only a small number of tests, just select them all
+ if sparsity < 13:
+ sparsity = 1
+ # To get a variety of parameter combinations sparsity should not be a multiple of 2, 3 or 5
+ while sparsity % 2 == 0 or sparsity % 3 == 0 or sparsity % 5 == 0:
+ sparsity += 1
+
+ n = 0
+ for s in sorted(list(strides)):
+ for p in sorted(list(paddings)):
+ for d in sorted(list(dilations)):
+ if n % sparsity == 0:
+ # Determine the output shape
+ oh = (
+ ifm_shape[1]
+ - filter_shape[1]
+ - (filter_shape[1] - 1) * (d[0] - 1)
+ + 2 * p[0]
+ ) // s[0] + 1
+ ow = (
+ ifm_shape[2]
+ - filter_shape[2]
+ - (filter_shape[2] - 1) * (d[1] - 1)
+ + 2 * p[1]
+ ) // s[1] + 1
+ os = [ifm_shape[0], oh, ow, filter_shape[0]]
+ arg_list.append(
+ (
+ "st{}_pad{}_dilat{}_os{}".format(
+ "".join([str(x) for x in s]),
+ "".join([str(x) for x in p]),
+ "".join([str(x) for x in d]),
+ "x".join([str(x) for x in os]),
+ ),
+ [s, p, d, os],
+ )
+ )
+ n += 1
+
+ return arg_list
+
+ @staticmethod
+ def agPad(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+ rank = len(shapeList[0])
+
+ # Exhaustively test combinations of padding on each side of each dimension
+ # - the range of padding values is defined by pad_min and pad_max
+ # - for padding >9, the name format needs to be more distinctive
+ pad_min, pad_max = 0, 1
+ pad_values = [x for x in range(pad_min, pad_max + 1)]
+ if error_name == ErrorIf.PadSmallerZero:
+ pad_values = [x for x in range(-2, 0)]
+ axis_pad_values = [x for x in itertools.product(pad_values, pad_values)]
+ shape_pad_values = itertools.product(*([axis_pad_values] * rank))
+
+ if dtype in [DType.BOOL, DType.INT8, DType.INT16, DType.INT32]:
+ pad_const_int = testGen.getRandNumberDType(dtype)
+ pad_const_fp = 0
+ elif dtype == DType.FLOAT:
+ pad_const_int = 0
+ pad_const_fp = testGen.getRandNumberDType(dtype)
+ else:
+ return []
+
+ for paddings in shape_pad_values:
+ name = "pad"
+ for r in range(rank):
+ before, after = paddings[r]
+ name = f"{name}{before}{after}"
+ arg_list.append((name, [np.array(paddings), pad_const_int, pad_const_fp]))
+
+ return arg_list
+
+ @staticmethod
+ def agPooling(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ shape = shapeList[0]
+ if error_name != ErrorIf.WrongRank:
+ assert len(shape) == 4
+
+ # Generate comprehensive argument lists
+ p_vals = [x for x in range(0, testGen.args.max_pooling_padding + 1)]
+ paddings = {x for x in itertools.product(*([p_vals] * 4))}
+ s_vals = [x for x in range(1, testGen.args.max_pooling_stride + 1)]
+ strides = {x for x in itertools.product(*([s_vals] * 2))}
+ k_vals = [x for x in range(2, testGen.args.max_pooling_kernel + 2)]
+ kernels = {x for x in itertools.product(*([k_vals] * 2))}
+
+ # add some oversize argument values
+ bigStride = 7
+ strides.update({x for x in itertools.product(*([[1, bigStride]] * 2))})
+ bigKernel = 6
+ kernels.update({x for x in itertools.product(*([[2, bigKernel]] * 2))})
+ if max(shape) < 64:
+ # padding must be less than the kernel size
+ bigPadding = bigKernel - 1
+ paddings.update({x for x in itertools.product(*([[0, bigPadding]] * 4))})
+
+ # There are too many parameter combinations, so generate them sparsely,
+ # very sparse for negative tests
+ sparsity_factor = 2 if error_name else 500
+ sparsity = len(paddings) * len(strides) * len(kernels) // sparsity_factor + 1
+
+ n = 0
+ for s in sorted(list(strides)):
+ for p in sorted(list(paddings)):
+ for k in sorted(list(kernels)):
+ if error_name in [ErrorIf.StrideSmallerOne, ErrorIf.KernelSmallerOne, ErrorIf.PadSmallerZero, ErrorIf.PadLargerEqualKernel]:
+ sNew, pNew, kNew = TosaErrorIfArgGen.eiPoolingErrorIf(testGen, error_name, s, p, k)
+ if None not in [sNew, pNew, kNew] and n % sparsity == 0:
+ arg_list.append(
+ (
+ "st{}_kern{}_pad{}".format(
+ "".join([str(x) for x in sNew]),
+ "".join([str(x) for x in kNew]),
+ "".join([str(x) for x in pNew]),
+ ),
+ [sNew, pNew, kNew],
+ )
+ )
+ elif (n % sparsity == 0
+ # padding must not exceed the kernel size
+ and p[0] < k[0] and p[1] < k[0] and p[2] < k[1] and p[3] < k[1]
+ # the padded shape must exceed the kernel size
+ and (shape[1] + p[0] + p[1]) > k[0] and (shape[2] + p[2] + p[3]) > k[1]
+ ):
+ arg_list.append(
+ (
+ "st{}_kern{}_pad{}".format(
+ "".join([str(x) for x in s]),
+ "".join([str(x) for x in k]),
+ "".join([str(x) for x in p]),
+ ),
+ [s, p, k],
+ )
+ )
+ n += 1
+
+ return arg_list
+
+ @staticmethod
+ def agCast(testGen, opName, shapeList, inDtype, error_name=None):
+ arg_list = []
+
+ # Enumerate the output types here
+ if error_name == ErrorIf.WrongOutputType:
+ dtypeList = TosaErrorIfArgGen.eiCastErrorIf(testGen, inDtype)
+ elif inDtype == DType.INT8:
+ dtypeList = [DType.BOOL, DType.INT16, DType.INT32, DType.FLOAT]
+ elif inDtype == DType.INT16:
+ dtypeList = [DType.BOOL, DType.INT8, DType.INT32, DType.FLOAT]
+ elif inDtype == DType.INT32:
+ dtypeList = [DType.BOOL, DType.INT8, DType.INT16, DType.FLOAT]
+ elif inDtype == DType.BOOL:
+ dtypeList = [DType.INT8, DType.INT16, DType.INT32]
+ elif inDtype == DType.FLOAT:
+ dtypeList = [DType.INT8, DType.INT16, DType.INT32]
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output type for incorrect input type
+ dtypeList = [DType.BOOL, DType.INT8, DType.INT16, DType.FLOAT]
+ else:
+ raise Exception("Unexpected input dtype: {}".format(inDtype))
+
+ for dtype in dtypeList:
+ arg_list.append(("out{}".format(DTypeNames[dtype]), [dtype]))
+
+ return arg_list
+
+ @staticmethod
+ def agRescale(testGen, opName, shapeList, inDtype, error_name=None):
+ arg_list = []
+
+ # Enumerate the output types here
+ for dtype in [DType.UINT8, DType.INT8, DType.INT16, DType.INT32]:
+ if dtype in [DType.UINT8, DType.INT8] and error_name == ErrorIf.OutputZeroPointNotZero:
+ continue
+ if inDtype == DType.UINT8 and dtype != DType.INT8 and error_name != ErrorIf.WrongOutputType:
+ # The only output dtype for UINT8 is INT8, skip all other combinations
+ continue
+ if inDtype != DType.INT8 and dtype == DType.UINT8 and error_name != ErrorIf.WrongOutputType:
+ # The only input dtype for UINT8 is INT8, skip all other combinations
+ continue
+ if error_name == ErrorIf.WrongOutputType and not TosaErrorIfArgGen.eiRescaleWrongOutputType(inDtype, dtype):
+ continue
+
+ for scale32 in [False, True]:
+ if error_name == ErrorIf.ScaleTrue and scale32 == False:
+ continue
+ elif error_name == ErrorIf.ScaleNotTrue and scale32 == True:
+ continue
+ for double_round in [False, True]:
+ if error_name == ErrorIf.ScaleNotTrue and double_round == False:
+ continue
+ for per_channel in [False, True]:
+
+ if inDtype == DType.INT48 and scale32 and error_name != ErrorIf.ScaleTrue:
+ # Illegal condition. Must be scale32=False
+ continue
+ if double_round and not scale32 and error_name != ErrorIf.ScaleNotTrue:
+ # Illegal condition. ERROR_IF(!scale32 && double_round)
+ continue
+
+ arg_list.append(
+ (
+ "out{}_sc{}_dr{}_pc{}".format(
+ DTypeNames[dtype],
+ int(scale32),
+ int(double_round),
+ int(per_channel),
+ ),
+ [dtype, scale32, double_round, per_channel],
+ )
+ )
+
+ return arg_list
+
+ @staticmethod
+ def agMul(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ if dtype is DType.INT32:
+ for p in range(testGen.args.num_rand_permutations):
+
+ shift = testGen.randInt(0, 32)
+
+ arg_list.append(("perm{}_shift{}".format(p, shift), [shift]))
+ else:
+ arg_list.append(("perm0_shift0", [0]))
+
+ return arg_list
+
+ @staticmethod
+ def agArithmeticRightShift(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ arg_list.append(("roundTrue", [True]))
+ arg_list.append(("roundFalse", [False]))
+
+ return arg_list
+
+ # Helper function for reshape. Gets some factors of a larger number.
+ @staticmethod
+ def getFactors(val, start=1):
+ factors = []
+
+ for i in range(start, int(np.sqrt(val)) + 1):
+ if (val % i) == 0:
+ factors.append(i)
+
+ return factors
+
+ @staticmethod
+ def agReshape(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ origShape = shapeList[0]
+
+ totalElements = 1
+ for s in origShape:
+ totalElements *= s
+
+ # This code is NOT fast. Fortunately, the numbers are fairly small.
+ factors = TosaArgGen.getFactors(totalElements)
+
+ for p in range(testGen.args.num_rand_permutations):
+ newRank = testGen.randInt(1, 7)
+ if len(factors) < newRank:
+ continue
+
+ found = True
+ # escape_counter breaks while loop if it continues on for too long
+ escape_counter = 0
+ while found:
+ newShape = []
+ # Generate newShape ensuring it isn't a duplicate
+ remainingElements = totalElements
+ shuffledFactors = testGen.rng.permutation(factors)
+ for i in range(1, newRank):
+ # pick rank-1 factors
+ newShape.append(shuffledFactors[0])
+ remainingElements = remainingElements // shuffledFactors[0]
+ shuffledFactors = testGen.rng.permutation(
+ TosaArgGen.getFactors(remainingElements)
+ )
+ newShape.append(remainingElements)
+
+ # Toss in a -1 sometimes
+ minusOne = testGen.randInt(0, newRank * 4)
+ if minusOne < newRank:
+ newShape[minusOne] = -1
+
+ # Check for duplicates
+ found = False
+ for name, other_shape in arg_list:
+ if other_shape[0] == newShape:
+ found = True
+ break
+
+ escape_counter += 1
+ if escape_counter >= 100:
+ break
+
+ if not found:
+ arg_list.append(("perm{}_rank{}".format(p, newRank), [newShape]))
+
+ return arg_list
+
+ @staticmethod
+ def agTranspose(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ ifm_shape = shapeList[0]
+
+
+ if error_name == ErrorIf.IndexOutsideBounds:
+ incorrect_large_index = range(len(ifm_shape)+1, 2*len(ifm_shape)+1)
+ incorrect_small_index = range(-len(ifm_shape), 0)
+ permutations = [p for p in itertools.permutations(incorrect_large_index)]
+ permutations.extend([p for p in itertools.permutations(incorrect_small_index)])
+ elif error_name == ErrorIf.IndexUsedTwice:
+ # Create list with a duplicated index
+ perm_range = list(range(len(ifm_shape)))
+ index_choice = testGen.rng.choice(range(len(perm_range)))
+ perm_range[(index_choice + 1) % len(perm_range)] = perm_range[index_choice]
+ permutations = [p for p in itertools.permutations(perm_range)]
+
+
+ else:
+ # Get all permutations
+ permutations = [p for p in itertools.permutations(range(len(ifm_shape)))]
+
+ # Limit to possible permutations from shape dimension or argument setting
+ limit = min(len(permutations), testGen.args.num_rand_permutations)
+
+ # Get random permutation generator that uses all permutations
+ random_permutations = testGen.rng.permutation(permutations)
+
+ # Create list of required amount of permutations
+ arg_list = [
+ ("perm{}".format(p), [random_permutations[p].tolist()])
+ for p in range(limit)
+ ]
+ return arg_list
+
+ @staticmethod
+ def agSlice(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ ifm_shape = shapeList[0]
+ rank = len(ifm_shape)
+
+ for p in range(testGen.args.num_rand_permutations):
+ start = []
+ size = []
+
+ valid = True
+
+ for i in range(rank):
+ if ifm_shape[i] > 1:
+ start.append(testGen.randInt(0, ifm_shape[i]))
+ size.append(testGen.randInt(0, ifm_shape[i] - start[i]))
+
+ # Invalid slice size?
+ if size[i] == 0:
+ valid = False
+ else:
+ start.append(0)
+ size.append(1)
+
+ if valid:
+ # If ERROR_IF test required then incorrect start, size will be returned
+ start, size = TosaErrorIfArgGen.eiSliceErrorIf(testGen, error_name, ifm_shape, start, size)
+ arg_list.append(("perm{}".format(p), [start, size]))
+ return arg_list
+
+ @staticmethod
+ def agTile(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ ifm_shape = shapeList[0]
+ rank = len(ifm_shape)
+
+ for p in range(testGen.args.num_rand_permutations):
+
+ # Pick a few random, but small multiple values
+ # because otherwise this has a tendency to generate
+ # enormous tensors
+ multiples = []
+ for i in range(rank):
+ if ifm_shape[i] > 1000:
+ # Multiple of 1 if ifm_shape dimension is large to reduce tensor size
+ multiples.append(1)
+ elif max(ifm_shape) > 1000:
+ multiples.append(2)
+ else:
+ multiples.append(testGen.randInt(1, 4))
+ arg_list.append(("perm{}".format(p), [multiples]))
+
+ return arg_list
+
+ @staticmethod
+ def agResize(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ ifm_shape = shapeList[0]
+ for mode in [ResizeMode.NEAREST, ResizeMode.BILINEAR]:
+
+ # Exclude illegal {mode, type} configurations. Pick legal output types
+ if mode == ResizeMode.NEAREST and dtype == DType.INT8:
+ outputDTypeList = [DType.INT8]
+ elif mode == ResizeMode.NEAREST and dtype == DType.INT16:
+ outputDTypeList = [DType.INT16]
+ elif mode == ResizeMode.BILINEAR and dtype == DType.INT8:
+ outputDTypeList = [DType.INT32]
+ elif mode == ResizeMode.BILINEAR and dtype == DType.INT16:
+ outputDTypeList = [DType.INT48]
+ elif dtype == DType.FLOAT:
+ outputDTypeList = [DType.FLOAT]
+ elif error_name == ErrorIf.WrongInputType:
+ # If an incorrect input type is used then we set a 'correct'
+ # output type to avoid other errors
+ outputDTypeList = [DType.INT8, DType.INT16, DType.INT32]
+ else:
+ continue
+
+ for outputDType in outputDTypeList:
+ for perm in range(testGen.args.num_rand_permutations):
+ # Randomly generate legal output dimensions and shift
+ # and then compute the stride and offset based on them
+ # A output_dim of 1 will cause offset to exceed allowed range
+ # so minimum value 2 produced below
+ output_dims = [testGen.randInt(1) + 1, testGen.randInt(1) + 1]
+ while ((float(ifm_shape[1]) / float(output_dims[0])) >= 16):
+ output_dims[0] += 1
+ while ((float(ifm_shape[2]) / float(output_dims[1])) >= 16):
+ output_dims[1] += 1
+
+ in_center_h = (ifm_shape[1] - 1) / 2.0
+ in_center_w = (ifm_shape[2] - 1) / 2.0
+ out_center_h = (output_dims[0] - 1) / 2.0
+ out_center_w = (output_dims[1] - 1) / 2.0
+
+ fp_stride_y = float(ifm_shape[1]) / float(output_dims[0])
+ fp_stride_x = float(ifm_shape[2]) / float(output_dims[1])
+ fp_offset_y = in_center_h - fp_stride_y * out_center_h
+ fp_offset_x = in_center_w - fp_stride_x * out_center_w
+
+ if outputDType == DType.FLOAT:
+ float_op = True
+ arg_str = "mode{}_shift{}_odim{}x{}_out{}_st{:.2f}x{:.2f}_off{:.2f}x{:.2f}"
+ shift = 0
+ stride = [0, 0]
+ offset = [0, 0]
+ stride_fp = [fp_stride_y, fp_stride_x]
+ offset_fp = [fp_offset_y, fp_offset_x]
+
+ else:
+ float_op = False
+ arg_str = "mode{}_shift{}_odim{}x{}_out{}_st{}x{}_off{}x{}"
+ shift = testGen.randInt(1,12)
+ # Now search for a shift value (1 to 11) that will produce
+ # a valid and predictable resize operation
+ count = 0
+ while (count < 12):
+ unit = float(1 << shift)
+ stride_y = int(round(fp_stride_y * unit))
+ stride_x = int(round(fp_stride_x * unit))
+ offset_y = int(round(fp_offset_y * unit))
+ offset_x = int(round(fp_offset_x * unit))
+
+ if (
+ stride_y <= 0
+ or stride_x <= 0
+ or stride_y >= (16 << shift)
+ or stride_x >= (16 << shift)
+ or offset_y >= (16 << shift)
+ or offset_x >= (16 << shift)
+ or offset_y <= (-16 << shift)
+ or offset_x <= (-16 << shift)
+ ):
+ # Change the shift value and check again
+ count += 1
+ shift = (shift % 11) + 1
+ continue
+
+ def RESIZE_REQUIRE_CALC(length_in, length_out, stride, offset, shift):
+ # Perform the pseudo loop to look for out of bounds
+ for pos in range(0,length_out):
+ a = pos * stride + offset
+ ia = a >> shift
+ ia0 = max(ia, 0)
+ ia1 = min(ia+1, length_in-1)
+ if ia0 > ia1:
+ # Found a problem value
+ break
+ return ia0, ia1
+
+ iy0, iy1 = RESIZE_REQUIRE_CALC(ifm_shape[1], output_dims[0], stride_y, offset_y, shift)
+ ix0, ix1 = RESIZE_REQUIRE_CALC(ifm_shape[2], output_dims[1], stride_x, offset_x, shift)
+ if ix0 > ix1 or iy0 > iy1:
+ # Change the shift value and check again
+ count += 1
+ shift = (shift % 11) + 1
+ continue
+ break
+
+ if count >= 12:
+ # Couldn't find a good set of values for this test, skip it
+ continue
+
+ stride = [stride_y, stride_x]
+ offset = [offset_y, offset_x]
+
+ stride_fp = [0.0, 0.0]
+ offset_fp = [0.0, 0.0]
+
+ # Common for all data types
+ if error_name is not None:
+ shift, stride, stride_fp, offset, offset_fp, outputDTypeNew = TosaErrorIfArgGen.eiResizeErrorIf(
+ testGen,
+ error_name,
+ mode,
+ dtype,
+ shapeList,
+ outputDType,
+ shift,
+ stride,
+ stride_fp,
+ offset,
+ offset_fp
+ )
+ else:
+ outputDTypeNew = outputDType
+
+ arg_list.append(
+ (
+ arg_str.format(
+ "N" if mode == ResizeMode.NEAREST else "B",
+ shift,
+ output_dims[0],
+ output_dims[1],
+ testGen.typeStr(outputDTypeNew),
+ stride_fp[0] if float_op else stride[0],
+ stride_fp[1] if float_op else stride[1],
+ offset_fp[0] if float_op else offset[0],
+ offset_fp[1] if float_op else offset[1]
+ ),
+ [
+ mode,
+ stride,
+ offset,
+ shift,
+ stride_fp,
+ offset_fp,
+ output_dims,
+ dtype,
+ outputDTypeNew,
+ ],
+ )
+ )
+
+ return arg_list
+
+ @staticmethod
+ def agTable(testGen, opName, shapeList, dtype, error_name=None):
+ arg_list = []
+
+ if dtype == DType.INT8:
+ table = np.int32(
+ testGen.rng.integers(low=-128, high=128, size=[256])
+ ).tolist()
+ else: # INT16
+ table = np.int32(
+ testGen.rng.integers(low=-32768, high=32768, size=[513])
+ ).tolist()
+
+ arg_list.append(
+ (
+ "",
+ [table],
+ )
+ )
+ return arg_list
+
+ def agCondIf(testGen, opName, shapeList, dtype, error_name=None):
+ # CondIf generates the condition values here.
