aboutsummaryrefslogtreecommitdiff
path: root/src/mlia/nn/rewrite/core/utils/numpy_tfrecord.py
blob: 9229810afafadd8b97cd18092c8720226dc446b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# SPDX-FileCopyrightText: Copyright 2023, Arm Limited and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
"""Numpy TFRecord utils."""
from __future__ import annotations

import json
import os
import random
import tempfile
from collections import defaultdict
from pathlib import Path
from typing import Any
from typing import Callable

import numpy as np
import tensorflow as tf
from tensorflow.lite.python import interpreter as interpreter_wrapper

from mlia.nn.rewrite.core.utils.utils import load
from mlia.nn.rewrite.core.utils.utils import save

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)


def make_decode_fn(filename: str) -> Callable:
    """Make decode filename."""

    def decode_fn(record_bytes: Any, type_map: dict) -> dict:
        parse_dict = {
            name: tf.io.FixedLenFeature([], tf.string) for name in type_map.keys()
        }
        example = tf.io.parse_single_example(record_bytes, parse_dict)
        features = {
            n: tf.io.parse_tensor(example[n], tf.as_dtype(t))
            for n, t in type_map.items()
        }
        return features

    meta_filename = filename + ".meta"
    with open(meta_filename, encoding="utf-8") as file:
        type_map = json.load(file)["type_map"]
    return lambda record_bytes: decode_fn(record_bytes, type_map)


def numpytf_read(filename: str | Path) -> Any:
    """Read TFRecord dataset."""
    decode_fn = make_decode_fn(str(filename))
    dataset = tf.data.TFRecordDataset(str(filename))
    return dataset.map(decode_fn)


def numpytf_count(filename: str | Path) -> Any:
    """Return count from TFRecord file."""
    meta_filename = f"{filename}.meta"
    with open(meta_filename, encoding="utf-8") as file:
        return json.load(file)["count"]


class NumpyTFWriter:
    """Numpy TF serializer."""

    def __init__(self, filename: str | Path) -> None:
        """Initiate a Numpy TF Serializer."""
        self.filename = filename
        self.meta_filename = f"{filename}.meta"
        self.writer = tf.io.TFRecordWriter(str(filename))
        self.type_map: dict = {}
        self.count = 0

    def __enter__(self) -> Any:
        """Enter instance."""
        return self

    def __exit__(
        self, exception_type: Any, exception_value: Any, exception_traceback: Any
    ) -> None:
        """Close instance."""
        self.close()

    def write(self, array_dict: dict) -> None:
        """Write array dict."""
        type_map = {n: str(a.dtype.name) for n, a in array_dict.items()}
        self.type_map.update(type_map)
        self.count += 1

        feature = {
            n: tf.train.Feature(
                bytes_list=tf.train.BytesList(value=[tf.io.serialize_tensor(a).numpy()])
            )
            for n, a in array_dict.items()
        }
        example = tf.train.Example(features=tf.train.Features(feature=feature))
        self.writer.write(example.SerializeToString())

    def close(self) -> None:
        """Close NumpyTFWriter."""
        with open(self.meta_filename, "w", encoding="utf-8") as file:
            meta = {"type_map": self.type_map, "count": self.count}
            json.dump(meta, file)
        self.writer.close()


class TFLiteModel:
    """A representation of a TFLite Model."""

    def __init__(
        self,
        filename: str,
        batch_size: int | None = None,
        num_threads: int | None = None,
    ) -> None:
        """Initiate a TFLite Model."""
        if not num_threads:
            num_threads = None
        if not batch_size:
            self.interpreter = interpreter_wrapper.Interpreter(
                model_path=filename, num_threads=num_threads
            )
        else:  # if a batch size is specified, modify the TFLite model to use this size
            with tempfile.TemporaryDirectory() as tmp:
                flatbuffer = load(filename)
                for subgraph in flatbuffer.subgraphs:
                    for tensor in list(subgraph.inputs) + list(subgraph.outputs):
                        subgraph.tensors[tensor].shape = np.array(
                            [batch_size] + list(subgraph.tensors[tensor].shape[1:]),
                            dtype=np.int32,
                        )
                tempname = os.path.join(tmp, "rewrite_tmp.tflite")
                save(flatbuffer, tempname)
                self.interpreter = interpreter_wrapper.Interpreter(
                    model_path=tempname, num_threads=num_threads
                )

        try:
            self.interpreter.allocate_tensors()
        except RuntimeError:
            self.interpreter = interpreter_wrapper.Interpreter(
                model_path=filename, num_threads=num