+ # Convert to tensors in the build function, along with the
+ # then and else blocks
+ arg_list = []
+
+ for c in [False, True]:
+ arg_list.append(("cond{}".format(int(c)), [c]))
+
+ return arg_list
+
+ def agWhileLoop(testGen, opName, shapeList, dtype, error_name=None):
+ # While loop: 0 iterations, 1, more than 1
+ arg_list = []
+
+ for iter in [0, 1, 4]:
+ arg_list.append(("iter{}".format(iter), [iter]))
+
+ return arg_list
+
+class TosaErrorIfArgGen:
+
+ @staticmethod
+ def eiResizeErrorIf(testGen, error_name, mode, dtype, shapeList, outputDType, shift, stride, stride_fp, offset, offset_fp):
+
+ if outputDType == DType.FLOAT:
+ if error_name == ErrorIf.StrideSmallerEqualZero:
+ stride_fp = testGen.rng.random(size=[2]) - 2
+ elif error_name == ErrorIf.ShiftNotZero:
+ shift = testGen.rng.integers(1, 5)
+ elif error_name == ErrorIf.StrideLargerDimension:
+ shape = shapeList[0]
+ transform_height = testGen.rng.choice([False, True])
+ if transform_height:
+ stride_fp[0] = shape[1] + testGen.rng.integers(1, 10)
+ else:
+ stride_fp[1] = shape[2] + testGen.rng.integers(1, 10)
+ else:
+ if error_name == ErrorIf.StrideSmallerEqualZero:
+ stride = np.int16(testGen.rng.integers(-1, 1, size=[2]))
+ elif error_name == ErrorIf.ShiftSmallerOne:
+ shift = testGen.rng.integers(-3, 1)
+ if shift <= 0:
+ stride = [(16 >> -shift) - 1, (16 >> -shift) - 1] # avoids other ERROR_IF checks
+ offset = [(16 >> -shift) - 1, (16 >> -shift) - 1] # avoids other ERROR_IF checks
+ else:
+ stride = [(16 << shift) - 1, (16 << shift) - 1] # avoids other ERROR_IF checks
+ offset = [(16 << shift) - 1, (16 << shift) - 1] # avoids other ERROR_IF checks
+ elif error_name == ErrorIf.ShiftLargerEleven:
+ shift = np.int16(testGen.rng.integers(12, 15))
+ elif error_name == ErrorIf.StrideLargerDimension:
+ shape = shapeList[0]
+ transform_height = testGen.rng.choice([False, True])
+ if transform_height:
+ stride[0] = shape[1] + testGen.rng.integers(1, 10)
+ else:
+ stride[1] = shape[2] + testGen.rng.integers(1, 10)
+ elif error_name == ErrorIf.StrideLargerEqualMax:
+ stride = [(16 << shift) + 1, (16 << shift) + 1]
+ elif error_name == ErrorIf.OffsetLargerEqualMax:
+ offset = [(16 << shift) + 1, (16 << shift) + 1]
+ elif error_name == ErrorIf.OffsetSmallerEqualMin:
+ offset = [(-16 << shift) - 1, (-16 << shift) - 1]
+
+
+ if error_name == ErrorIf.WrongOutputType:
+ if mode == ResizeMode.NEAREST and dtype == DType.INT8:
+ incorrect_types = (DType.INT4, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT)
+ elif mode == ResizeMode.NEAREST and dtype == DType.INT16:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT32, DType.INT48, DType.FLOAT)
+ elif mode == ResizeMode.BILINEAR and dtype == DType.INT8:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT48, DType.FLOAT)
+ elif mode == ResizeMode.BILINEAR and dtype == DType.INT16:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.FLOAT)
+ elif dtype == DType.FLOAT:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.INT48)
+ outputDType = testGen.rng.choice(a=incorrect_types)
+
+ return shift, stride, stride_fp, offset, offset_fp, outputDType
+
+
+ @staticmethod
+ def eiPoolingErrorIf(testGen, error_name, stride, pad, kernel):
+ if (error_name == ErrorIf.StrideSmallerOne
+ # padding must not exceed the kernel size
+ and pad[0] < kernel[0] and pad[1] < kernel[0] and pad[2] < kernel[1] and pad[3] < kernel[1]):
+ wrongStride = (testGen.rng.choice([0, -1, -2, -3]), testGen.rng.choice([0, -1, -2, -3]))
+ return wrongStride, pad, kernel
+ elif error_name == ErrorIf.PadSmallerZero:
+ wrongPad = (testGen.rng.choice([-1, -2, -3]),
+ testGen.rng.choice([-1, -2, -3]),
+ testGen.rng.choice([-1, -2, -3]),
+ testGen.rng.choice([-1, -2, -3]))
+ return stride, wrongPad, kernel
+ elif error_name == ErrorIf.KernelSmallerOne:
+ wrongKernel = (testGen.rng.choice([0, -1, -2, -3]), testGen.rng.choice([0, -1, -2, -3]))
+ return stride, pad, wrongKernel
+ elif error_name == ErrorIf.PadLargerEqualKernel:
+ wrongPad = (testGen.rng.choice([kernel[0], kernel[0]+1, kernel[0]+2]),
+ testGen.rng.choice([kernel[0], kernel[0]+1, kernel[0]+2]),
+ testGen.rng.choice([kernel[1], kernel[1]+1, kernel[1]+2]),
+ testGen.rng.choice([kernel[1], kernel[1]+1, kernel[1]+2]))
+ return stride, wrongPad, kernel
+ else:
+ return None, None, None
+
+
+ @staticmethod
+ def eiRescaleWrongOutputType(input_dtype, output_dtype):
+ if input_dtype == DType.INT8:
+ if output_dtype not in [DType.UINT8, DType.INT8, DType.INT16, DType.INT32]:
+ return True
+ if input_dtype in [DType.INT16, DType.INT32]:
+ if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
+ return True
+ elif input_dtype == DType.INT48:
+ if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
+ return True
+ elif input_dtype == DType.UINT8:
+ if output_dtype != DType.INT8:
+ return True
+ return False
+
+
+ @staticmethod
+ def eiInvalidateInputOutputList(testGen, error_name, input_list, output_list):
+ # Mess up input/output tensors for ERROR_IF checks
+ if error_name == "WrongInputList":
+ add_input = testGen.rng.choice([True, False])
+ if add_input:
+ input_list.append('eiDummyInput')
+ else:
+ input_list = input_list[:-1]
+ elif error_name == "WrongOutputList":
+ add_output = testGen.rng.choice([True, False])
+ if add_output:
+ output_list.append('eiDummyOutput')
+ else:
+ output_list = []
+ return input_list, output_list
+
+ @staticmethod
+ def eiRestrictDimensions(shape, max_dim=32, max_items=100000):
+ """Restrict the dimensions and overall size of a shape to max_dim and max_items."""
+ new_shape = [min(d, max_dim) for d in shape] if max(shape) > max_dim else shape
+ while product(new_shape) > max_items:
+ new_shape = [max(d - 1, 1) for d in new_shape]
+ return new_shape
+
+ def eiSliceErrorIf(testGen, error_name, input_shape, start, size):
+ if error_name == ErrorIf.StartSmallerZero:
+ newStart = []
+ for i in range(len(input_shape)):
+ newStart.append(testGen.rng.choice([-3, -2, -1]))
+ return newStart, size
+ elif error_name == ErrorIf.SizeSmallerEqualZero:
+ newSize = []
+ for i in range(len(input_shape)):
+ newSize.append(testGen.rng.choice([-3, -2, -1, 0]))
+ return start, newSize
+ elif error_name == ErrorIf.StartSizeOutsideBounds:
+ newStart, newSize = [], []
+ for i in range(len(input_shape)):
+ newStart.append(input_shape[i]-1)
+ newSize.append(testGen.rng.choice([2, 3, 4]))
+ return newStart, newSize
+ elif error_name == ErrorIf.InputSizeStartLengthMismatch:
+ remove = testGen.rng.choice([True, False])
+ if remove:
+ newStart = start[1:]
+ newSize = size[1:]
+ else:
+ newStart = start
+ newStart.append(1)
+ newSize = size
+ newSize.append(1)
+ return newStart, newSize
+ else:
+ return start, size
+
+ @staticmethod
+ def eiCastErrorIf(testGen, input_dtype):
+ if input_dtype in [DType.BOOL, DType.FLOAT]:
+ outputDType = [DType.BOOL, DType.INT48, DType.FLOAT]
+ elif input_dtype in [DType.INT8, DType.INT16, DType.INT32]:
+ outputDType = [DType.INT48]
+ else:
+ assert True, f"input_dtype ({input_dtype}) not supported"
+ return outputDType
+
+
+class TosaErrorValidator:
+
+ @staticmethod
+ def evValidateErrorIfs(serializer, validator_fcns, error_name, **kwargs):
+ """Check ERROR_IF statements are caught and set the expected result.
+
+ Args:
+ serializer: the serializer to set the expected result in
+ validator_fcns: a sequence of validator functions to verify the result
+ error_name: the name of the ERROR_IF condition to check for
+ kwargs: keyword arguments for the validator functions
+ Returns:
+ True if the result matches the expected result; otherwise False
+ """
+ overall_result = True
+ for val_fcn in validator_fcns:
+ val_result = val_fcn(True, **kwargs)
+ validator_name = val_result['error_name']
+ error_result = val_result['error_result']
+ error_reason = val_result['error_reason']
+
+ # expect an error IFF the error_name and validator_name match
+ expected_result = error_result == (error_name == validator_name)
+ overall_result &= expected_result
+
+ if expected_result and error_result:
+ serializer.setExpectedReturnCode(2, True, desc=error_reason)
+ elif error_result: # and not expected_result
+ print(f"Unexpected ERROR_IF: Op: {valueToName(Op, kwargs['op']['op'])}"
+ f" Expected: {error_name}, Got: {validator_name}")
+ elif not expected_result: # and not error_result
+ print(f"Missed ERROR_IF: Op: {valueToName(Op, kwargs['op']['op'])}"
+ f" Expected: {error_name}")
+
+ if not expected_result:
+ for k, v in sorted(kwargs.items()):
+ if k != 'op':
+ if k.endswith('dtype'):
+ v = valueToName(DType, v)
+ print(f' {k} = {v}')
+
+ return overall_result
+
+ @staticmethod
+ def evWrongInputType(check=False, **kwargs):
+ error_result = False
+
+ # Find the unsupported input data types
+ op = kwargs['op']
+ input_dtypes = op['types']
+ allowed_input_dtypes = {t[0] if isinstance(t, list) else t for t in input_dtypes}
+ wrong_input_dtypes = list(usableDTypes(excludes=allowed_input_dtypes))
+
+ if op['op'] == Op.CLAMP:
+ wrong_input_dtypes.remove(DType.INT48)
+
+ if check:
+ input_dtype = kwargs['input_dtype']
+ if input_dtype not in allowed_input_dtypes:
+ error_result = True
+
+ info_dict = {
+ "error_name": ErrorIf.WrongInputType,
+ "error_result": error_result,
+ "error_reason": f"Input data type not supported for this operator",
+ "param_reqs": {"rank": None, "dtype": wrong_input_dtypes, "shape": None}
+ }
+ return info_dict
+
+ @staticmethod
+ def evWrongOutputType(check=False, **kwargs):
+ error_result = False
+
+ if check:
+ input_dtype = kwargs['input_dtype']
+ output_dtype = kwargs['output_dtype']
+ op = kwargs['op']
+
+ if op['op'] == Op.RESIZE:
+ mode = kwargs['mode']
+ if (
+ (mode == ResizeMode.NEAREST and input_dtype == DType.INT8 and output_dtype != DType.INT8) or
+ (mode == ResizeMode.NEAREST and input_dtype == DType.INT16 and output_dtype != DType.INT16) or
+ (mode == ResizeMode.BILINEAR and input_dtype == DType.INT8 and output_dtype != DType.INT32) or
+ (mode == ResizeMode.BILINEAR and input_dtype == DType.INT16 and output_dtype != DType.INT48) or
+ (input_dtype == DType.FLOAT and output_dtype != DType.FLOAT)
+ ):
+ error_result = True
+
+ elif op['op'] == Op.RESCALE:
+ if input_dtype == DType.INT8:
+ if output_dtype not in [DType.UINT8, DType.INT8, DType.INT16, DType.INT32]:
+ error_result = True
+ if input_dtype in [DType.INT16, DType.INT32]:
+ if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
+ error_result = True
+ elif input_dtype == DType.INT48:
+ if output_dtype not in [DType.INT8, DType.INT16, DType.INT32]:
+ error_result = True
+ elif input_dtype == DType.UINT8:
+ if output_dtype != DType.INT8:
+ error_result = True
+
+ elif op['op'] in [Op.FULLY_CONNECTED, Op.MATMUL]:
+ if (
+ (input_dtype == DType.INT8 and output_dtype != DType.INT32) or
+ (input_dtype == DType.INT16 and output_dtype != DType.INT48) or
+ (input_dtype == DType.FLOAT and output_dtype != DType.FLOAT)
+ ):
+ error_result = True
+
+ elif op['op'] == Op.ARGMAX:
+ if input_dtype in [DType.INT8, DType.INT16, DType.FLOAT] and output_dtype != DType.INT32:
+ error_result = True
+
+ elif op['op'] == Op.MUL:
+ if input_dtype != DType.FLOAT and output_dtype != DType.INT32:
+ error_result = True
+ elif input_dtype == DType.FLOAT and output_dtype != DType.FLOAT:
+ error_result = True
+
+ elif op['op'] == Op.TABLE:
+ if input_dtype == DType.INT8 and output_dtype != DType.INT8:
+ error_result = True
+ elif input_dtype == DType.INT16 and output_dtype != DType.INT32:
+ error_result = True
+
+ elif op['op'] in [Op.EQUAL, Op.GREATER_EQUAL, Op.GREATER]:
+ if output_dtype != DType.BOOL:
+ error_result = True
+
+ elif op['op'] == Op.CAST:
+ if (
+ (input_dtype == DType.BOOL and output_dtype not in [DType.INT8, DType.INT16, DType.INT32])
+ or (input_dtype == DType.INT8 and output_dtype not in [DType.BOOL, DType.INT16, DType.INT32, DType.FLOAT])
+ or (input_dtype == DType.INT16 and output_dtype not in [DType.BOOL, DType.INT8, DType.INT32, DType.FLOAT])
+ or (input_dtype == DType.INT32 and output_dtype not in [DType.BOOL, DType.INT8, DType.INT16, DType.FLOAT])
+ or (input_dtype == DType.FLOAT and output_dtype not in [DType.INT8, DType.INT16, DType.INT32])
+ ):
+ error_result = True
+
+ elif op['op'] in {Op.CONV2D, Op.CONV3D, Op.DEPTHWISE_CONV2D, Op.TRANSPOSE_CONV2D}:
+ if (
+ input_dtype == DType.INT8 and output_dtype != DType.INT32
+ or input_dtype == DType.INT16 and output_dtype != DType.INT48
+ or input_dtype == DType.FLOAT and output_dtype != DType.FLOAT
+ ):
+ error_result = True
+ # invalid input types are ignored, to avoid reporting multiple errors
+
+ else:
+ if output_dtype != input_dtype:
+ error_result = True
+
+ info_dict = {
+ "error_name": ErrorIf.WrongOutputType,
+ "error_result": error_result,
+ "error_reason": "Output data type not supported for this configuration of operator",
+ "param_reqs": {"rank": None, "dtype": None, "shape": None}
+ }
+ return info_dict
+
+ @staticmethod
+ def evWrongRank(check=False, **kwargs):
+ all_ranks = (1, 2, 3, 4, 5)
+
+ # Make a list of incorrect ranks
+ assert 'op' in kwargs
+ op = kwargs['op']
+ rmin, rmax = op['rank']
+ rank_range = range(rmin, rmax + 1)
+ incorrect_ranks = list(set(all_ranks) - set(rank_range))
+ # Remove small incorrect ranks to avoid index errors
+ incorrect_ranks = [rank for rank in incorrect_ranks if rank > rmin]
+ # Set minimum incorrect rank to 3 to avoid index error
+ if op['op'] in [Op.RESIZE]:
+ incorrect_ranks = [3, 5]
+ elif op['op'] in [Op.TRANSPOSE]:
+ incorrect_ranks = [7, 8]
+ elif op['op'] in [Op.CONV3D]:
+ incorrect_ranks = [6, 7]
+
+ error_name = ErrorIf.WrongRank
+ param_reqs = {"rank": incorrect_ranks, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Rank not supported for this operator"
+
+ if check:
+ input_shape = kwargs['input_shape']
+
+ if op['op'] in [Op.RESIZE, Op.AVG_POOL2D, Op.MAX_POOL2D] and len(input_shape) != 4:
+ error_result = True
+ elif op['op'] == Op.FULLY_CONNECTED and len(input_shape) != 2:
+ error_result = True
+ elif op['op'] == Op.MATMUL and len(input_shape) != 3:
+ error_result = True
+ else:
+ if len(input_shape) not in rank_range:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evWrongInputList(check=False, **kwargs):
+ error_name = ErrorIf.WrongInputList
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Op input list does not match expected input"
+
+ if check:
+ op = kwargs['op']
+ input_list = kwargs['input_list']
+ num_operands = kwargs['num_operands']
+ if op['op'] in [Op.SCATTER, Op.GATHER]:
+ # SCATTER/GATHER add an indices input tensor in their build functions
+ num_operands += 1
+ if len(input_list) != num_operands:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evWrongOutputList(check=False, **kwargs):
+ error_name = ErrorIf.WrongOutputList
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Op output list does not match expected output"
+
+ if check:
+ output_list = kwargs['output_list']
+ # Note this will be incorrect if an operator returns more than one output
+ if len(output_list) != 1:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evMaxDimExceeded(check=False, **kwargs):
+ error_name = ErrorIf.MaxDimExceeded
+ param_reqs = {
+ "rank": [4,4],
+ "dtype": [DType.INT8],
+ "shape": [[1, 16584, 5, 1], [1, 2, 16499, 4]]
+ }
+ error_result = False
+ error_reason = "At least one maximum dimension is greater than or equal to 16384"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ output_shape = kwargs['output_shape'] # Note this is just (OH, OW)
+ if ((input_shape[1] >= 16384) or
+ (input_shape[2] >= 16384) or
+ (output_shape[0] >= 16384) or
+ (output_shape[1] >= 16384)):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evBatchMismatch(check=False, **kwargs):
+ error_name = ErrorIf.BatchMismatch
+ param_reqs = {"rank": [4,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input batch size not equal to output batch size"
+
+ assert 'op' in kwargs
+ op = kwargs['op']
+ rmin, rmax = op['rank']
+ rank_range = range(rmin, rmax + 1)
+
+ if check:
+ input_shape = kwargs['input_shape']
+ output_shape = kwargs['result_tensor'].shape # Note this is just (N, OH, OW, C)
+
+ if (len(input_shape) in rank_range) and (input_shape[0] != output_shape[0]):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evChannelMismatch(check=False, **kwargs):
+ error_name = ErrorIf.ChannelMismatch
+ param_reqs = {"rank": [4,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input channel size not equal to output channel size"
+
+ assert 'op' in kwargs
+ op = kwargs['op']
+ rmin, rmax = op['rank']
+ rank_range = range(rmin, rmax + 1)
+
+ if check:
+ input_shape = kwargs['input_shape']
+ output_shape = kwargs['result_tensor'].shape # Note this is just (N, OH, OW, C)
+ if (len(input_shape) in rank_range) and (input_shape[3] != output_shape[3]):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evStrideSmallerEqualZero(check=False, **kwargs):
+ error_name = ErrorIf.StrideSmallerEqualZero
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Stride value smaller than or equal zero"
+
+ if check:
+ input_dtype = kwargs['input_dtype']
+ output_dtype = kwargs['output_dtype']
+ if input_dtype != DType.FLOAT and output_dtype == DType.FLOAT:
+ stride = kwargs['stride'] # Work around wrong input/output type tests
+ elif output_dtype == DType.FLOAT:
+ stride = kwargs['stride_fp']
+ elif input_dtype == DType.FLOAT and output_dtype != DType.FLOAT:
+ stride = kwargs['stride_fp'] # Work around wrong input/output type tests
+ else:
+ stride = kwargs['stride']
+
+ if min(stride) <= 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evStrideLargerEqualMax(check=False, **kwargs):
+ error_name = ErrorIf.StrideLargerEqualMax
+ param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
+ error_result = False
+ error_reason = "Stride value larger than or equal to maximum value"
+
+ if check:
+ shift = kwargs['shift']
+ input_dtype = kwargs['input_dtype']
+ stride = kwargs['stride']
+ if input_dtype in [DType.INT8, DType.INT16]:
+ if shift >= 0 and (stride[0] >= (16 << shift) or stride[1] >= (16 << shift)):
+ error_result = True
+ elif shift < 0 and (stride[0] >= (16 >> -shift) or stride[1] >= (16 >> -shift)):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evStrideLargerDimension(check=False, **kwargs):
+ error_name = ErrorIf.StrideLargerDimension
+ param_reqs = {"rank": None, "dtype": [DType.FLOAT], "shape": None}
+ error_result = False
+ error_reason = "Stride value larger than or equal to H/W dimension"
+
+ if check:
+ shape = kwargs['input_shape']
+ input_dtype = kwargs['input_dtype']
+ stride = kwargs['stride_fp']
+
+ if input_dtype == DType.FLOAT and (stride[0] > shape[1]) or (stride[1] > shape[2]):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evOffsetSmallerEqualMin(check=False, **kwargs):
+ error_name = ErrorIf.OffsetSmallerEqualMin
+ param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
+ error_result = False
+ error_reason = "Offset value smaller than or equal to minimum value"
+
+ if check:
+ shift = kwargs['shift']
+ output_dtype = kwargs['output_dtype']
+ if output_dtype == DType.FLOAT:
+ offset = kwargs['offset_fp']
+ else:
+ offset = kwargs['offset']
+
+ if shift >= 0 and (offset[0] <= (-16 << shift) or offset[1] <= (-16 << shift)):
+ error_result = True
+ elif shift < 0 and (offset[0] <= (-16 >> -shift) or offset[1] <= (-16 >> -shift)):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evOffsetLargerEqualMax(check=False, **kwargs):
+ error_name = ErrorIf.OffsetLargerEqualMax
+ param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
+ error_result = False
+ error_reason = "Offset value larger than or equal to maximum value"
+
+ if check:
+ shift = kwargs['shift']
+ output_dtype = kwargs['output_dtype']
+ if output_dtype == DType.FLOAT:
+ offset = kwargs['offset_fp']
+ else:
+ offset = kwargs['offset']
+
+ if shift >= 0:
+ if offset[0] >= (16 << shift) or offset[1] >= (16 << shift):
+ error_result = True
+
+ if shift >= 0 and (offset[0] >= (16 << shift) or offset[1] >= (16 << shift)):
+ error_result = True
+ elif shift < 0 and (offset[0] >= (16 >> -shift) or offset[1] >= (16 >> -shift)):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evShiftNotZero(check=False, **kwargs):
+ error_name = ErrorIf.ShiftNotZero
+ param_reqs = {"rank": None, "dtype": [DType.FLOAT], "shape": None}
+ error_result = False
+ error_reason = "Shift value must be zero for float input"
+
+ if check:
+ shift = kwargs['shift']
+ input_dtype = kwargs['input_dtype']
+ output_dtype = kwargs['output_dtype']
+ if input_dtype == DType.FLOAT and output_dtype == DType.FLOAT and shift != 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evShiftSmallerOne(check=False, **kwargs):
+ error_name = ErrorIf.ShiftSmallerOne
+ param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
+ error_result = False
+ error_reason = "Shift value smaller than one"
+
+ if check:
+ shift = kwargs['shift']
+ input_dtype = kwargs['input_dtype']
+ output_dtype = kwargs['output_dtype']
+ if shift < 1 and input_dtype != DType.FLOAT and output_dtype != DType.FLOAT:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evShiftLargerEleven(check=False, **kwargs):
+ error_name = ErrorIf.ShiftLargerEleven
+ param_reqs = {"rank": None, "dtype": [DType.INT8, DType.INT16], "shape": None}
+ error_result = False
+ error_reason = "Shift value larger than eleven"
+
+ if check:
+ shift = kwargs['shift']
+ if shift > 11:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evRankMismatch(check=False, **kwargs):
+ error_name = ErrorIf.RankMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input Rank does not match output rank"
+
+ if check:
+ input1_shape = kwargs['input1'].shape
+ input2_shape = kwargs['input2'].shape
+ # In case of SELECT op
+ input3_shape = kwargs['input3'].shape if 'input3' in kwargs else input2_shape
+ output_shape = kwargs['result_tensor'].shape
+ if (
+ (len(input1_shape) != len(output_shape)) or
+ (len(input2_shape) != len(output_shape)) or
+ (len(input3_shape) != len(output_shape))
+ ):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evDimensionMismatch(check=False, **kwargs):
+ error_name = ErrorIf.DimensionMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input Dimensions do not match output"
+
+ if check:
+ input1_shape = kwargs['input1'].shape
+ input2_shape = kwargs['input2'].shape
+ # In case of SELECT op
+ input3_shape = kwargs['input3'].shape if 'input3' in kwargs else input2_shape
+ output_shape = kwargs['result_tensor'].shape
+ for i in range(min(len(input1_shape), len(input2_shape), len(input3_shape))):
+ if (
+ (input1_shape[i] != 1 and input1_shape[i] != output_shape[i]) or
+ (input2_shape[i] != 1 and input2_shape[i] != output_shape[i]) or
+ (input3_shape[i] != 1 and input3_shape[i] != output_shape[i])
+ ):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evInputZeroPointNotZero(check=False, **kwargs):
+ op = kwargs['op']
+ error_result = False
+
+ # Quantizable types
+ qTypes = (DType.INT8, DType.UINT8)
+
+ # This does not apply to quantizable types
+ inputDtypes = [
+ dtype for dtype in op['types']
+ if (isinstance(dtype, list) and dtype[0] not in qTypes) or
+ (not isinstance(dtype, list) and dtype not in qTypes)
+ ]
+
+ if check:
+ input_dtype = kwargs['input_dtype']
+ if isinstance(kwargs['qinfo'], tuple):
+ qinfo = kwargs['qinfo']
+ input_zero_point = qinfo[0]
+ else:
+ # For use: qinfo.ints[0][1] = input_zp, qinfo.ints[1][1] = output_zp
+ qinfo = kwargs['qinfo'].ints
+ input_zero_point = qinfo[0][1]
+
+ if op['op'] == Op.MATMUL:
+ qinfo = kwargs['qinfo'].ints
+ for dtype, zp in (
+ (kwargs['input_dtype'], qinfo[0][1]),
+ (kwargs['input2_dtype'], qinfo[1][1]),
+ ):
+ if dtype not in qTypes and zp != 0:
+ error_result = True
+ break
+ else:
+ error_result = input_dtype not in qTypes and input_zero_point != 0
+
+ info_dict = {
+ "error_name": ErrorIf.InputZeroPointNotZero,
+ "error_result": error_result,
+ "error_reason": "Input DType not INT8 and zero point not 0",
+ "param_reqs": {"rank": None, "dtype": inputDtypes, "shape": None}
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evWeightZeroPointNotZero(check=False, **kwargs):
+ op = kwargs['op']
+
+ # exclude inputs with INT8 weights
+ inputDtypes = [t for t in op['types']
+ if not isinstance(t, list) or t[1] != DType.INT8]
+
+ error_name = ErrorIf.WeightZeroPointNotZero
+ param_reqs = {
+ "rank": None,
+ "dtype": inputDtypes,
+ "shape": None
+ }
+ error_result = False
+ error_reason = "Weight DType not INT8 and zero point not 0"
+
+ if check:
+ weight_dtype = kwargs['weight_dtype']
+ # For use: qinfo.ints[0][1] = input_zp, qinfo.ints[1][1] = weight_zp
+ qinfo = kwargs['qinfo'].ints
+ weight_zero_point = qinfo[1][1]
+ if weight_dtype != DType.INT8 and weight_zero_point != 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evOutputZeroPointNotZero(check=False, **kwargs):
+ op = kwargs['op']
+ inputDtypes = op['types'].copy()
+ if DType.INT8 in inputDtypes:
+ inputDtypes.remove(DType.INT8)
+ if DType.UINT8 in inputDtypes:
+ inputDtypes.remove(DType.UINT8)
+
+ error_name = ErrorIf.OutputZeroPointNotZero
+ param_reqs = {
+ "rank": None,
+ "dtype": inputDtypes,
+ "shape": None
+ }
+ error_result = False
+ error_reason = "Output DType not INT8 and zero point not 0"
+
+ if check:
+ input_dtype = kwargs['input_dtype']
+ output_dtype = kwargs['output_dtype']
+ if isinstance(kwargs['qinfo'], tuple):
+ qinfo = kwargs['qinfo']
+ output_zero_point = qinfo[1]
+ else:
+ # For use: qinfo.ints[0][1] = input_zp, qinfo.ints[1][1] = output_zp
+ qinfo = kwargs['qinfo'].ints
+ output_zero_point = qinfo[1][1]
+ if op['op'] == Op.AVG_POOL2D:
+ if input_dtype != DType.INT8 and output_zero_point != 0:
+ error_result = True
+ elif output_dtype not in [DType.INT8, DType.UINT8] and output_zero_point != 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evAxisSmallerZero(check=False, **kwargs):
+ error_name = ErrorIf.AxisSmallerZero
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Axis smaller than zero"
+
+ if check:
+ axis = kwargs['axis']
+ if axis < 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evAxisLargerRank(check=False, **kwargs):
+ error_name = ErrorIf.AxisLargerRank
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Axis larger than rank"
+
+ if check:
+ axis = kwargs['axis']
+ shape = kwargs['input_shape']
+ if axis > len(shape):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evShapeOfAxisNotOne(check=False, **kwargs):
+ error_name = ErrorIf.ShapeOfAxisNotOne
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "shape[axis] is not equal to 1"
+
+ if check:
+ axis = kwargs['axis']
+ shape = kwargs['output_shape']
+ if (0 <= axis < len(shape)) and shape[axis] != 1:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evPadSmallerZero(check=False, **kwargs):
+ error_name = ErrorIf.PadSmallerZero
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "At least one pad is smaller than zero"
+
+ if check:
+ op = kwargs['op']
+ pad = kwargs['pad']
+ if op['op'] == Op.PAD:
+ for padding in pad:
+ if min(padding) < 0:
+ error_result = True
+ else:
+ if min(pad) < 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evPadLargerEqualKernel(check=False, **kwargs):
+ error_name = ErrorIf.PadLargerEqualKernel
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "At least one pad is larger than kernel dimension"
+
+ if check:
+ pad = kwargs['pad']
+ kernel = kwargs['kernel']
+ if min(pad) > 0 and min(kernel) > 1:
+ if pad[0] >= kernel[0] or pad[1] >= kernel[0] or pad[2] >= kernel[1] or pad[3] >= kernel[1]:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evPoolingOutputShapeMismatch(check=False, **kwargs):
+ error_name = ErrorIf.PoolingOutputShapeMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Mismatch between output shape provided and expected output shape"
+
+ if check:
+ pad = kwargs['pad']
+ pad_top, pad_bottom, pad_left, pad_right = pad[0], pad[1], pad[2], pad[3]
+
+ kernel = kwargs['kernel']
+ kernel_y, kernel_x = kernel[0], kernel[1]
+
+ input_shape = kwargs['input_shape']
+ IH, IW = input_shape[1], input_shape[2]
+
+ output_shape = kwargs['output_shape']
+ OH, OW = output_shape[1], output_shape[2]
+
+ stride = kwargs['stride']
+ stride_y, stride_x = stride[0], stride[1]
+
+ # calculate correct height, width dimensions
+ if stride_x != 0 and stride_y != 0:
+ y_correct = (IH + pad_top + pad_bottom + stride_y - kernel_y) // stride_y
+ x_correct = (IW + pad_left + pad_right + stride_x - kernel_x) // stride_x
+
+ # ensure parameters are valid
+ params_valid = (min(kernel) >= 1 and min(stride) >= 1 and min(pad) >= 0
+ and not (pad[0] >= kernel[0] or pad[1] >= kernel[0] or pad[2] >= kernel[1] or pad[3] >= kernel[1]))
+
+ if params_valid and (OH != y_correct or OW != x_correct):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evArgmaxOutputShapeMismatch(check=False, **kwargs):
+ error_name = ErrorIf.ArgmaxOutputShapeMismatch
+ param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Mismatch between output shape provided and expected output shape"
+
+ if check:
+ output_shape = kwargs['output_shape']
+ input_shape = kwargs['input_shape']
+ axis = kwargs['axis']
+
+ dimension_match = True
+ axis_shift = 0
+
+ # Check that rank is correct before trying to check dimensions
+ if (len(input_shape) - 1) == len(output_shape):
+ for i in range(len(input_shape)):
+ if i == axis:
+ axis_shift = 1
+ continue
+ if input_shape[i] != output_shape[i - axis_shift]:
+ dimension_match = False
+
+ if not dimension_match:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evArgmaxOutputRankMismatch(check=False, **kwargs):
+ error_name = ErrorIf.ArgmaxOutputRankMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Mismatch between output shape provided and expected output shape"
+
+ if check:
+ output_shape = kwargs['output_shape']
+ input_shape = kwargs['input_shape']
+ axis = kwargs['axis']
+ valid_params = axis >= 0 and axis < len(input_shape)
+
+ if valid_params and (len(input_shape) - 1) != len(output_shape):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evKernelSmallerOne(check=False, **kwargs):
+ error_name = ErrorIf.KernelSmallerOne
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "At least one kernel dimension is smaller than zero"
+
+ if check:
+ kernel = kwargs['kernel']
+ if min(kernel) < 1:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evStrideSmallerOne(check=False, **kwargs):
+ error_name = ErrorIf.StrideSmallerOne
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "At least one stride dimension is smaller than zero"
+
+ if check:
+ stride = kwargs['stride']
+ if min(stride) < 1:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evDilationSmallerOne(check=False, **kwargs):
+ error_result = check and min(kwargs['dilation']) < 1
+ return {
+ "error_name": ErrorIf.DilationSmallerOne,
+ "error_reason": "At least one dilation is smaller than one",
+ "param_reqs": {"rank": None, "dtype": None, "shape": None},
+ "error_result": error_result
+ }
+
+ @staticmethod
+ def evScaleTrue(check=False, **kwargs):
+ error_name = ErrorIf.ScaleTrue
+ param_reqs = {"rank": None, "dtype": [DType.INT48], "shape": None}
+ error_result = False
+ error_reason = "Scale set to true but input type is INT48"
+
+ if check:
+ input_dtype = kwargs['input_dtype']
+ scale32 = kwargs['scale32']
+ if scale32 and input_dtype == DType.INT48:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evScaleNotTrue(check=False, **kwargs):
+ error_name = ErrorIf.ScaleNotTrue
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Scale set to false but double round set to true"
+
+ if check:
+ scale32 = kwargs['scale32']
+ double_round = kwargs['double_round']
+ if not scale32 and double_round:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evTensorSizeInputOutputMismatch(check=False, **kwargs):
+ error_name = ErrorIf.TensorSizeInputOutputMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input tensor size does not match output tensor size"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ output_shape = kwargs['output_shape']
+ input_size = np.prod(input_shape)
+ output_size = np.prod(output_shape)
+ if input_size != output_size:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evStartSmallerZero(check=False, **kwargs):
+ error_name = ErrorIf.StartSmallerZero
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Starting point smaller than zero"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ start = kwargs['start']
+ rank = len(input_shape)
+ if len(start) == rank:
+ for index in range(rank):
+ if start[index] < 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evSizeSmallerEqualZero(check=False, **kwargs):
+ error_name = ErrorIf.SizeSmallerEqualZero
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Size smaller than or equal to zero"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ size = kwargs['size']
+ rank = len(input_shape)
+ if len(size) == rank:
+ for index in range(rank):
+ if size[index] <= 0:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evStartSizeOutsideBounds(check=False, **kwargs):
+ error_name = ErrorIf.StartSizeOutsideBounds
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "starting point plus size larger than input dimension"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ start = kwargs['start']
+ size = kwargs['size']
+ rank = len(input_shape)
+ if len(start) == rank and len(size) == rank:
+ for index in range(rank):
+ if start[index] + size[index] > input_shape[index]:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evSizeOutputShapeMismatch(check=False, **kwargs):
+ error_name = ErrorIf.SizeOutputShapeMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Size does not match output dimension"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ output_shape = kwargs['output_shape']
+ size = kwargs['size']
+ rank = len(input_shape)
+ if len(size) == rank:
+ for index in range(rank):
+ if size[index] != output_shape[index]:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evInputSizeStartLengthMismatch(check=False, **kwargs):
+ error_name = ErrorIf.InputSizeStartLengthMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "rank of input not equal to length of start or size"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ start = kwargs['start']
+ size = kwargs['size']
+ rank = len(input_shape)
+ if rank != len(start) or rank != len(size):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evIndexOutsideBounds(check=False, **kwargs):
+ error_name = ErrorIf.IndexOutsideBounds
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Index outside of allowed bounds"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ perms = kwargs['perms']
+ rank = len(input_shape)
+
+ for index in perms:
+ if index < 0 or index > rank:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evIndexUsedTwice(check=False, **kwargs):
+ error_name = ErrorIf.IndexUsedTwice
+ param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Index used multiple times"
+
+ if check:
+ input_shape = kwargs['input_shape']
+ perms = kwargs['perms']
+ rank = len(input_shape)
+
+ unique_indices = []
+ for index in perms:
+ if index in unique_indices:
+ error_result = True
+ else:
+ unique_indices.append(index)
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evMaxSmallerMin(check=False, **kwargs):
+ error_name = ErrorIf.MaxSmallerMin
+ param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Max value smaller than min value"
+
+ if check:
+ max_val = kwargs['max_val']
+ min_val = kwargs['min_val']
+ if max_val < min_val:
+ error_result = True
+
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evConcatInputRankMismatch(check=False, **kwargs):
+ error_name = ErrorIf.ConcatInputRankMismatch
+ param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input ranks are not identical"
+
+ if check:
+ inputs = kwargs['inputs']
+ input_shape = kwargs['input_shape']
+ for input in inputs:
+ if len(input.shape) != len(input_shape):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evConcatInputDimMismatch(check=False, **kwargs):
+ error_name = ErrorIf.ConcatInputDimMismatch
+ param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input dimensions differ on too many axes"
+
+ if check:
+ inputs = kwargs['inputs']
+ input_shape = kwargs['input_shape']
+ axis = kwargs['axis']
+
+ # Ensure rank is valid before checking dims.
+ valid_rank = True
+ for input in inputs:
+ if len(input.shape) != len(input_shape):
+ valid_rank = False
+
+ if valid_rank:
+ for input in inputs:
+ for i, dim in enumerate(input.shape):
+ if dim != input_shape[i] and axis != i:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evConcatShapeSumMismatch(check=False, **kwargs):
+ error_name = ErrorIf.ConcatShapeSumMismatch
+ param_reqs = {"rank": [2,4], "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Sum of dimensions on axis not equal to output dimension"
+
+ if check:
+ inputs = kwargs['inputs']
+ input_shape = kwargs['input_shape']
+ output_shape = kwargs['output_shape']
+ axis = kwargs['axis']
+
+ # Ensure rank is valid before checking dims.
+ valid_params = True
+ for input in inputs:
+ if len(input.shape) != len(input_shape):
+ valid_params = False
+ if axis < 0 or axis > len(input_shape):
+ valid_params = False
+
+ if valid_params:
+ axis_dim_sum = 0
+ for input in inputs:
+ axis_dim_sum += input.shape[axis]
+
+ if axis_dim_sum != output_shape[axis]:
+ error_result = True
+
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+ @staticmethod
+ def evInputListThenGraphMismatch(check=False, **kwargs):
+ error_name = ErrorIf.CondIfInputListThenGraphMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input list shape does not match then-graph shape"
+
+ if check:
+ a = kwargs['a']
+ b = kwargs['b']
+ basicBlocks = kwargs['basicBlocks']
+ then_block = basicBlocks[1]
+ then_inputs = then_block.inputs
+ then_tens = then_block.tensors
+ if (a.shape != then_tens[then_inputs[0]].shape) or (b.shape != then_tens[then_inputs[1]].shape):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evInputListElseGraphMismatch(check=False, **kwargs):
+ error_name = ErrorIf.CondIfInputListElseGraphMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input list shape does not match else-graph shape"
+
+ if check:
+ a = kwargs['a']
+ b = kwargs['b']
+ basicBlocks = kwargs['basicBlocks']
+ else_block = basicBlocks[2]
+ else_inputs = else_block.inputs
+ else_tens = else_block.tensors
+ if (a.shape != else_tens[else_inputs[0]].shape) or (b.shape != else_tens[else_inputs[1]].shape):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evOutputListThenGraphMismatch(check=False, **kwargs):
+ error_name = ErrorIf.CondIfOutputListThenGraphMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Output list shape does not match then-graph shape"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ cond_block = basicBlocks[0]
+ cond_outputs = cond_block.outputs
+ cond_tens = cond_block.tensors
+ then_block = basicBlocks[1]
+ then_outputs = then_block.outputs
+ then_tens = then_block.tensors
+ if then_tens[then_outputs[0]].shape != cond_tens[cond_outputs[0]].shape:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evOutputListElseGraphMismatch(check=False, **kwargs):
+ error_name = ErrorIf.CondIfOutputListElseGraphMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Output list shape does not match else-graph shape"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ cond_block = basicBlocks[0]
+ cond_outputs = cond_block.outputs
+ cond_tens = cond_block.tensors
+ else_block = basicBlocks[2]
+ else_outputs = else_block.outputs
+ else_tens = else_block.tensors
+ if else_tens[else_outputs[0]].shape != cond_tens[cond_outputs[0]].shape:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evInputListOutputListMismatch(check=False, **kwargs):
+ error_name = ErrorIf.InputListOutputListMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input list does not match output list"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ while_block = basicBlocks[0]
+ while_inputs = while_block.inputs
+ while_outputs = while_block.outputs
+ while_tens = while_block.tensors
+ if while_tens[while_inputs[1]].shape != while_tens[while_outputs[0]].shape:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evInputListCondGraphMismatch(check=False, **kwargs):
+ error_name = ErrorIf.InputListCondGraphMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input list does not match cond graph"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ while_block = basicBlocks[0]
+ while_inputs = while_block.inputs
+ while_tens = while_block.tensors
+ cond_block = basicBlocks[1]
+ cond_inputs = cond_block.inputs
+ cond_tens = cond_block.tensors
+ if ((while_tens[while_inputs[0]].shape != cond_tens[cond_inputs[0]].shape) or
+ (while_tens[while_inputs[1]].shape != cond_tens[cond_inputs[2]].shape)):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evInputListBodyGraphInputMismatch(check=False, **kwargs):
+ error_name = ErrorIf.InputListBodyGraphInputMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input list does not match body graph input"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ while_block = basicBlocks[0]
+ while_inputs = while_block.inputs
+ while_tens = while_block.tensors
+ body_block = basicBlocks[2]
+ body_outputs = body_block.inputs
+ body_tens = body_block.tensors
+ if ((while_tens[while_inputs[0]].shape != body_tens[body_outputs[0]].shape) or
+ (while_tens[while_inputs[1]].shape != body_tens[body_outputs[2]].shape)):
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evInputListBodyGraphOutputMismatch(check=False, **kwargs):
+ error_name = ErrorIf.InputListBodyGraphOutputMismatch
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Input list does not match body graph output"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ while_block = basicBlocks[0]
+ while_inputs = while_block.inputs
+ while_tens = while_block.tensors
+ body_block = basicBlocks[2]
+ body_outputs = body_block.outputs
+ body_tens = body_block.tensors
+ if ((while_tens[while_inputs[0]].shape != body_tens[body_outputs[0]].shape) or
+ (while_tens[while_inputs[1]].shape != body_tens[body_outputs[2]].shape)):
+ error_result = True
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+ @staticmethod
+ def evCondGraphOutputNotMatchingBool(check=False, **kwargs):
+ error_name = ErrorIf.CondGraphOutputNotMatchingBool
+ param_reqs = {"rank": None, "dtype": None, "shape": None}
+ error_result = False
+ error_reason = "Cond graph output is not a match list of booleans"
+
+ if check:
+ basicBlocks = kwargs['basicBlocks']
+ cond_block = basicBlocks[1]
+ cond_outputs = cond_block.outputs
+ cond_tens = cond_block.tensors
+ if cond_tens[cond_outputs[0]].dtype != DType.BOOL:
+ error_result = True
+
+ info_dict = {
+ "error_name": error_name,
+ "error_result": error_result,
+ "error_reason": error_reason,
+ "param_reqs": param_reqs
+ }
+ return info_dict
+
+
+class TosaInvalidValidator:
+
+ @staticmethod
+ def ivWrongDataTypeOrModeResize(**kwargs):
+ input_dtype = kwargs["input_dtype"]
+ args = kwargs["args"]
+ mode = args[0]
+ stride = args[1]
+ stride_fp = args[4]
+ output_dtype = args[8]
+
+ if mode == ResizeMode.BILINEAR:
+ # Invalid output data type / Invalid input datatype
+ return (
+ not (input_dtype == DType.INT8 and output_dtype == DType.INT32) or
+ not (input_dtype == DType.INT16 and output_dtype == DType.INT48) or
+ not (input_dtype == DType.FLOAT and output_dtype == DType.FLOAT) or
+ (input_dtype not in [DType.INT8, DType.INT32, DType.FLOAT])
+ )
+ elif mode == ResizeMode.NEAREST:
+ # Invalid output data type / Invalid input datatype
+ return (
+ (input_dtype != output_dtype) or
+ (input_dtype not in [DType.INT8, DType.INT32, DType.FLOAT])
+ )
+ else:
+ # Invalid resize mode
+ return True
+
+ @staticmethod
+ def ivBadStride(**kwargs):
+ input_dtype = kwargs["input_dtype"]
+ args = kwargs["args"]
+ stride_x = args[1][0]
+ stride_y = args[1][1]
+ stride_fp_x = args[4][0]
+ stride_fp_y = args[4][1]
+
+ if input_dtype == DType.FLOAT:
+ if stride_fp_x <= 0 or stride_fp_y <= 0:
+ # Negative or zero stride
+ return True
+ else:
+ if stride_x <= 0 or stride_y <= 0:
+ # Negative or zero stride
+ return True
+ return False
+
+ @staticmethod
+ def ivHeightWidthInvalid(**kwargs):
+ opName = kwargs['opName']
+
+ inputShapes = kwargs['shapeList']
+ input_shape = inputShapes[0]
+
+ args = kwargs['args']
+ strides = args[0]
+ padding = args[1]
+
+ if opName.endswith("pool2d"):
+ # avg_pool2d, max_pool2d
+ kernel_shape = args[2]
+ h = (input_shape[1] + padding[0] + padding[1] + strides[0] - kernel_shape[0]) // strides[0]
+ w = (input_shape[2] + padding[2] + padding[3] + strides[1] - kernel_shape[1]) // strides[1]
+ # return True if any dimension is < 1
+ return h < 1 or w < 1
+
+ if opName.startswith("transpose_conv2d"):
+ # transpose_conv2d
+ dilations = args[2]
+ output_shape = args[3]
+ filter_shape = inputShapes[1]
+ kernel_shape = filter_shape[1:-1]
+
+ def get_out_size(in_size, stride, kernel_size, dilation, out_pad, in_pad):
+ """Calculate the transpose_conv2d output size for a dimension.
+
+ Based on the keras function deconv_output_length, in
+ https://github.com/keras-team/keras/blob/master/keras/utils/conv_utils.py
+
+ Args:
+ in_size: the input size - int
+ stride: the stride - int
+ kernel_size: the kernel size - int
+ dilation: the kernel dilation - int
+ out_pad: the output padding - int
+ in_pad: the input padding - int
+
+ Returns:
+ the output size
+ """
+ dilated_kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
+ return (in_size - 1) * stride + dilated_kernel_size - 2 * in_pad + out_pad
+
+ for pad_h, pad_w in (
+ (kernel_shape[0] - 1, kernel_shape[1] - 1), # FULL padding
+ (kernel_shape[0] // 2, kernel_shape[1] // 2), # SAME padding
+ (0, 0) # VALID padding
+ ):
+ h = get_out_size(input_shape[1], strides[0], kernel_shape[0], dilations[0],
+ padding[0], pad_h)
+ w = get_out_size(input_shape[2], strides[1], kernel_shape[1], dilations[1],
+ padding[1], pad_w)
+ if output_shape[1] == h and output_shape[2] == w:
+ return False
+
+ # output shape does not match the expected shape for any padding option
+ return True
+
+ if "conv2d" in opName or "conv3d" in opName:
+ # conv2d, conv3d, depthwise_conv2d
+ dilations = args[2]
+ filter_shape = inputShapes[1]
+ kernel_shape = filter_shape[0:2] if opName.startswith("depthwise_conv2d") else filter_shape[1:-1]
+
+ for i in range(len(kernel_shape)):
+ dim = (
+ input_shape[i + 1]
+ - kernel_shape[i]
+ - (kernel_shape[i] - 1) * (dilations[i] - 1)
+ + padding[i * 2 + 0]
+ + padding[i * 2 + 1]
+ ) // strides[i] + 1
+ # return True if any dimension is < 1
+ if dim < 1:
+ return True
+ return False
+
+ assert False, f"Unrecognized Op: {opName}"
+
+ @staticmethod
+ def ivNonPositiveOutputShape(**kwargs):
+ args = kwargs['args']
+ output_shape = args[3]
+ if output_shape[1] <= 0 or output_shape[2] <= 0:
+ # Negative output shape
+ return True
+ return False
+
+
+class TosaTestGen:
+ # Maximum rank of tensor supported by test generator.
+ TOSA_TENSOR_MAX_RANK = 6
+
+ def __init__(self, args):
+ self.args = args
+ self.basePath = args.output_dir
+ self.random_seed = args.random_seed
+ self.ser = None
+ self.rng = np.random.default_rng(self.random_seed)
+ self.createDynamicOpLists()
+ self.initOpListDefaults()
+ self.quantGen = TosaQuantGen()
+ # Force makeShape to do a specific starting shape
+ self.targetted_shape = None
+
+ def createSerializer(self, opName, testPath):
+ self.testPath = os.path.join(opName, testPath)
+
+ fullPath = os.path.join(self.basePath, self.testPath)
+ os.makedirs(fullPath, exist_ok=True)
+ self.ser = ts.TosaSerializer(fullPath)
+
+ def getSerializer(self):
+ return self.ser
+
+ def serialize(self, testName):
+ with open(
+ os.path.join(self.basePath, self.testPath, "{}.tosa".format(testName)), "wb"
+ ) as fd:
+ fd.write(self.ser.serialize())
+
+ with open(os.path.join(self.basePath, self.testPath, "desc.json"), "w") as fd:
+ fd.write(self.ser.writeJson("{}.tosa".format(testName)))
+
+ def resetRNG(self, seed=None):
+ if seed == None:
+ seed = self.random_seed + 1
+ self.rng = np.random.default_rng(seed)
+
+ def getRandTensor(self, shape, dtype):
+ if dtype == DType.BOOL:
+ np_dt = np.bool
+ return np.bool_(self.rng.choice(a=[False, True], size=shape))
+ # TOSA specific INT4 weight range from -7 to 7
+ elif dtype == DType.INT4:
+ return np.int32(self.rng.integers(low=-7, high=8, size=shape))
+ elif dtype == DType.INT8:
+ return np.int32(self.rng.integers(low=-128, high=128, size=shape))
+ elif dtype == DType.UINT8:
+ return np.int32(self.rng.integers(low=0, high=256, size=shape))
+ elif dtype == DType.INT16:
+ return np.int32(self.rng.integers(low=-32768, high=32768, size=shape))
+ elif dtype == DType.INT32:
+ return np.int32(
+ self.rng.integers(low=-(1 << 31), high=(1 << 31), size=shape)
+ )
+ elif dtype == DType.INT48:
+ return np.int64(
+ self.rng.integers(low=-(1 << 47), high=(1 << 47), size=shape)
+ )
+ elif dtype == DType.FLOAT:
+ return np.float32(self.rng.random(size=shape))
+ else:
+ raise Exception("Unrecognized Dtype: {}".format(dtype))
+
+ def buildPlaceholderTensors(self, shape_list, dtype_list):
+ placeholders = []
+
+ assert len(shape_list) == len(dtype_list)
+
+ for idx, shape in enumerate(shape_list):
+ arr = self.getRandTensor(shape, dtype_list[idx])
+ placeholders.append(self.ser.addPlaceholder(shape, dtype_list[idx], arr))
+
+ return placeholders
+
+ def buildConstTensors(self, shape_list, dtype_list):
+ consts = []
+
+ assert len(shape_list) == len(dtype_list)
+
+ for idx, shape in enumerate(shape_list):
+ arr = self.getRandTensor(shape, dtype_list[idx])
+ consts.append(self.ser.addConst(shape, dtype_list[idx], arr))
+
+ return consts
+
+ def makeShape(self, rank):
+ if self.targetted_shape:
+ return np.int32(self.targetted_shape)
+ return np.int32(
+ self.rng.integers(
+ low=self.args.tensor_shape_range[0],
+ high=self.args.tensor_shape_range[1],
+ size=rank,
+ )
+ )
+
+ def setTargetShape(self, shape):
+ self.targetted_shape = shape
+
+ def randInt(self, low=0, high=256):
+ return np.int32(self.rng.integers(low=low, high=high, size=1))[0]
+
+ def getRandNumberDType(self, dtype):
+ if dtype == DType.FLOAT:
+ return self.rng.random()
+ elif dtype == DType.BOOL:
+ return self.rng.choice([False, True])
+ # TOSA specific INT4 weight range from -7 to 7
+ elif dtype == DType.INT4:
+ low, high = (-7, 8)
+ elif dtype == DType.INT8:
+ low, high = (-128, 128)
+ elif dtype == DType.INT16:
+ low, high = (-32768, 32768)
+ elif dtype == DType.INT32:
+ low, high = (-(1 << 31), (1 << 31))
+ elif dtype == DType.INT48:
+ low, high = (-(1 << 47), (1 << 47))
+ # Special size
+ return np.int64(self.rng.integers(low, high, size=1))[0]
+ else:
+ raise Exception("Unknown dtype: {}".format(dtype))
+
+ return np.int32(self.rng.integers(low, high, size=1))[0]
+
+ def shapeStr(self, shape):
+
+ sStr = []
+ # Convert to strings
+ for i in shape:
+ sStr.append(str(i))
+
+ return "x".join(sStr)
+
+ def typeStr(self, t):
+ if isinstance(t, list):
+ assert len(t) >= 2
+ return "{}x{}".format(self.typeStr(t[0]), self.typeStr(t[1]))
+ else:
+ if t == DType.BOOL:
+ return "b"
+ elif t == DType.INT4:
+ return "i4"
+ elif t == DType.INT8:
+ return "i8"
+ elif t == DType.UINT8:
+ return "u8"
+ elif t == DType.INT16:
+ return "i16"
+ elif t == DType.INT32:
+ return "i32"
+ elif t == DType.INT48:
+ return "i48"
+ elif t == DType.FLOAT:
+ return "float"
+ else:
+ raise Exception("Unknown dtype, cannot convert to string: {}".format(t))
+
+ def typeWidth(self, t):
+ """ Get the datatype width for integer types"""
+ if t == DType.INT4:
+ return 4
+ elif t == DType.INT8:
+ return 8
+ elif t == DType.UINT8:
+ return 8
+ elif t == DType.INT16:
+ return 16
+ elif t == DType.INT32:
+ return 32
+ elif t == DType.INT48:
+ return 48
+ elif t == DType.FLOAT:
+ return 32
+ elif t == DType.BOOL:
+ return 1
+ else:
+ raise Exception(f"Unknown dtype, cannot determine width: {t}")
+
+ # Argument generators
+ # Returns a list of tuples (stringDescriptor, [build_fcn_arg_list])
+ # Where the string descriptor is used to generate the test name and
+ # The build_fcn_arg_list is expanded and passed to the operator test
+ # build function
+
+ def build_unary(self, op, a, validator_fcns=None, error_name=None, qinfo=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+
+ # build_placeholder returns an int, ABS/other ops does not
+ if isinstance(op, int):
+ self.ser.addOperator(op, a.name, result_tens.name, None, qinfo)
+ return result_tens
+ elif op['op'] == Op.IDENTITY:
+ self.ser.addOperator(op['op'], a.name, result_tens.name, None, qinfo)
+ return result_tens
+
+ # Ensure new output type has correct qinfo
+ if error_name == ErrorIf.WrongOutputType:
+ if result_tens.dtype not in [DType.INT8, DType.UINT8]:
+ qinfo = ts.TosaSerializerQuantInfo()
+ qinfo.UnaryQuantInfo(
+ TosaQuantGen.getQinfo(self, a.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
+ )
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_dtype=a.dtype,
+ output_dtype=result_tens.dtype,
+ qinfo = qinfo,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list, None, qinfo)
+ return result_tens
+
+ def build_binary_broadcast(self, op, a, b, validator_fcns, error_name=None):
+ result_tens = OutputShaper.binaryBroadcastOp(self.ser, self.rng, a, b, error_name)
+
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name, b.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input1 = a,
+ input2 = b,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list)
+ return result_tens
+
+ def build_binary_nonbroadcast(self, op, a, b, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.binaryNonBroadcastOp(self.ser, a, b)
+ self.ser.addOperator(op['op'], [a.name, b.name], [result_tens.name])
+ return result_tens
+
+ def build_arithmetic_right_shift(self, op, a, b, round, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.binaryBroadcastOp(self.ser, self.rng, a, b, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name, b.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input1 = a,
+ input2 = b,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.ArithmeticRightShiftAttribute(round)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_mul(self, op, a, b, shift, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.binaryBroadcastOp(self.ser, self.rng, a, b, error_name)
+
+ # Special for multiply:
+ # Force the result to INT32 for INT types
+ if a.dtype != DType.FLOAT:
+ result_tens.setDtype(DType.INT32)
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT48]
+ outputDType = self.rng.choice(all_dtypes)
+ result_tens.setDtype(outputDType)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name, b.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input1 = a,
+ input2 = b,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.MulAttribute(shift)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_table(self, op, a, table, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.tableOp(self.ser, self.rng, a, error_name)
+
+ attr = ts.TosaSerializerAttribute()
+ attr.TableAttribute(table)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+
+ return result_tens
+
+ def build_select(self, op, cond, a, b, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.selectOp(self.ser, self.rng, cond, a, b, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [cond.name, a.name, b.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input1 = cond,
+ input2 = a,
+ input3 = b,
+ input_shape = a.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list,)
+ return result_tens
+
+ def build_comparison(self, op, a, b, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.binaryComparisonOp(self.ser, self.rng, a, b, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name, b.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input1 = a,
+ input2 = b,
+ input_shape = a.shape,
+ input_dtype = a.dtype,
+ output_shape = result_tens.shape,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list,)
+ return result_tens
+
+ def build_argmax(self, op, a, axis, validator_fcns, error_name):
+ result_tens = OutputShaper.argmaxOp(self.ser, self.rng, a, axis, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ axis=axis,
+ input_shape = a.shape,
+ input_dtype = a.dtype,
+ output_shape = result_tens.shape,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.AxisAttribute(axis)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_pool2d(self, op, input, stride, pad, kernel, validator_fcns=None, error_name=None, qinfo=None):
+ result_tens = OutputShaper.pool2dOp(self.ser, self.rng, input, kernel, stride, pad, error_name)
+
+ # Ensure new output type has correct qinfo
+ if error_name == ErrorIf.WrongInputType:
+ if input.dtype not in [DType.INT8, DType.UINT8]:
+ qinfo = ts.TosaSerializerQuantInfo()
+ qinfo.UnaryQuantInfo(
+ TosaQuantGen.getQinfo(self, input.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
+ )
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [input.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape=input.shape,
+ input_dtype=input.dtype,
+ output_shape=result_tens.shape,
+ output_dtype=result_tens.dtype,
+ kernel=kernel,
+ stride=stride,
+ pad=pad,
+ qinfo = qinfo,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.PoolAttribute(kernel, stride, pad)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr, qinfo)
+ return result_tens
+
+ def build_conv2d(self, op, ifm, filter, bias, strides, padding, dilations, validator_fcns=None, error_name=None, qinfo=None):
+ assert len(padding) == 4
+ result_tens = OutputShaper.conv2dOp(
+ self.ser, self.rng, ifm, filter, strides, padding, dilations, error_name
+ )
+
+ # Ensure new output type has correct qinfo
+ if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
+ qinfo = ts.TosaSerializerQuantInfo()
+ qinfo.ConvQuantInfo(
+ TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
+ )
+
+ # Invalidate Input/Output list for error_if checks.
+ input_list = [ifm.name, filter.name, bias.name]
+ output_list = [result_tens.name]
+ num_operands = sum(op["operands"])
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_dtype=ifm.dtype,
+ weight_dtype=filter.dtype,
+ output_dtype=result_tens.dtype,
+ qinfo=qinfo,
+ input_list=input_list,
+ num_operands=num_operands,
+ output_list=output_list,
+ pad=padding,
+ stride=strides,
+ dilation=dilations,
+ input_shape=ifm.shape,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.ConvAttribute(padding, strides, dilations)
+
+ self.ser.addOperator(
+ op['op'], input_list, output_list, attr, qinfo
+ )
+ return result_tens
+
+ def build_conv3d(self, op, ifm, filter, bias, strides, padding, dilations, validator_fcns=None, error_name=None, qinfo=None):
+ assert len(padding) == 6
+ result_tens = OutputShaper.conv3dOp(
+ self.ser, self.rng, ifm, filter, strides, padding, dilations, error_name
+ )
+
+ # Ensure new output type has correct qinfo
+ if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
+ qinfo = ts.TosaSerializerQuantInfo()
+ qinfo.ConvQuantInfo(
+ TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
+ )
+
+ # Invalidate Input/Output list for error_if checks.
+ input_list = [ifm.name, filter.name, bias.name]
+ output_list = [result_tens.name]
+ num_operands = sum(op["operands"])
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_dtype=ifm.dtype,
+ weight_dtype=filter.dtype,
+ output_dtype=result_tens.dtype,
+ qinfo=qinfo,
+ input_list=input_list,
+ num_operands=num_operands,
+ output_list=output_list,
+ pad=padding,
+ stride=strides,
+ dilation=dilations,
+ input_shape=ifm.shape,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.ConvAttribute(padding, strides, dilations)
+
+ self.ser.addOperator(
+ op['op'], input_list, output_list, attr, qinfo
+ )
+ return result_tens
+
+ def build_transpose_conv2d(
+ self, op, ifm, filter, bias, stride, outpad, dilation, output_shape, validator_fcns=None, error_name=None, qinfo=None
+ ):
+ assert len(outpad) == 2
+ result_tens = OutputShaper.transposeConv2DOp(self.ser, self.rng, ifm, output_shape, error_name)
+
+ # Ensure new output type has correct qinfo
+ if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
+ qinfo = ts.TosaSerializerQuantInfo()
+ qinfo.ConvQuantInfo(
+ TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
+ )
+
+ # Invalidate Input/Output list for error_if checks.
+ input_list = [ifm.name, filter.name, bias.name]
+ output_list = [result_tens.name]
+ num_operands = sum(op["operands"])
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_dtype=ifm.dtype,
+ weight_dtype=filter.dtype,
+ output_dtype=result_tens.dtype,
+ qinfo=qinfo,
+ input_list=input_list,
+ num_operands=num_operands,
+ output_list=output_list,
+ pad=outpad,
+ stride=stride,
+ dilation=dilation,
+ input_shape=ifm.shape,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.TransposeConvAttribute(outpad, stride, dilation, output_shape)
+
+ self.ser.addOperator(
+ op['op'], input_list, output_list, attr, qinfo
+ )
+ return result_tens
+
+ def build_depthwise_conv2d(
+ self, op, ifm, filter, bias, strides, padding, dilations, validator_fcns=None, error_name=None, qinfo=None
+ ):
+ result_tens = OutputShaper.depthwiseConv2dOp(
+ self.ser, self.rng, ifm, filter, strides, padding, dilations, error_name
+ )
+
+ # Ensure new output type has correct qinfo
+ if error_name == ErrorIf.WrongInputType and ifm.dtype not in (DType.INT8, DType.UINT8):
+ qinfo = ts.TosaSerializerQuantInfo()
+ qinfo.ConvQuantInfo(
+ TosaQuantGen.getQinfo(self, ifm.dtype), TosaQuantGen.getQinfo(self, result_tens.dtype)
+ )
+
+ # Invalidate Input/Output list for error_if checks.
+ input_list = [ifm.name, filter.name, bias.name]
+ output_list = [result_tens.name]
+ num_operands = sum(op["operands"])
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_dtype=ifm.dtype,
+ weight_dtype=filter.dtype,
+ output_dtype=result_tens.dtype,
+ qinfo=qinfo,
+ input_list=input_list,
+ num_operands=num_operands,
+ output_list=output_list,
+ pad=padding,
+ stride=strides,
+ dilation=dilations,
+ input_shape=ifm.shape,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.ConvAttribute(padding, strides, dilations)
+
+ self.ser.addOperator(
+ op['op'], input_list, output_list, attr, qinfo
+ )
+ return result_tens
+
+ def build_fully_connected(self, op, ifm, filter, bias, validator_fcns=None, error_name=None, qinfo=None):
+ result_tens = OutputShaper.fullyConnectedOp(self.ser, self.rng, ifm, filter, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [ifm.name, filter.name, bias.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape=ifm.shape,
+ input_dtype=ifm.dtype,
+ weight_dtype=filter.dtype,
+ output_shape=result_tens.shape,
+ output_dtype=result_tens.dtype,
+ qinfo = qinfo,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(
+ op['op'], input_list, output_list, None, qinfo
+ )
+ return result_tens
+
+ def build_matmul(self, op, a, b, validator_fcns=None, error_name=None, qinfo=None):
+ result_tens = OutputShaper.matmulOp(self.ser, self.rng, a, b, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name, b.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape=a.shape,
+ input_dtype=a.dtype,
+ input2_shape=b.shape,
+ input2_dtype=b.dtype,
+ output_shape=result_tens.shape,
+ output_dtype=result_tens.dtype,
+ qinfo = qinfo,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list, None, qinfo)
+ return result_tens
+
+ def build_reduce(self, op, a, axis, validator_fcns, error_name=None):
+ result_tens = OutputShaper.reduceOp(self.ser, self.rng, a, axis, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ axis = axis,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.AxisAttribute(axis)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_clamp(self, op, a, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+
+ v = [self.getRandNumberDType(a.dtype), self.getRandNumberDType(a.dtype)]
+
+ if error_name == ErrorIf.MaxSmallerMin:
+ # Make sure the numbers are different to invoke this error
+ while v[0] == v[1]:
+ v = [self.getRandNumberDType(a.dtype), self.getRandNumberDType(a.dtype)]
+ max_val = min(v)
+ min_val = max(v)
+ else:
+ max_val = max(v)
+ min_val = min(v)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ max_val=max_val,
+ min_val=min_val,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ if a.dtype == DType.FLOAT:
+ attr.ClampAttribute(0, 0, min_val, max_val)
+ else:
+ attr.ClampAttribute(min_val, max_val, 0, 0)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_leaky_relu(self, op, a, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+ attr = ts.TosaSerializerAttribute()
+
+ attr.LeakyReluAttribute(self.getRandNumberDType(DType.FLOAT))
+
+ self.ser.addOperator(op['op'], [a.name], [result_tens.name], attr)
+ return result_tens
+
+ # Needs an additional type/input
+ def build_prelu(self, op, a, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+
+ self.ser.addOperator(op['op'], [a.name], [result_tens.name])
+ return result_tens
+
+ def build_sigmoid(self, op, a, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list)
+ return result_tens
+
+ def build_tanh(self, op, a, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list)
+ return result_tens
+
+ def build_concat(self, op, *a, validator_fcns=None, error_name=None):
+ if error_name != ErrorIf.WrongInputType:
+ assert type(a[-1]) == int
+
+ # To store variable length list of input tensors we need to store axis along with it
+ axis = a[-1]
+ a = a[:-1]
+
+ result_tens = OutputShaper.concatOp(self.ser, self.rng, axis, *a, error_name=error_name)
+
+ input_tensor_names = []
+ for tensor in a:
+ input_tensor_names.append(tensor.name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = input_tensor_names
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ axis=axis,
+ input_shape = a[0].shape,
+ output_shape = result_tens.shape,
+ input_dtype = a[0].dtype,
+ output_dtype = result_tens.dtype,
+ inputs=a,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.AxisAttribute(axis)
+
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_pad(self, op, a, padding, pad_const_int, pad_const_float, validator_fcns=None, error_name=None, qinfo=None):
+ result_tens = OutputShaper.padOp(self.ser, self.rng, a, padding, error_name)
+
+ attr = ts.TosaSerializerAttribute()
+ attr.PadAttribute(padding.flatten(), pad_const_int, pad_const_float)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ pad=padding,
+ qinfo=qinfo,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(
+ op['op'], input_list, output_list, attr, qinfo
+ )
+ return result_tens
+
+ def build_reshape(self, op, a, newShape, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.reshapeOp(self.ser, self.rng, a, newShape, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.ReshapeAttribute(newShape)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_reverse(self, op, a, axis, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, a, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ axis=axis,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.AxisAttribute(axis)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_transpose(self, op, a, perms, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.transposeOp(self.ser, self.rng, a, perms, error_name)
+
+ attr = ts.TosaSerializerAttribute()
+ attr.TransposeAttribute(perms)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ perms=perms,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_slice(self, op, a, start, size, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.sliceOp(self.ser, self.rng, a, start, size, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ start=start,
+ size=size,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.SliceAttribute(start, size)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_tile(self, op, a, multiples, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.tileOp(self.ser, self.rng, a, multiples, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [a.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = a.shape,
+ output_shape = result_tens.shape,
+ input_dtype = a.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.TileAttribute(multiples)
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_gather(self, op, values, validator_fcns=None, error_name=None):
+
+ # Create a new indicies tensor
+ # here with data that doesn't exceed the dimensions of the values tensor
+
+ K = values.shape[1] # K
+ W = self.randInt(
+ self.args.tensor_shape_range[0], self.args.tensor_shape_range[1]
+ ) # W
+ indicies_arr = np.int32(
+ self.rng.integers(low=0, high=K, size=[values.shape[0], W])
+ ) # (N, W)
+ indicies = self.ser.addConst(indicies_arr.shape, DType.INT32, indicies_arr)
+
+ result_tens = OutputShaper.gatherOp(self.ser, self.rng, values, indicies, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [values.name, indicies.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = values.shape,
+ output_shape = result_tens.shape,
+ input_dtype = values.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list)
+
+ return result_tens
+
+ def build_scatter(self, op, values_in, input, validator_fcns=None, error_name=None):
+
+ # Create a new indicies tensor
+ # here with data that doesn't exceed the dimensions of the values_in tensor
+
+ K = values_in.shape[1] # K
+ W = input.shape[1] # W
+ indicies_arr = np.int32(
+ self.rng.integers(low=0, high=K, size=[values_in.shape[0], W])
+ ) # (N, W)
+ indicies = self.ser.addConst(indicies_arr.shape, DType.INT32, indicies_arr)
+
+ result_tens = OutputShaper.scatterOp(self.ser, self.rng, values_in, indicies, input, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [values_in.name, indicies.name, input.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = values_in.shape,
+ output_shape = result_tens.shape,
+ input_dtype = values_in.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list)
+
+ return result_tens
+
+
+ def build_resize(
+ self,
+ op,
+ input,
+ mode,
+ stride,
+ offset,
+ shift,
+ stride_fp,
+ offset_fp,
+ output_dims,
+ input_dtype,
+ output_dtype,
+ validator_fcns,
+ error_name = None,
+ ):
+ result_tens = OutputShaper.resizeOp(
+ self.ser,
+ self.rng,
+ input,
+ mode,
+ stride,
+ offset,
+ shift,
+ stride_fp,
+ offset_fp,
+ output_dims,
+ input_dtype,
+ output_dtype,
+ error_name
+ )
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [input.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ mode=mode,
+ shift=shift,
+ input_dtype=input_dtype,
+ output_dtype=output_dtype,
+ input_shape=input.shape,
+ output_shape=output_dims,
+ offset=offset,
+ offset_fp=offset_fp,
+ stride=stride,
+ stride_fp=stride_fp,
+ input_list=input_list,
+ output_list=output_list,
+ result_tensor=result_tens,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+
+ attr.ResizeAttribute(
+ output_dims, stride, offset, shift, stride_fp, offset_fp, mode
+ )
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_identityn(self, op, val, val2, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.unaryOp(self.ser, self.rng, val, error_name)
+ result_tens2 = OutputShaper.unaryOp(self.ser, self.rng, val2, error_name)
+ self.ser.addOperator(
+ op, [val.name, val2.name], [result_tens.name, result_tens2.name]
+ )
+ return result_tens
+
+ def build_const(self, op, val, validator_fcns=None, error_name=None):
+ self.ser.addOutputTensor(val)
+ return val
+
+ # Type Conversion
+ def build_cast(self, op, val, out_dtype, validator_fcns=None, error_name=None):
+ result_tens = OutputShaper.typeConversionOp(self.ser, self.rng, val, out_dtype, error_name)
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [val.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_shape = val.shape,
+ output_shape = result_tens.shape,
+ input_dtype = val.dtype,
+ output_dtype = result_tens.dtype,
+ result_tensor = result_tens,
+ input_list=input_list,
+ output_list=output_list,
+ num_operands=num_operands,
+ ):
+ return None
+
+ self.ser.addOperator(op['op'], input_list, output_list)
+ return result_tens
+
+ def build_rescale(self, op, val, out_dtype, scale32, double_round, per_channel, validator_fcns, error_name):
+ result_tens = OutputShaper.typeConversionOp(self.ser, self.rng, val, out_dtype, error_name)
+
+ if per_channel:
+ nc = val.shape[-1]
+ else:
+ nc = 1
+
+ in_type_width = self.typeWidth(val.dtype)
+ out_type_width = self.typeWidth(out_dtype)
+
+ if val.dtype == DType.INT8:
+ input_zp = self.randInt(-128, 128)
+ in_type_width = in_type_width + 1
+ elif val.dtype == DType.UINT8:
+ input_zp = self.randInt(0, 256)
+ in_type_width = in_type_width + 1
+ elif error_name == ErrorIf.InputZeroPointNotZero:
+ input_zp = self.randInt(-128, 128)
+ if input_zp == 0:
+ input_zp = input_zp + self.rng.integers(1, 10)
+ in_type_width = in_type_width + 1
+ else:
+ input_zp = 0
+
+ if out_dtype == DType.INT8:
+ output_zp = self.randInt(-128, 128)
+ out_type_width = out_type_width + 1
+ elif out_dtype == DType.UINT8:
+ output_zp = self.randInt(0, 256)
+ out_type_width = out_type_width + 1
+ elif error_name == ErrorIf.OutputZeroPointNotZero:
+ output_zp = self.randInt(-128, 128)
+ if output_zp == 0:
+ output_zp = output_zp + self.rng.integers(1, 10)
+ out_type_width = out_type_width + 1
+ else:
+ output_zp = 0
+
+ # Calculate scale based on:
+ # scale = a *(2^output_width)/(2^input_width))
+
+ a = np.float32(self.rng.random(size=[nc]))
+ scale_arr = a * np.float32((1 << out_type_width) / (1 << in_type_width))
+
+ if scale32:
+ pass
+ # Cap the scaling at 2^31 - 1 for scale32
+ scale_arr = np.clip(scale_arr, 1.0 / (1 << 31), (1 << 31) - 1)
+ else:
+ # Cap the scaling at 2^15 - 1 for scale16
+ scale_arr = np.clip(scale_arr, 1.0 / (1 << 31), 32767.0)
+
+ # print('{} {} -> {}'.format(out_type_width, in_type_width, scale_arr))
+
+ multiplier_arr = np.int32(np.zeros(shape=[nc]))
+ shift_arr = np.int32(np.zeros(shape=[nc]))
+
+ for i in range(nc):
+ multiplier_arr[i], shift_arr[i] = TosaQuantGen.computeMultiplierAndShift(
+ scale_arr[i], scale32
+ )
+
+ # print('multiplier {} shift {} inzp {} outzp {}'.format(multiplier_arr, shift_arr, input_zp, output_zp))
+
+ # Invalidate Input/Output list for error if checks.
+ input_list = [val.name]
+ output_list = [result_tens.name]
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+ input_list, output_list = TosaErrorIfArgGen.eiInvalidateInputOutputList(self, error_name, input_list, output_list)
+
+ qinfo = (input_zp, output_zp)
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ input_dtype=val.dtype,
+ output_dtype=out_dtype,
+ input_shape=val.shape,
+ qinfo=qinfo,
+ scale32 = scale32,
+ double_round = double_round,
+ input_list=input_list,
+ output_list=output_list,
+ result_tensor=result_tens,
+ num_operands=num_operands,
+ ):
+ return None
+
+ attr = ts.TosaSerializerAttribute()
+ attr.RescaleAttribute(
+ input_zp,
+ output_zp,
+ multiplier_arr,
+ shift_arr,
+ scale32,
+ double_round,
+ per_channel,
+ )
+
+ self.ser.addOperator(op['op'], input_list, output_list, attr)
+ return result_tens
+
+ def build_cond_if_const(self, op, then_tens, else_tens, cond, validator_fcns=None, error_name=None):
+ # For cond_if with constants, we're supplied with then/else tensors that we ignore
+ # (except for the generated shap) and the condition. Build Then/Else blocks
+ # and fill them with const nodes for the body.
+
+ # Condition tensor
+ cond_tens = self.ser.addConst([], DType.BOOL, [cond])
+
+ # Make then/else tensors
+ out_shape = then_tens.shape
+
+ # Create an incorrect output shape for error_if tests
+ if error_name in [ErrorIf.CondIfOutputListThenGraphMismatch, ErrorIf.CondIfOutputListElseGraphMismatch]:
+ incorrect_shape = deepcopy(then_tens.shape)
+ for i in range(len(incorrect_shape)):
+ incorrect_shape[i] += self.rng.choice([-3, -2, 2, 3]) if incorrect_shape[i] > 3 else self.rng.choice([1, 2, 4])
+ incorrect_arr = np.int32(self.rng.integers(0, 256, size=incorrect_shape))
+
+ then_arr = np.int32(self.rng.integers(0, 256, size=out_shape))
+ else_arr = np.int32(self.rng.integers(0, 256, size=out_shape))
+
+ # And the result tensor based on any of the outputs
+ result_tens = self.ser.addOutput(out_shape, DType.INT32)
+
+ # Create the attribute with the names of the then/else blocks
+ then_block = "THEN_BLOCK"
+ else_block = "ELSE_BLOCK"
+ attr = ts.TosaSerializerAttribute()
+ attr.CondIfAttribute(then_block, else_block)
+
+ # Finally, build the op and the two blocks
+ self.ser.addOperator(op['op'], [cond_tens.name], [result_tens.name], attr)
+
+ self.ser.startBasicBlock(then_block)
+ # Build the actual then/else tensors inside their blocks
+ if error_name == ErrorIf.CondIfOutputListThenGraphMismatch:
+ then_tens = self.ser.addConst(incorrect_shape, DType.INT32, incorrect_arr)
+ else:
+ then_tens = self.ser.addConst(out_shape, DType.INT32, then_arr)
+ self.ser.addOutputTensor(then_tens)
+
+ self.ser.startBasicBlock(else_block)
+ if error_name == ErrorIf.CondIfOutputListElseGraphMismatch:
+ else_tens = self.ser.addConst(incorrect_shape, DType.INT32, incorrect_arr)
+ else:
+ else_tens = self.ser.addConst(out_shape, DType.INT32, else_arr)
+ self.ser.addOutputTensor(else_tens)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ basicBlocks=self.ser.basicBlocks
+ ):
+ return None
+
+ return result_tens
+
+ def build_cond_if_binary(self, op, a, b, cond, validator_fcns=None, error_name=None):
+ # For cond_if with a binary op in the then/else blocks, take a and b and
+ # alternately add or subtract them based on the condition
+
+ # Condition tensor
+ cond_tens = self.ser.addConst([], DType.BOOL, [cond])
+
+ result_tens = self.ser.addOutput(a.shape, a.dtype)
+
+ # Create the attribute with the names of the then/else blocks
+ then_block = "THEN_BLOCK"
+ else_block = "ELSE_BLOCK"
+ attr = ts.TosaSerializerAttribute()
+ attr.CondIfAttribute(then_block, else_block)
+
+ if error_name in [ErrorIf.CondIfInputListThenGraphMismatch, ErrorIf.CondIfInputListElseGraphMismatch,
+ ErrorIf.CondIfOutputListElseGraphMismatch, ErrorIf.CondIfOutputListThenGraphMismatch]:
+ incorrect_shape = a.shape.copy()
+ for i in range(len(incorrect_shape)):
+ incorrect_shape[i] += self.rng.choice([-3, -2, 2, 3])
+ incorrect_block_input = deepcopy(a)
+ incorrect_block_input.shape = incorrect_shape
+
+
+ # Finally, build the op and the two blocks
+ self.ser.addOperator(
+ op['op'], [cond_tens.name, a.name, b.name], [result_tens.name], attr
+ )
+
+ if a.dtype in (DType.FLOAT, DType.INT32):
+ then_op, else_op = Op.ADD, Op.SUB
+ elif a.dtype in (DType.INT8, DType.INT16):
+ then_op, else_op = Op.LOGICAL_RIGHT_SHIFT, Op.LOGICAL_LEFT_SHIFT
+ else:
+ assert False, f"No tests for DType: {a.dtype}"
+
+ for block, op in ((then_block, then_op), (else_block, else_op)):
+ self.ser.startBasicBlock(block)
+ if ((error_name == ErrorIf.CondIfInputListThenGraphMismatch and block == then_block) or
+ (error_name == ErrorIf.CondIfInputListElseGraphMismatch and block == else_block)):
+ self.ser.addInputTensor(incorrect_block_input)
+ self.ser.addInputTensor(b)
+ tens = self.ser.addOutput(a.shape, a.dtype)
+ elif ((error_name == ErrorIf.CondIfOutputListThenGraphMismatch and block == then_block) or
+ (error_name == ErrorIf.CondIfOutputListElseGraphMismatch and block == else_block)):
+ self.ser.addInputTensor(a)
+ self.ser.addInputTensor(b)
+ tens = self.ser.addOutput(incorrect_block_input.shape, a.dtype)
+ else:
+ self.ser.addInputTensor(a)
+ self.ser.addInputTensor(b)
+ tens = self.ser.addOutput(a.shape, a.dtype)
+ self.ser.addOperator(op, [a.name, b.name], [tens.name])
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ a=a,
+ b=b,
+ basicBlocks=self.ser.basicBlocks
+ ):
+ return None
+
+ return result_tens
+
+ def build_while_loop(self, op, a, iter_val, validator_fcns=None, error_name=None):
+ iter = self.ser.addPlaceholder([], DType.INT32, [np.int32(iter_val)])
+
+ cond_block = "COND_BLOCK"
+ body_block = "BODY_BLOCK"
+
+ attr = ts.TosaSerializerAttribute()
+ attr.WhileLoopAttribute(cond_block, body_block)
+
+ # Accumulator tensor
+ # acc = self.ser.addOutput(a.shape, a.dtype)
+ acc_init_val = np.int32(np.zeros(a.shape))
+ acc = self.ser.addPlaceholder(a.shape, a.dtype, acc_init_val)
+
+ # Intermediate/output tensors for everything going through the loop
+ iter_out = self.ser.addIntermediate(iter.shape, iter.dtype)
+ a_out = self.ser.addIntermediate(a.shape, a.dtype)
+ if error_name == ErrorIf.InputListOutputListMismatch:
+ incorrect_acc = deepcopy(acc)
+ for i in range(len(incorrect_acc.shape)):
+ incorrect_acc.shape[i] += self.rng.choice([-3, -2, 2, 3])
+ acc_out = self.ser.addIntermediate(incorrect_acc.shape, acc.dtype)
+ else:
+ acc_out = self.ser.addIntermediate(acc.shape, acc.dtype)
+
+ # While_loop operator
+ self.ser.addOperator(
+ op['op'],
+ [iter.name, a.name, acc.name],
+ [iter_out.name, a_out.name, acc_out.name],
+ attr,
+ )
+ self.ser.addOutputTensor(acc_out)
+
+ if error_name in [ErrorIf.InputListCondGraphMismatch, ErrorIf.InputListBodyGraphInputMismatch, ErrorIf.InputListBodyGraphOutputMismatch]:
+ incorrect_iter = deepcopy(iter)
+ for i in range(len(incorrect_iter.shape)):
+ incorrect_iter.shape[i] += self.rng.choice([-3, -2, 2, 3])
+ if len(incorrect_iter.shape) == 0:
+ incorrect_iter.shape.append(self.rng.choice([-3, -2, 2, 3]))
+
+ incorrect_acc = deepcopy(acc)
+ for i in range(len(incorrect_acc.shape)):
+ incorrect_acc.shape[i] += self.rng.choice([-3, -2, 2, 3])
+
+ # COND block (input: iter, output: cond_tens )
+ self.ser.startBasicBlock(cond_block)
+ if error_name == ErrorIf.InputListCondGraphMismatch:
+ self.ser.addInputTensor(incorrect_iter)
+ self.ser.addInputTensor(a)
+ self.ser.addInputTensor(incorrect_acc)
+ else:
+ self.ser.addInputTensor(iter)
+ self.ser.addInputTensor(a)
+ self.ser.addInputTensor(acc)
+ zero_tens = self.ser.addConst([], DType.INT32, [np.int32(0)])
+
+ if error_name == ErrorIf.CondGraphOutputNotMatchingBool:
+ cond_tens = self.ser.addOutput([], self.rng.choice([DType.INT8, DType.INT32, DType.FLOAT]))
+ else:
+ cond_tens = self.ser.addOutput([], DType.BOOL)
+
+ self.ser.addOperator(Op.GREATER, [iter.name, zero_tens.name], [cond_tens.name])
+
+ # BODY block (input: a, acc, iter, output: a, acc, iter)
+ # Note that local intermediate tensors need to be declared here for the outputs
+ self.ser.startBasicBlock(body_block)
+ if error_name == ErrorIf.InputListBodyGraphInputMismatch:
+ self.ser.addInputTensor(incorrect_iter)
+ self.ser.addInputTensor(a)
+ self.ser.addInputTensor(incorrect_acc)
+ else:
+ self.ser.addInputTensor(iter)
+ self.ser.addInputTensor(a)
+ self.ser.addInputTensor(acc)
+
+ one_tens = self.ser.addConst([], DType.INT32, [np.int32(1)])
+
+ if error_name == ErrorIf.InputListBodyGraphOutputMismatch:
+ iter_body_out = self.ser.addIntermediate(incorrect_iter.shape, incorrect_iter.dtype)
+ acc_body_out = self.ser.addIntermediate(incorrect_acc.shape, incorrect_acc.dtype)
+ else:
+ iter_body_out = self.ser.addIntermediate(iter.shape, iter.dtype)
+ acc_body_out = self.ser.addIntermediate(acc.shape, acc.dtype)
+
+ self.ser.addOperator(Op.ADD, [a.name, acc.name], [acc_body_out.name])
+ self.ser.addOperator(Op.SUB, [iter.name, one_tens.name], [iter_body_out.name])
+ self.ser.addOutputTensor(iter_body_out)
+ self.ser.addOutputTensor(a)
+ self.ser.addOutputTensor(acc_body_out)
+
+ if not TosaErrorValidator.evValidateErrorIfs(
+ self.ser,
+ validator_fcns,
+ error_name,
+ op=op,
+ basicBlocks=self.ser.basicBlocks
+ ):
+ return None
+
+ return acc_out
+
+ def create_filter_lists(self, op, shapeFilter, rankFilter, dtypeFilter, testType, validator=None):
+ # Create a default testing rank range, 1-4 inclusive to keep test sizes reasonably small.
+ default_test_rank_range = range(1, 5)
+ if not shapeFilter:
+ shapeFilter = [None]
+
+ # Calculate the filters based on what is requested and what the operator allows
+ rmin, rmax = op["rank"]
+ if rankFilter is not None:
+ cleanRankFilter = []
+ # Ensure rankFilter values are allowed by operator
+ for rank in rankFilter:
+ if rank >= rmin and rank <= rmax:
+ cleanRankFilter.append(rank)
+ elif rankFilter is None and shapeFilter[0] is None:
+ # Ensure default behaviour is bounded by default range or by operator,
+ # whichever is the smaller range of ranks.
+ opRankRange = range(rmin, rmax + 1)
+ cleanRankFilter = opRankRange if len(opRankRange) <= len(default_test_rank_range) else default_test_rank_range
+ else:
+ cleanRankFilter = range(rmin, rmax + 1)
+
+ dtypes = op["types"]
+
+ if dtypeFilter is not None:
+ cleanDtypeFilter = []
+ # Create list of operator dtypes filtered by requested dtypes
+ for dtype in dtypes:
+ if dtype in dtypeFilter or (isinstance(dtype, list) and dtype[0] in dtypeFilter):
+ cleanDtypeFilter.append(dtype)
+ else:
+ cleanDtypeFilter = dtypes
+
+ if testType == 'positive':
+ filterDict = {
+ 'shapeFilter': shapeFilter,
+ 'rankFilter': cleanRankFilter,
+ 'dtypeFilter': cleanDtypeFilter
+ }
+ return filterDict
+ elif testType == 'negative':
+ if validator is not None:
+ validator_info = validator(check=False, op=op)
+ else:
+ return None
+
+ error_arguments = validator_info['param_reqs']
+
+ #Set parameters as required
+ if error_arguments['rank'] != None:
+ rankFilter = error_arguments['rank']
+ else:
+ rankFilter = cleanRankFilter
+
+ if error_arguments['dtype'] != None:
+ dtypeFilter = error_arguments['dtype']
+ else:
+ dtypeFilter = cleanDtypeFilter
+
+ if error_arguments['shape'] != None:
+ shapeFilter = error_arguments['shape']
+ else:
+ shapeFilter = shapeFilter[:2] # Reduce number of shapes to keep test numbers small
+
+ filterDict = {
+ 'shapeFilter': shapeFilter,
+ 'rankFilter': rankFilter,
+ 'dtypeFilter': dtypeFilter
+ }
+ return filterDict
+
+
+ def genOpTestList(
+ self, opName, shapeFilter=[None], rankFilter=None, dtypeFilter=None, testType='positive'
+ ):
+
+ try:
+ op = self.TOSA_OP_LIST[opName]
+ except KeyError as e:
+ raise Exception("Cannot find op with name {}".format(opName))
+
+ # Initialize a new random number generator
+ self.rng = np.random.default_rng(self.random_seed)
+
+ build_fcn, tgen_fcn, agen_fcn = op["build_fcn"]
+
+ # Test list consists of a tuple of:
+ # (opName, testNameStr, dtype, shapeList, argumentsList)
+ testList = []
+ if testType == 'negative' and "error_if_validators" in op:
+ error_if_validators = op["error_if_validators"]
+ else:
+ error_if_validators = [None]
+
+ for validator in error_if_validators:
+ if validator is not None:
+ error_name = validator(check=False, op=op)['error_name']
+ else:
+ error_name = None
+
+ filterDict = self.create_filter_lists(op, shapeFilter, rankFilter, dtypeFilter, testType, validator)
+ if filterDict == None:
+ return []
+ cleanRankFilter = filterDict['rankFilter']
+ cleanDtypeFilter = filterDict['dtypeFilter']
+ cleanShapeFilter = filterDict['shapeFilter']
+ #print(f"Error: {error_name}, Filters: S {cleanShapeFilter}, R {cleanRankFilter}, T {cleanDtypeFilter}")
+
+ for r in cleanRankFilter:
+ for t in cleanDtypeFilter:
+ for shape in cleanShapeFilter:
+ # Filter out by rank
+ if shape is not None and len(shape) != r:
+ continue
+ self.setTargetShape(shape)
+ shapeList = tgen_fcn(self, op, r, error_name)
+
+ shapeStr = self.shapeStr(shapeList[0])
+ typeStr = self.typeStr(t)
+
+ # Argument lists consists of tuples of the (str, []) string representation and the build function argument list
+ argList = []
+ if agen_fcn:
+ argList = agen_fcn(self, opName, shapeList, t, error_name)
+ else:
+ argList = [("", [])]
+
+ for argStr, args in argList:
+ if testType == 'positive':
+ if argStr:
+ testStr = "{}_{}_{}_{}".format(
+ opName, shapeStr, typeStr, argStr
+ )
+ else:
+ testStr = "{}_{}_{}".format(opName, shapeStr, typeStr)
+ elif testType == 'negative':
+ if argStr:
+ testStr = "{}_ERRORIF_{}_{}_{}_{}".format(
+ opName, error_name, shapeStr, typeStr, argStr
+ )
+ else:
+ testStr = "{}_ERRORIF_{}_{}_{}".format(opName, error_name, shapeStr, typeStr)
+
+ testList.append((opName, testStr, t, error_name, shapeList, args))
+
+ if testType == 'positive':
+ # Remove tests which are expected to fail but don't correlate to a ERROR_IF statement
+ if "invalid_test_validators" in op:
+ invalid_test_validators = op["invalid_test_validators"]
+ clean_testList = []
+ for test in testList:
+ for validator_fcn in invalid_test_validators:
+ remove_test = False
+ if validator_fcn(opName=test[0], input_dtype=test[2], shapeList=test[4], args=test[5]):
+ remove_test = True
+ if not remove_test:
+ clean_testList.append(test)
+ testList = clean_testList
+
+ return testList
+
+
+ def serializeTest(self, opName, testStr, dtype_or_dtypeList, error_name, shapeList, testArgs):
+ try:
+ op = self.TOSA_OP_LIST[opName]
+ except KeyError as e:
+ raise Exception("Cannot find op with name {}".format(opName))
+
+ # Create a serializer
+ self.createSerializer(opName, testStr)
+
+ build_fcn, tgen_fcn, agen_fcn = op["build_fcn"]
+ if "error_if_validators" in op:
+ error_if_validators = op["error_if_validators"]
+ else:
+ error_if_validators = None
+
+ pCount, cCount = op["operands"]
+ num_operands = pCount + cCount
+
+ if isinstance(dtype_or_dtypeList, list):
+ dtypeList = dtype_or_dtypeList
+ elif op["op"] == Op.CONCAT:
+ dtypeList = [dtype_or_dtypeList] * len(shapeList)
+ else:
+ dtypeList = [dtype_or_dtypeList] * (num_operands)
+
+ if op["op"] != Op.CONCAT:
+ assert (
+ len(shapeList) == num_operands
+ ), "shapeList length {} must match number of operands {}".format(
+ len(shapeList), num_operands
+ )
+ assert (
+ len(dtypeList) == num_operands
+ ), "dtypeList length {} must match number of operands {}".format(
+ len(dtypeList), num_operands
+ )
+
+ try:
+ qgen = op["qgen"]
+ except KeyError:
+ qgen = None
+
+ # Build the random tensor operands and the test
+ tens = []
+
+ tens = self.generate_tensors(op, dtypeList, shapeList, testArgs, error_name)
+
+ if qgen is not None:
+ qinfo = qgen(self, op, dtype_or_dtypeList, error_name)
+ else:
+ qinfo = None
+
+ try:
+ if error_if_validators is None:
+ if qinfo is not None:
+ resultName = build_fcn(self, op, *tens, *testArgs, qinfo)
+ else:
+ resultName = build_fcn(self, op, *tens, *testArgs)
+ else:
+ if qinfo is not None:
+ resultName = build_fcn(self, op, *tens, *testArgs, validator_fcns=error_if_validators, error_name=error_name, qinfo=qinfo)
+ else:
+ resultName = build_fcn(self, op, *tens, *testArgs, validator_fcns=error_if_validators, error_name=error_name)
+ except TypeError as e:
+ print(f"build_fcn: {build_fcn}\nTensors: {tens}\nArgs: {testArgs}\n")
+ raise e
+
+ if resultName:
+ # The test is valid, serialize it
+ self.serialize("test")
+ else:
+ # The test is not valid
+ print(f"Invalid ERROR_IF test created: {opName} {testStr}")
+
+
+ def generate_tensors(self, op, dtypeList, shapeList, testArgs, error_name=None):
+ pCount, cCount = op["operands"]
+
+ tens = []
+ if (op["op"] == Op.ADD or op["op"] == Op.SUB) and dtypeList[0] == DType.INT32 and error_name == None:
+ # Make sure the operation does not cause value saturation - where
+ # the number wraps due to limited number of bits to store the answer
+ assert (
+ pCount == 2 and cCount == 0
+ ), "Op.ADD / Op.SUB must have 2 placeholders, 0 consts"
+ placeholders = []
+ add = (op["op"] == Op.ADD)
+ a_arr = self.getRandTensor(shapeList[0], dtypeList[0])
+ b_arr = self.getRandTensor(shapeList[1], dtypeList[1])
+ if add:
+ res_arr = np.add(a_arr, b_arr, dtype=np.int64)
+ else:
+ res_arr = np.subtract(a_arr, b_arr, dtype=np.int64)
+
+ # Work out the saturation limits
+ max_i32 = (1 << 31)-1
+ min_i32 = -(1 << 31)
+ max_arr = np.full(shapeList[1], max_i32)
+ min_arr = np.full(shapeList[1], min_i32)
+
+ # Find how much values exceed the maximum/minimums
+ sat_max_arr = np.maximum(res_arr - max_arr, 0)
+ sat_min_arr = np.minimum(res_arr - min_arr, 0)
+
+ if not add:
+ # Swap saturation values and negate values as we need to perform opposite operations
+ sat_max_arr, sat_min_arr = -sat_min_arr, -sat_max_arr
+
+ # Create new array of unsaturated values by clipping values as needed
+ b_unsat_arr = b_arr
+ if (sat_max_arr != 0).any():
+ # Clip values that cause saturation
+ b_unsat_arr = np.subtract(b_unsat_arr, sat_max_arr, dtype=np.int32)
+ # Reduce axes in unsaturated tensor to match original tensor
+ for axis, dim in enumerate(b_arr.shape):
+ if dim != b_unsat_arr.shape[axis]:
+ assert ( dim == 1 ), "Op.ADD / SUB dimension must be 1 or matching to be broadcastable"
+ b_unsat_arr = np.amin(b_unsat_arr, axis=axis, keepdims=True)
+
+ if (sat_min_arr != 0).any():
+ # Clip values that cause saturation
+ b_unsat_arr = np.subtract(b_unsat_arr, sat_min_arr, dtype=np.int32)
+ # Reduce axes in unsaturated tensor to match original tensor
+ for axis, dim in enumerate(b_arr.shape):
+ if dim != b_unsat_arr.shape[axis]:
+ assert ( dim == 1 ), "Op.ADD / SUB dimension must be 1 or matching to be broadcastable"
+ b_unsat_arr = np.amax(b_unsat_arr, axis=axis, keepdims=True)
+
+ placeholders.append(
+ self.ser.addPlaceholder(shapeList[0], dtypeList[0], a_arr)
+ )
+ placeholders.append(
+ self.ser.addPlaceholder(shapeList[1], dtypeList[1], b_unsat_arr)
+ )
+
+ tens.extend(placeholders)
+ elif (op["op"] == Op.COND_IF or op["op"] == Op.WHILE_LOOP) and dtypeList[0] == DType.INT32:
+ # Limit input tensors with cond_if_binary or while_loop to stop
+ # saturation of add/sub ops
+ pRemain = pCount
+ placeholders = []
+ for idx, shape in enumerate(shapeList[:]):
+ arr = self.getRandTensor(shapeList[idx], DType.INT16)
+ if pRemain > 0:
+ placeholders.append(self.ser.addPlaceholder(shape, dtypeList[idx], arr))
+ pRemain -= 1
+ else:
+ placeholders.append(self.ser.addConst(shape, dtypeList[idx], arr))
+
+ tens.extend(placeholders)
+ elif op["op"] == Op.ARITHMETIC_RIGHT_SHIFT:
+ # Force value of operand[1] to be within [0, num_bits]
+ assert (
+ pCount == 2 and cCount == 0
+ ), "Op.ArithmeticRightShift must have 2 placeholders, 0 consts"
+
+ placeholders = []
+ for idx, shape in enumerate(shapeList[:]):
+ if idx == 1:
+ if dtypeList[idx] == DType.INT8:
+ arr = np.int32(self.rng.integers(low=0, high=8, size=shape))
+ elif dtypeList[idx] == DType.INT16:
+ arr = np.int32(self.rng.integers(low=0, high=16, size=shape))
+ elif dtypeList[idx] == DType.INT32:
+ arr = np.int32(self.rng.integers(low=0, high=32, size=shape))
+ elif error_name == ErrorIf.WrongInputType:
+ arr = np.int32(self.rng.integers(low=0, high=8, size=shape))
+ else:
+ raise Exception("OpArithmeticRightShift: invalid input dtype")
+ else:
+ arr = self.getRandTensor(shape, dtypeList[idx])
+ placeholders.append(self.ser.addPlaceholder(shape, dtypeList[idx], arr))
+
+ tens.extend(placeholders)
+ elif op["op"] == Op.SELECT:
+ # Set datatype of condition tensor to boolean
+ dtypeList[0] = DType.BOOL
+ tens.extend(
+ self.buildPlaceholderTensors(shapeList[0:pCount], dtypeList[0:pCount])
+ )
+ tens.extend(self.buildConstTensors(shapeList[pCount:], dtypeList[pCount:]))
+ elif op["op"] == Op.INTDIV and error_name == None:
+ assert (
+ pCount == 2 and cCount == 0
+ ), "Op.INTDIV must have 2 placeholders, 0 consts"
+
+ placeholders = []
+
+ # Two invalid cases for Op.INTDIV:
+ # 1. divisor == 0
+ # 2. dividend == -(1<<31) and divisor == -1
+ while True:
+ dividend_arr = self.getRandTensor(shapeList[0], dtypeList[0])
+ divisor_arr = self.getRandTensor(shapeList[1], dtypeList[1])
+
+ if (divisor_arr == 0).any():
+ continue
+
+ if (dividend_arr == -(2 ** 31)).any() and (divisor_arr == -1).any():
+ continue
+
+ break
+
+ placeholders.append(
+ self.ser.addPlaceholder(shapeList[0], dtypeList[0], dividend_arr)
+ )
+ placeholders.append(
+ self.ser.addPlaceholder(shapeList[1], dtypeList[1], divisor_arr)
+ )
+
+ tens.extend(placeholders)
+ elif op["op"] == Op.MUL and error_name == None:
+ assert (
+ pCount == 2 and cCount == 0
+ ), "Op.MUL must have 2 placeholders, 0 consts"
+
+ if dtypeList[0] == DType.FLOAT:
+ tens.extend(self.buildPlaceholderTensors(shapeList[:], dtypeList[:]))
+ else:
+ placeholders = []
+
+ # Make sure multiply result in int32 range
+ shift = testArgs[0]
+ if dtypeList[0] == DType.INT8:
+ num_bits = 8
+ elif dtypeList[0] == DType.INT16:
+ num_bits = 16
+ elif dtypeList[0] == DType.INT32:
+ num_bits = 32
+ elif error_name == ErrorIf.WrongInputType:
+ num_bits = 8
+ else:
+ raise Exception("OpMul: invalid input dtype")
+
+ for idx, shape in enumerate(shapeList[:]):
+ low = -(2 ** (num_bits - 1))
+ high = (2 ** (num_bits - 1)) - 1
+
+ a_arr = np.int32(
+ self.rng.integers(low=low, high=high, size=shapeList[0])
+ )
+ b_arr = np.int32(
+ self.rng.integers(low=low, high=high, size=shapeList[1])
+ )
+
+ i = 0
+ while True:
+
+ a_arr_64 = a_arr.astype(np.int64)
+ b_arr_64 = b_arr.astype(np.int64)
+
+ if shift > 0:
+ rounding = 1 << (shift - 1)
+ result_arr = ((a_arr_64 * b_arr_64) + rounding) >> shift
+ else:
+ result_arr = a_arr_64 * b_arr_64
+
+ if (result_arr > -(2 ** 31)).all() and (
+ result_arr <= ((2 ** 31) - 1)
+ ).all():
+ break
+
+ i = i + 1
+ a_arr = a_arr // 2
+ b_arr = b_arr // 2
+
+ placeholders.append(
+ self.ser.addPlaceholder(shapeList[0], dtypeList[0], a_arr)
+ )
+ placeholders.append(
+ self.ser.addPlaceholder(shapeList[1], dtypeList[1], b_arr)
+ )
+
+ tens.extend(placeholders)
+ elif op["op"] == Op.CONCAT:
+ count = len(shapeList) - self.args.num_const_inputs_concat
+ if count < 1:
+ count = 1
+ if self.args.num_const_inputs_concat == 0:
+ count = len(shapeList)
+
+ # Ensure axis is an int
+ testArgs[0] = int(testArgs[0])
+
+ shapeList = TosaTensorGen.tgConcatConstInput(self, shapeList, testArgs[0], error_name)
+
+ tens.extend(
+ self.buildPlaceholderTensors(shapeList[0:count], dtypeList[0:count])
+ )
+ tens.extend(self.buildConstTensors(shapeList[count:], dtypeList[count:]))
+ else:
+ tens.extend(
+ self.buildPlaceholderTensors(shapeList[0:pCount], dtypeList[0:pCount])
+ )
+ tens.extend(self.buildConstTensors(shapeList[pCount:], dtypeList[pCount:]))
+
+ return tens
+
+ def createDynamicOpLists(self):
+
+ # Dynamically create op lists for convolutions with a list of kernel sizes
+ KERNELS_2D = [[1, 1], [2, 2], [3, 3], [5, 5], [3, 1], [1, 3]]
+
+ for k in KERNELS_2D:
+ testName = "conv2d_{}x{}".format(k[0], k[1])
+ self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST["conv2d_TEMPLATE"].copy()
+ self.TOSA_OP_LIST[testName]["filter"] = k
+ self.TOSA_OP_LIST[testName]["template"] = False
+
+ testName = "depthwise_conv2d_{}x{}".format(k[0], k[1])
+ self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST[
+ "depthwise_conv2d_TEMPLATE"
+ ].copy()
+ self.TOSA_OP_LIST[testName]["filter"] = k
+ self.TOSA_OP_LIST[testName]["template"] = False
+
+ testName = "transpose_conv2d_{}x{}".format(k[0], k[1])
+ self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST[
+ "transpose_conv2d_TEMPLATE"
+ ].copy()
+ self.TOSA_OP_LIST[testName]["filter"] = k
+ self.TOSA_OP_LIST[testName]["template"] = False
+
+ KERNELS_3D = [[1, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]]
+ for k in KERNELS_3D:
+ testName = "conv3d_{}x{}x{}".format(k[0], k[1], k[2])
+ self.TOSA_OP_LIST[testName] = self.TOSA_OP_LIST["conv3d_TEMPLATE"].copy()
+ self.TOSA_OP_LIST[testName]["filter"] = k
+ self.TOSA_OP_LIST[testName]["template"] = False
+
+ # Delete any templates after having created any dynamic ops
+ # This is a two-pass operation because it's bad practice to delete
+ # keys from dictionaries while iterating
+ keyList = []
+ for k in self.TOSA_OP_LIST:
+ try:
+ if self.TOSA_OP_LIST[k]["template"] == True:
+ keyList.append(k)
+ continue
+ except KeyError:
+ pass
+
+ for k in keyList:
+ del self.TOSA_OP_LIST[k]
+
+ def initOpListDefaults(self):
+ """Fill in default fields for ops if they aren't already specified.
+ Look for missing required fields (datastructure linting)."""
+ for op in self.TOSA_OP_LIST:
+
+ # Required fields
+ try:
+ pl, c = self.TOSA_OP_LIST[op]["operands"]
+ except (KeyError, ValueError, TypeError):
+ raise Exception(
+ "Op {} is missing a valid operand tuple in TOSA_OP_LIST".format(op)
+ )
+
+ try:
+ fcn, tgen, arggen = self.TOSA_OP_LIST[op]["build_fcn"]
+ except (KeyError, ValueError, TypeError):
+ raise Exception(
+ "Op {} is missing a valid build_fcn tuple in TOSA_OP_LIST".format(
+ op
+ )
+ )
+
+ try:
+ types = self.TOSA_OP_LIST[op]["types"]
+ except KeyError as e:
+ raise Exception(
+ "Op {} is missing a valid type list in TOSA_OP_LIST".format(op)
+ )
+
+ try:
+ opcode = self.TOSA_OP_LIST[op]["op"]
+ except KeyError as e:
+ raise Exception(
+ "Op {} is missing the Op field in TOSA_OP_LIST".format(op)
+ )
+
+ # Put in default rank range, if missing
+ try:
+ rank = self.TOSA_OP_LIST[op]["rank"]
+ except KeyError:
+ self.TOSA_OP_LIST[op]["rank"] = self.DEFAULT_RANK_RANGE
+
+ # Tensor operator list
+ # 'op': op name
+ # 'operands': tuple of (placeholder, const) operands
+ # 'rank': optional, restricts rank to tuple inclusive of (min, max),
+ # if not specified, defaults to (1, 4)
+ # 'build_fcn': tuple of the function to (build_operator(), TensorGen function, ArgGen enum)
+ # 'types': array of datatypes to be tested
+ TYPE_FP = [DType.FLOAT]
+
+ TYPE_INT = [DType.INT8, DType.INT16, DType.INT32] # Excludes INT4
+ TYPE_INT_FP = [DType.INT8, DType.INT16, DType.INT32, DType.FLOAT] # Excludes INT4
+
+ TYPE_BOOL = [DType.BOOL]
+ TYPE_FI32 = [DType.FLOAT, DType.INT32]
+ TYPE_FIB = [DType.FLOAT, DType.INT8, DType.INT16, DType.INT32, DType.BOOL]
+ TYPE_FI16 = [DType.FLOAT, DType.INT16]
+
+ TYPE_NARROW_INT_FP = [DType.INT8, DType.INT16, DType.FLOAT]
+
+ TYPE_CONV = [
+ [DType.INT8, DType.INT4, DType.INT32],
+ [DType.INT8, DType.INT8, DType.INT32],
+ [DType.INT16, DType.INT8, DType.INT48],
+ DType.FLOAT,
+ ]
+
+ DEFAULT_RANK_RANGE = (1, TOSA_TENSOR_MAX_RANK)
+
+ TOSA_OP_LIST = {
+ # Tensor operators
+ "argmax": {
+ "op": Op.ARGMAX,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_argmax, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_NARROW_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evArgmaxOutputRankMismatch,
+ TosaErrorValidator.evArgmaxOutputShapeMismatch, TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "avg_pool2d": {
+ "op": Op.AVG_POOL2D,
+ "operands": (1, 0),
+ "rank": (4, 4),
+ "build_fcn": (build_pool2d, TosaTensorGen.tgNHWC, TosaArgGen.agPooling),
+ "qgen": TosaQuantGen.qgUnary,
+ "types": TYPE_NARROW_INT_FP,
+ "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
+ "error_if_validators": (TosaErrorValidator.evKernelSmallerOne, TosaErrorValidator.evStrideSmallerOne, TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evOutputZeroPointNotZero,
+ TosaErrorValidator.evPadLargerEqualKernel, TosaErrorValidator.evPoolingOutputShapeMismatch)
+ },
+ # Templated operator. Filled in by createDynamicOpLists
+ "conv2d_TEMPLATE": {
+ "op": Op.CONV2D,
+ "operands": (1, 2),
+ "rank": (4, 4),
+ "build_fcn": (build_conv2d, TosaTensorGen.tgConv2D, TosaArgGen.agConv),
+ "qgen": TosaQuantGen.qgConv,
+ "types": TYPE_CONV,
+ "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
+ "error_if_validators": (
+ TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList,
+ TosaErrorValidator.evInputZeroPointNotZero,
+ TosaErrorValidator.evWeightZeroPointNotZero,
+ TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evStrideSmallerOne,
+ TosaErrorValidator.evDilationSmallerOne,
+ TosaErrorValidator.evWrongRank,
+ ),
+ "template": True,
+ },
+ # Templated operator. Filled in by createDynamicOpLists
+ "conv3d_TEMPLATE": {
+ "op": Op.CONV3D,
+ "operands": (1, 2),
+ "rank": (5, 5),
+ "build_fcn": (build_conv3d, TosaTensorGen.tgConv3D, TosaArgGen.agConv),
+ "qgen": TosaQuantGen.qgConv,
+ "types": TYPE_CONV,
+ "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
+ "error_if_validators": (
+ TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList,
+ TosaErrorValidator.evInputZeroPointNotZero,
+ TosaErrorValidator.evWeightZeroPointNotZero,
+ TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evStrideSmallerOne,
+ TosaErrorValidator.evDilationSmallerOne,
+ TosaErrorValidator.evWrongRank,
+ ),
+ "template": True,
+ },
+ # Templated operator. Filled in by createDynamicOpLists
+ "depthwise_conv2d_TEMPLATE": {
+ "op": Op.DEPTHWISE_CONV2D,
+ "operands": (1, 2),
+ "filter": [1, 1],
+ "rank": (4, 4),
+ "build_fcn": (
+ build_depthwise_conv2d,
+ TosaTensorGen.tgDepthwiseConv2D,
+ TosaArgGen.agConv,
+ ),
+ "qgen": TosaQuantGen.qgConv,
+ "types": TYPE_CONV,
+ "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
+ "error_if_validators": (
+ TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList,
+ TosaErrorValidator.evInputZeroPointNotZero,
+ TosaErrorValidator.evWeightZeroPointNotZero,
+ TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evStrideSmallerOne,
+ TosaErrorValidator.evDilationSmallerOne,
+ TosaErrorValidator.evWrongRank,
+ ),
+ "template": True,
+ },
+ "fully_connected": {
+ "op": Op.FULLY_CONNECTED,
+ "operands": (1, 2),
+ "rank": (2, 2),
+ "build_fcn": (build_fully_connected, TosaTensorGen.tgFullyConnected, None),
+ "qgen": TosaQuantGen.qgConv,
+ "types": TYPE_CONV,
+ "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evWeightZeroPointNotZero, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "matmul": {
+ "op": Op.MATMUL,
+ "operands": (2, 0),
+ "rank": (3, 3),
+ "build_fcn": (build_matmul, TosaTensorGen.tgMatmul, None),
+ "qgen": TosaQuantGen.qgMatmul,
+ "types": TYPE_NARROW_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "max_pool2d": {
+ "op": Op.MAX_POOL2D,
+ "operands": (1, 0),
+ "rank": (4, 4),
+ "build_fcn": (build_pool2d, TosaTensorGen.tgNHWC, TosaArgGen.agPooling),
+ "types": TYPE_NARROW_INT_FP,
+ "invalid_test_validators": (TosaInvalidValidator.ivHeightWidthInvalid,),
+ "error_if_validators": (TosaErrorValidator.evKernelSmallerOne, TosaErrorValidator.evStrideSmallerOne, TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evPadLargerEqualKernel, TosaErrorValidator.evPoolingOutputShapeMismatch)
+ },
+ # Templated operator. Filled in by createDynamicOpLists
+ "transpose_conv2d_TEMPLATE": {
+ "op": Op.TRANSPOSE_CONV2D,
+ "operands": (1, 2),
+ "rank": (4, 4),
+ "build_fcn": (
+ build_transpose_conv2d,
+ TosaTensorGen.tgTransposeConv2D,
+ TosaArgGen.agTransposeConv2D,
+ ),
+ "qgen": TosaQuantGen.qgConv,
+ "types": TYPE_CONV,
+ "invalid_test_validators": (
+ TosaInvalidValidator.ivHeightWidthInvalid,
+ TosaInvalidValidator.ivNonPositiveOutputShape,
+ ),
+ "error_if_validators": (
+ TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList,
+ TosaErrorValidator.evInputZeroPointNotZero,
+ TosaErrorValidator.evWeightZeroPointNotZero,
+ TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evStrideSmallerOne,
+ TosaErrorValidator.evDilationSmallerOne,
+ TosaErrorValidator.evWrongRank,
+ ),
+ "template": True,
+ },
+ # Activation functions
+ "clamp": {
+ "op": Op.CLAMP,
+ "operands": (1, 0),
+ "build_fcn": (build_clamp, TosaTensorGen.tgBasic, None),
+ "types": TYPE_NARROW_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evMaxSmallerMin, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "sigmoid": {
+ "op": Op.SIGMOID,
+ "operands": (1, 0),
+ "build_fcn": (build_sigmoid, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList)
+ },
+ "tanh": {
+ "op": Op.TANH,
+ "operands": (1, 0),
+ "build_fcn": (build_tanh, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList)
+ },
+ # Elementwise Binary Operators
+ "add": {
+ "op": Op.ADD,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "arithmetic_right_shift": {
+ "op": Op.ARITHMETIC_RIGHT_SHIFT,
+ "operands": (2, 0),
+ "build_fcn": (
+ build_arithmetic_right_shift,
+ TosaTensorGen.tgBroadcastFuzz,
+ TosaArgGen.agArithmeticRightShift,
+ ),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "bitwise_and": {
+ "op": Op.BITWISE_AND,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "bitwise_or": {
+ "op": Op.BITWISE_OR,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "bitwise_xor": {
+ "op": Op.BITWISE_XOR,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "intdiv": {
+ "op": Op.INTDIV,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": [DType.INT32],
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "logical_and": {
+ "op": Op.LOGICAL_AND,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_BOOL,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "logical_left_shift": {
+ "op": Op.LOGICAL_LEFT_SHIFT,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "logical_right_shift": {
+ "op": Op.LOGICAL_RIGHT_SHIFT,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "logical_or": {
+ "op": Op.LOGICAL_OR,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_BOOL,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "logical_xor": {
+ "op": Op.LOGICAL_XOR,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_BOOL,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "maximum": {
+ "op": Op.MAXIMUM,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "minimum": {
+ "op": Op.MINIMUM,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "mul": {
+ "op": Op.MUL,
+ "operands": (2, 0),
+ "build_fcn": (build_mul, TosaTensorGen.tgBroadcastFuzz, TosaArgGen.agMul),
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evRankMismatch, TosaErrorValidator.evDimensionMismatch)
+ },
+ "pow": {
+ "op": Op.POW,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "sub": {
+ "op": Op.SUB,
+ "operands": (2, 0),
+ "build_fcn": (build_binary_broadcast, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "table": {
+ "op": Op.TABLE,
+ # Use the automatic generation functions to create the input array
+ # but create the table tensor in the build function, as it may be
+ # a different type from the input
+ "operands": (1, 0),
+ "build_fcn": (build_table, TosaTensorGen.tgBasic, TosaArgGen.agTable),
+ "types": [DType.INT8, DType.INT16],
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList)
+ },
+ # Elementwise Unary operators
+ "abs": {
+ "op": Op.ABS,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "bitwise_not": {
+ "op": Op.BITWISE_NOT,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_INT,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "ceil": {
+ "op": Op.CEIL,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "clz": {
+ "op": Op.CLZ,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": [DType.INT32],
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "exp": {
+ "op": Op.EXP,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "floor": {
+ "op": Op.FLOOR,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "log": {
+ "op": Op.LOG,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "logical_not": {
+ "op": Op.LOGICAL_NOT,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_BOOL,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "negate": {
+ "op": Op.NEGATE,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "qgen": TosaQuantGen.qgUnary,
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evOutputZeroPointNotZero,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList,
+ TosaErrorValidator.evWrongOutputList)
+ },
+ "reciprocal": {
+ "op": Op.RECIPROCAL,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "rsqrt": {
+ "op": Op.RSQRT,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ # Elementwise Ternary operators
+ "select": {
+ "op": Op.SELECT,
+ "operands": (3, 0),
+ "build_fcn": (build_select, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ # Comparison operators
+ "equal": {
+ "op": Op.EQUAL,
+ "operands": (2, 0),
+ "build_fcn": (build_comparison, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "greater_equal": {
+ "op": Op.GREATER_EQUAL,
+ "operands": (2, 0),
+ "build_fcn": (build_comparison, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ "greater": {
+ "op": Op.GREATER,
+ "operands": (2, 0),
+ "build_fcn": (build_comparison, TosaTensorGen.tgBroadcastFuzz, None),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evRankMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evDimensionMismatch)
+ },
+ # Reduction operators
+ "reduce_all": {
+ "op": Op.REDUCE_ALL,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_BOOL,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reduce_any": {
+ "op": Op.REDUCE_ANY,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_BOOL,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reduce_max": {
+ "op": Op.REDUCE_MAX,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reduce_min": {
+ "op": Op.REDUCE_MAX,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reduce_product": {
+ "op": Op.REDUCE_PRODUCT,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_FP,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reduce_sum": {
+ "op": Op.REDUCE_SUM,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_reduce, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_FI32,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evShapeOfAxisNotOne,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ # Data layout operators
+ "concat": {
+ "op": Op.CONCAT,
+ "operands": (2, 0),
+ "build_fcn": (build_concat, TosaTensorGen.tgConcat, TosaArgGen.agAxis),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evConcatInputRankMismatch,
+ TosaErrorValidator.evConcatShapeSumMismatch, TosaErrorValidator.evConcatInputDimMismatch, TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongOutputList)
+ },
+ "pad": {
+ "op": Op.PAD,
+ "operands": (1, 0),
+ "rank": (1, 5),
+ "build_fcn": (build_pad, TosaTensorGen.tgBasic, TosaArgGen.agPad),
+ "qgen": TosaQuantGen.qgPad,
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evPadSmallerZero,
+ TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reshape": {
+ "op": Op.RESHAPE,
+ "operands": (1, 0),
+ "build_fcn": (build_reshape, TosaTensorGen.tgBasic, TosaArgGen.agReshape),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evTensorSizeInputOutputMismatch, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "reverse": {
+ "op": Op.REVERSE,
+ "operands": (1, 0),
+ "build_fcn": (build_reverse, TosaTensorGen.tgBasic, TosaArgGen.agAxis),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evAxisSmallerZero, TosaErrorValidator.evAxisLargerRank, TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "slice": {
+ "op": Op.SLICE,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (build_slice, TosaTensorGen.tgBasic, TosaArgGen.agSlice),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evStartSmallerZero, TosaErrorValidator.evSizeSmallerEqualZero, TosaErrorValidator.evStartSizeOutsideBounds,
+ TosaErrorValidator.evSizeOutputShapeMismatch, TosaErrorValidator.evInputSizeStartLengthMismatch, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "tile": {
+ "op": Op.TILE,
+ "operands": (1, 0),
+ "build_fcn": (build_tile, TosaTensorGen.tgBasic, TosaArgGen.agTile),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "transpose": {
+ "op": Op.TRANSPOSE,
+ "operands": (1, 0),
+ "rank": (1, 4),
+ "build_fcn": (
+ build_transpose,
+ TosaTensorGen.tgBasic,
+ TosaArgGen.agTranspose,
+ ),
+ "types": TYPE_FIB,
+ "error_if_validators": (TosaErrorValidator.evIndexOutsideBounds, TosaErrorValidator.evIndexUsedTwice,
+ TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ # Data nodes
+ "const": {
+ "op": Op.CONST,
+ "operands": (0, 1),
+ "build_fcn": (build_const, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FIB,
+ },
+ "identity": {
+ "op": Op.IDENTITY,
+ "operands": (1, 0),
+ "build_fcn": (build_unary, TosaTensorGen.tgBasic, None),
+ "types": TYPE_FIB,
+ },
+ # Scatter/Gather
+ "gather": {
+ "op": Op.GATHER,
+ # Only specify 'values' tensor here. 'indices' is generated in op building stage
+ "operands": (1, 0),
+ "rank": (3, 3),
+ "build_fcn": (build_gather, TosaTensorGen.tgBasic, None),
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evWrongRank)
+ },
+ "scatter": {
+ "op": Op.SCATTER,
+ # Only specify 'values_in' tensor here.
+ #'indices' and 'input' are generated in op building stage
+ "operands": (2, 0),
+ "rank": (3, 3),
+ "build_fcn": (build_scatter, TosaTensorGen.tgScatter, None),
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList, TosaErrorValidator.evWrongRank)
+ },
+ # Image operations
+ "resize": {
+ "op": Op.RESIZE,
+ "operands": (1, 0),
+ "rank": (4, 4),
+ "build_fcn": (build_resize, TosaTensorGen.tgNHWC, TosaArgGen.agResize),
+ "types": [DType.INT8, DType.INT16, DType.FLOAT],
+ "invalid_test_validators": (TosaInvalidValidator.ivWrongDataTypeOrModeResize, TosaInvalidValidator.ivBadStride),
+ "error_if_validators": (TosaErrorValidator.evMaxDimExceeded, TosaErrorValidator.evStrideSmallerEqualZero, TosaErrorValidator.evStrideLargerDimension,
+ TosaErrorValidator.evStrideLargerEqualMax, TosaErrorValidator.evOffsetSmallerEqualMin, TosaErrorValidator.evOffsetLargerEqualMax,
+ TosaErrorValidator.evShiftNotZero, TosaErrorValidator.evShiftSmallerOne, TosaErrorValidator.evShiftLargerEleven, TosaErrorValidator.evWrongInputType,
+ TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank, TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList,
+ TosaErrorValidator.evBatchMismatch, TosaErrorValidator.evChannelMismatch)
+ },
+ # Type conversion
+ "cast": {
+ "op": Op.CAST,
+ "operands": (1, 0),
+ "build_fcn": (build_cast, TosaTensorGen.tgBasic, TosaArgGen.agCast),
+ "types": [DType.FLOAT, DType.INT8, DType.INT16, DType.INT32, DType.BOOL],
+ "error_if_validators": (TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ "rescale": {
+ "op": Op.RESCALE,
+ "operands": (1, 0),
+ "rank": (1,4),
+ "build_fcn": (build_rescale, TosaTensorGen.tgBasic, TosaArgGen.agRescale),
+ "types": [DType.UINT8, DType.INT8, DType.INT16, DType.INT32, DType.INT48],
+ "error_if_validators": (TosaErrorValidator.evInputZeroPointNotZero, TosaErrorValidator.evOutputZeroPointNotZero, TosaErrorValidator.evScaleTrue,
+ TosaErrorValidator.evScaleNotTrue, TosaErrorValidator.evWrongInputType, TosaErrorValidator.evWrongOutputType, TosaErrorValidator.evWrongRank,
+ TosaErrorValidator.evWrongInputList, TosaErrorValidator.evWrongOutputList)
+ },
+ # Custom
+ # Not implemented.
+ # Control flow operators
+ # Two varients of cond_if, one that generates one of two constant tensors (no
+ # inputs to the basic blocks, one output) and another that either adds or subtracts two tensors
+ # (two inputs to the basic blocks, one output)
+ "cond_if_const": {
+ "op": Op.COND_IF,
+ "operands": (0, 2),
+ "build_fcn": (
+ build_cond_if_const,
+ TosaTensorGen.tgBasic,
+ TosaArgGen.agCondIf,
+ ),
+ "types": [DType.BOOL],
+ "error_if_validators": (TosaErrorValidator.evOutputListThenGraphMismatch, TosaErrorValidator.evOutputListElseGraphMismatch)
+ },
+ "cond_if_binary": {
+ "op": Op.COND_IF,
+ "operands": (2, 0),
+ "build_fcn": (
+ build_cond_if_binary,
+ TosaTensorGen.tgBasic,
+ TosaArgGen.agCondIf,
+ ),
+ "types": TYPE_INT_FP,
+ "error_if_validators": (TosaErrorValidator.evInputListThenGraphMismatch, TosaErrorValidator.evInputListElseGraphMismatch,
+ TosaErrorValidator.evOutputListThenGraphMismatch, TosaErrorValidator.evOutputListElseGraphMismatch)
+ },
+ # while_loop
+ "while_loop": {
+ "op": Op.WHILE_LOOP,
+ "operands": (0, 1),
+ "build_fcn": (
+ build_while_loop,
+ TosaTensorGen.tgBasic,
+ TosaArgGen.agWhileLoop,
+ ),
+ "types": [DType.INT32],
+ "error_if_validators": (TosaErrorValidator.evInputListOutputListMismatch, TosaErrorValidator.evInputListCondGraphMismatch,
+ TosaErrorValidator.evInputListBodyGraphInputMismatch, TosaErrorValidator.evInputListBodyGraphOutputMismatch,
+ TosaErrorValidator.evCondGraphOutputNotMatchingBool)
+ },
+ }
+
+
+class OutputShaper:
+ # Methods in this class compute the expected output shape and datatype
+ # for common classes of operations
+ def __init__(self):
+ pass
+
+ # These methods return arguments that can be used for
+ # creating a new output tensor
+ @staticmethod
+ def binaryBroadcastOp(ser, rng, a, b, error_name=None):
+ if error_name != ErrorIf.RankMismatch:
+ assert len(a.shape) == len(b.shape)
+ assert a.dtype == b.dtype
+
+ shape = []
+ for i in range(len(a.shape)):
+ if a.shape[i] == 1 and error_name == None:
+ shape.append(b.shape[i])
+ else:
+ shape.append(a.shape[i])
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(shape, outputDType)
+
+ @staticmethod
+ def binaryNonBroadcastOp(ser, a, b):
+ assert len(a.shape) == len(b.shape)
+ assert a.dtype == b.dtype
+
+ shape = []
+ for i in range(len(a.shape)):
+ assert a.shape[i] == b.shape[i]
+ shape.append(a.shape[i])
+
+ return ser.addOutput(shape, a.dtype)
+
+ @staticmethod
+ def unaryOp(ser, rng, a, error_name=None):
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(a.shape, outputDType)
+
+ @staticmethod
+ def selectOp(ser, rng, cond, a, b, error_name=None):
+ if error_name != ErrorIf.RankMismatch:
+ assert len(a.shape) == len(b.shape) and len(a.shape) == len(cond.shape)
+ assert a.dtype == b.dtype
+
+ shape = []
+ for i in range(len(cond.shape)):
+ if cond.shape[i] == 1 and error_name == None:
+ shape.append(max(cond.shape[i], a.shape[i], b.shape[i]))
+ else:
+ shape.append(cond.shape[i])
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(shape, outputDType)
+
+ @staticmethod
+ def binaryComparisonOp(ser, rng, a, b , error_name=None):
+ if error_name != ErrorIf.RankMismatch:
+ assert len(a.shape) == len(b.shape)
+ assert a.dtype == b.dtype
+
+ # Do broadcast
+ shape = []
+ for i in range(len(a.shape)):
+ if a.shape[i] == 1 and len(b.shape) > i:
+ shape.append(b.shape[i])
+ else:
+ shape.append(a.shape[i])
+
+ if error_name == ErrorIf.WrongOutputType:
+ wrong_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = DType.BOOL
+
+ return ser.addOutput(shape, outputDType)
+
+ @staticmethod
+ def reduceOp(ser, rng, a, axis, error_name=None):
+ shape = a.shape.copy()
+ if error_name not in [ErrorIf.AxisSmallerZero, ErrorIf.AxisLargerRank, ErrorIf.ShapeOfAxisNotOne]:
+ shape[axis] = 1
+ if error_name == ErrorIf.ShapeOfAxisNotOne and shape[axis] == 1:
+ shape[axis] = rng.integers(2, 10)
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(shape, outputDType)
+
+ @staticmethod
+ def argmaxOp(ser, rng, a, axis, error_name=None):
+ shape = a.shape.copy()
+
+ if error_name not in [ErrorIf.AxisSmallerZero, ErrorIf.AxisLargerRank]:
+ del shape[axis]
+
+ if error_name == ErrorIf.ArgmaxOutputRankMismatch:
+ remove = rng.choice([True, False])
+ if remove and len(shape) > 1:
+ del shape[0]
+ else:
+ shape.append(1)
+ elif error_name == ErrorIf.ArgmaxOutputShapeMismatch:
+ for i in range(len(shape)):
+ shape[i] = shape[i] + rng.integers(1, 10)
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([DType.INT32]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = DType.INT32
+
+ return ser.addOutput(shape, outputDType)
+
+ @staticmethod
+ def conv2dOp(ser, rng, ifm, filter, strides, padding, dilations, error_name=None):
+
+ # IFM: NHWC
+ # Filter: OHWI
+ # OFM: NHWC
+
+ if len(padding) == 2:
+ # Expand padding to 4 parameters in the case of transpose_conv2d
+ # From H,W to T,B,L,R
+ padding = [padding[0], padding[0], padding[1], padding[1]]
+
+ h = (
+ ifm.shape[1]
+ - filter.shape[1]
+ - (filter.shape[1] - 1) * (dilations[0] - 1)
+ + padding[0]
+ + padding[1]
+ ) // strides[0] + 1
+
+ w = (
+ ifm.shape[2]
+ - filter.shape[2]
+ - (filter.shape[2] - 1) * (dilations[1] - 1)
+ + padding[2]
+ + padding[3]
+ ) // strides[1] + 1
+
+ # Avoid illegal dimensions, which can be generated in error_if tests
+ h = max(h, 1)
+ w = max(w, 1)
+
+ ofm_shape = [ifm.shape[0], h, w, filter.shape[0]]
+
+ if ifm.dtype == DType.INT8:
+ out_dtype = DType.INT32
+ elif ifm.dtype == DType.INT16:
+ out_dtype = DType.INT48
+ elif ifm.dtype == DType.FLOAT:
+ out_dtype = DType.FLOAT
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output dtype if input type is incorrect
+ out_dtype = DType.INT32
+ else:
+ raise Exception(f"Unsupported input dtype: {ifm.dtype}")
+
+ if error_name == ErrorIf.WrongOutputType:
+ wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
+ out_dtype = rng.choice(wrong_dtypes)
+
+ return ser.addOutput(ofm_shape, out_dtype)
+
+ @staticmethod
+ def conv3dOp(ser, rng, ifm, filter, strides, padding, dilations, error_name=None):
+
+ # IFM: NDHWC
+ # Filter: ODHWI
+ # OFM: NDHWC
+
+ d = (
+ ifm.shape[1]
+ - filter.shape[1]
+ - (filter.shape[1] - 1) * (dilations[0] - 1)
+ + padding[0]
+ + padding[1]
+ ) // strides[0] + 1
+
+ h = (
+ ifm.shape[2]
+ - filter.shape[2]
+ - (filter.shape[2] - 1) * (dilations[1] - 1)
+ + padding[2]
+ + padding[3]
+ ) // strides[1] + 1
+
+ w = (
+ ifm.shape[3]
+ - filter.shape[3]
+ - (filter.shape[3] - 1) * (dilations[2] - 1)
+ + padding[4]
+ + padding[5]
+ ) // strides[2] + 1
+
+ # Avoid illegal dimensions, which can be generated in error_if tests
+ d = max(d, 1)
+ h = max(h, 1)
+ w = max(w, 1)
+
+ ofm_shape = [ifm.shape[0], d, h, w, filter.shape[0]]
+
+ if ifm.dtype == DType.INT8:
+ out_dtype = DType.INT32
+ elif ifm.dtype == DType.INT16:
+ out_dtype = DType.INT48
+ elif ifm.dtype == DType.FLOAT:
+ out_dtype = DType.FLOAT
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output dtype if input type is incorrect
+ out_dtype = DType.INT32
+ else:
+ raise Exception(f"Unsupported input dtype: {ifm.dtype}")
+
+ if error_name == ErrorIf.WrongOutputType:
+ wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
+ out_dtype = rng.choice(wrong_dtypes)
+
+ return ser.addOutput(ofm_shape, out_dtype)
+
+ @staticmethod
+ def depthwiseConv2dOp(ser, rng, ifm, filter, strides, padding, dilations, error_name=None):
+ # IFM: NHWC
+ # Filter: HWCM
+ # OFM: NHW C*M
+ h = (
+ ifm.shape[1]
+ - filter.shape[0]
+ - (filter.shape[0] - 1) * (dilations[0] - 1)
+ + padding[0]
+ + padding[1]
+ ) // strides[0] + 1
+
+ w = (
+ ifm.shape[2]
+ - filter.shape[1]
+ - (filter.shape[1] - 1) * (dilations[1] - 1)
+ + padding[2]
+ + padding[3]
+ ) // strides[1] + 1
+
+ # Avoid illegal dimensions, which can be generated in error_if tests
+ h = max(h, 1)
+ w = max(w, 1)
+
+ ofm_shape = [ifm.shape[0], h, w, filter.shape[2] * filter.shape[3]]
+
+ if ifm.dtype == DType.INT8:
+ out_dtype = DType.INT32
+ elif ifm.dtype == DType.INT16:
+ out_dtype = DType.INT48
+ elif ifm.dtype == DType.FLOAT:
+ out_dtype = DType.FLOAT
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output dtype if input type is incorrect
+ out_dtype = DType.INT32
+ else:
+ raise Exception(f"Unsupported input dtype: {ifm.dtype}")
+
+ if error_name == ErrorIf.WrongOutputType:
+ wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
+ out_dtype = rng.choice(wrong_dtypes)
+
+ return ser.addOutput(ofm_shape, out_dtype)
+
+ @staticmethod
+ def pool2dOp(ser, rng, ifm, kernel, stride, pad, error_name=None):
+ # input: NHWC
+ if stride[0] <= 0 or stride[1] <= 0 or min(pad) < 0:
+ # If an incorrect stride is used set dimensions to 1, test is invalid anyway.
+ h = 1
+ w = 1
+ else:
+ h = (ifm.shape[1] + pad[0] + pad[1] + stride[0] - kernel[0]) // stride[0]
+ w = (ifm.shape[2] + pad[2] + pad[3] + stride[1] - kernel[1]) // stride[1]
+
+ if error_name == ErrorIf.PoolingOutputShapeMismatch:
+ choices = [1, 2, 3, 4, 5]
+ h = h + rng.choice(choices)
+ w = w + rng.choice(choices)
+
+ ofm_shape = [ifm.shape[0], h, w, ifm.shape[3]]
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([ifm.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = ifm.dtype
+
+ return ser.addOutput(ofm_shape, outputDType)
+
+ @staticmethod
+ def fullyConnectedOp(ser, rng, input, filter, error_name=None):
+ # input: N, IC
+ # filter: OC, IC
+ # output: N, OC
+
+ output_shape = [input.shape[0], filter.shape[0]]
+
+ if error_name == ErrorIf.WrongOutputType:
+ if input.dtype == DType.INT8:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT48, DType.FLOAT)
+ elif input.dtype == DType.INT16:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.FLOAT)
+ elif input.dtype == DType.FLOAT:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.INT48)
+ out_dtype = rng.choice(a=incorrect_types)
+ elif input.dtype == DType.INT8:
+ out_dtype = DType.INT32
+ elif input.dtype == DType.INT16:
+ out_dtype = DType.INT48
+ elif input.dtype == DType.FLOAT:
+ out_dtype = DType.FLOAT
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output dtype if input type is incorrect
+ out_dtype = DType.INT32
+ else:
+ raise Exception("Unsupported input dtype: {}".format(input.dtype))
+
+ return ser.addOutput(output_shape, out_dtype)
+
+ @staticmethod
+ def matmulOp(ser, rng, a, b, error_name=None):
+ # a: N, H, C
+ # b: N, C, W
+ # out: N, H, W
+
+ output_shape = [a.shape[0], a.shape[1], b.shape[2]]
+
+ if error_name == ErrorIf.WrongOutputType:
+ if a.dtype == DType.INT8:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT48, DType.FLOAT)
+ elif a.dtype == DType.INT16:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.FLOAT)
+ elif a.dtype == DType.FLOAT:
+ incorrect_types = (DType.INT4, DType.INT8, DType.INT16, DType.INT32, DType.INT48)
+ out_dtype = rng.choice(a=incorrect_types)
+ elif a.dtype == DType.INT8:
+ out_dtype = DType.INT32
+ elif a.dtype == DType.INT16:
+ out_dtype = DType.INT48
+ elif a.dtype == DType.FLOAT:
+ out_dtype = DType.FLOAT
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output dtype if input type is incorrect
+ out_dtype = DType.INT32
+ else:
+ raise Exception("Unsupported input dtype for matmul: {}".format(a.dtype))
+
+ return ser.addOutput(output_shape, out_dtype)
+
+ @staticmethod
+ def concatOp(ser, rng, axis, *a, error_name=None):
+ input1 = a[0]
+ remaining_inputs = a[1:]
+
+ # calculate the output shape, if possible, otherwise just use the first input shape
+ output_shape = input1.shape.copy()
+ if not (
+ # unable to concat tensors of different ranks
+ error_name == ErrorIf.ConcatInputRankMismatch
+ # unable to concat tensors along an invalid axis
+ or error_name in [ErrorIf.AxisLargerRank, ErrorIf.AxisSmallerZero]
+ ):
+ for tensor in remaining_inputs:
+ output_shape[axis] += tensor.shape[axis]
+
+ if error_name == ErrorIf.ConcatShapeSumMismatch:
+ output_shape[axis] += rng.integers(5, 10)
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = {DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT}
+ wrong_dtypes = list(all_dtypes - set([input1.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = input1.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def padOp(ser, rng, a, padding, error_name=None):
+
+ output_shape = a.shape.copy()
+
+ for i in range(len(output_shape)):
+ output_shape[i] = padding[i][0] + padding[i][1] + output_shape[i]
+
+ # Fix negative output shape if error_if test causes it
+ if error_name == ErrorIf.PadSmallerZero and min(output_shape) < 1:
+ output_shape = [i if i >= 1 else 1 for i in output_shape]
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def reshapeOp(ser, rng, a, shape, error_name=None):
+ output_shape = shape.copy()
+
+ totalElements = 1
+ for i in a.shape:
+ totalElements *= i
+
+ # If there are any -1 elements, figure out what that dimension must be
+ totalOutputElements = 1
+ for i in output_shape:
+ if i != -1:
+ totalOutputElements *= i
+
+ # And fill it in
+ for i in range(len(output_shape)):
+ if output_shape[i] == -1:
+ output_shape[i] = totalElements // totalOutputElements
+
+ if error_name == ErrorIf.TensorSizeInputOutputMismatch:
+ for i in range(len(output_shape)):
+ output_shape[i] = output_shape[i] + rng.integers(1, 10)
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def sliceOp(ser, rng, a, start, size, error_name=None):
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ if error_name == ErrorIf.SizeOutputShapeMismatch:
+ output_shape = size.copy()
+ for index in range(len(output_shape)):
+ if output_shape[index] <= 2:
+ output_shape[index] = output_shape[index] + rng.choice([1, 2])
+ else:
+ output_shape[index] = output_shape[index] + rng.choice([-2, -1, 1, 2])
+ else:
+ output_shape = size.copy()
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def tileOp(ser, rng, a, multiples, error_name=None):
+
+ output_shape = a.shape.copy()
+ assert len(multiples) == len(output_shape)
+
+ for i in range(len(output_shape)):
+ output_shape[i] = a.shape[i] * multiples[i]
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def transposeOp(ser, rng, a, perms, error_name=None):
+ output_shape = a.shape.copy()
+
+ assert len(perms) == len(output_shape)
+
+ if error_name == ErrorIf.IndexOutsideBounds:
+ for i in range(len(output_shape)):
+ output_shape[i] = a.shape[0]
+ else:
+ for i in range(len(output_shape)):
+ output_shape[i] = a.shape[perms[i]]
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([a.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = a.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def gatherOp(ser, rng, values, indices, error_name=None):
+ if error_name != ErrorIf.WrongRank:
+ assert len(values.shape) == 3
+ assert len(indices.shape) == 2
+ assert values.shape[0] == indices.shape[0]
+
+ output_shape = [values.shape[0], indices.shape[1], values.shape[2]]
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([values.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = values.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def scatterOp(ser, rng, values_in, indices, input, error_name=None):
+ if error_name != ErrorIf.WrongRank:
+ assert len(values_in.shape) == 3
+ assert len(indices.shape) == 2
+ assert len(input.shape) == 3
+ assert values_in.shape[0] == indices.shape[0] # N
+ assert input.shape[1] == indices.shape[1] # W
+ assert values_in.shape[2] == input.shape[2] # C
+
+ output_shape = values_in.shape
+
+ if error_name == ErrorIf.WrongOutputType:
+ all_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes = list(set(all_dtypes) - set([values_in.dtype]))
+ outputDType = rng.choice(wrong_dtypes)
+ else:
+ outputDType = values_in.dtype
+
+ return ser.addOutput(output_shape, outputDType)
+
+ @staticmethod
+ def tableOp(ser, rng, input, error_name=None):
+ # Same shape as the input, dtype dependent on input dtype
+ if error_name != ErrorIf.WrongInputType:
+ assert input.dtype == DType.INT16 or input.dtype == DType.INT8
+ output_dtype = DType.INT32 if input.dtype == DType.INT16 else DType.INT8
+ if error_name == ErrorIf.WrongOutputType:
+ wrong_dtypes = [DType.INT8, DType.INT16, DType.INT32, DType.INT48, DType.FLOAT]
+ wrong_dtypes.remove(output_dtype)
+ output_dtype = rng.choice(wrong_dtypes)
+ return ser.addOutput(input.shape, output_dtype)
+
+ @staticmethod
+ def resizeOp(
+ serializer,
+ rng,
+ input,
+ mode,
+ stride,
+ offset,
+ shift,
+ stride_fp,
+ offset_fp,
+ output_dims,
+ input_dtype,
+ output_dtype,
+ error_name = None
+ ):
+ if error_name == ErrorIf.WrongRank:
+ output_dims = [input.shape[0], output_dims[0], output_dims[0], input.shape[0]]
+ else:
+ if error_name == ErrorIf.BatchMismatch:
+ output_dims = [input.shape[0] + rng.integers(1, 10), output_dims[0], output_dims[1], input.shape[3]]
+ elif error_name == ErrorIf.ChannelMismatch:
+ output_dims = [input.shape[0], output_dims[0], output_dims[1], input.shape[3] + rng.integers(1, 10)]
+ else:
+ output_dims = [input.shape[0], output_dims[0], output_dims[1], input.shape[3]]
+
+ return serializer.addOutput(output_dims, output_dtype)
+
+ @staticmethod
+ def typeConversionOp(ser, rng, val, out_dtype, error_name=None):
+ return ser.addOutput(val.shape, out_dtype)
+
+ @staticmethod
+ def transposeConv2DOp(ser, rng, ifm, output_shape, error_name=None):
+ if ifm.dtype == DType.INT8:
+ out_dtype = DType.INT32
+ elif ifm.dtype == DType.INT16:
+ out_dtype = DType.INT48
+ elif ifm.dtype == DType.FLOAT:
+ out_dtype = DType.FLOAT
+ elif error_name == ErrorIf.WrongInputType:
+ # Pick some potentially correct output dtype if input type is incorrect
+ out_dtype = DType.INT32
+ else:
+ raise Exception(f"Unsupported input dtype: {ifm.dtype}")
+
+ if error_name == ErrorIf.WrongOutputType:
+ wrong_dtypes = list(usableDTypes(excludes=[out_dtype]))
+ out_dtype = rng.choice(wrong_dtypes)
+
+ return ser.addOutput(output_shape, out_dtype)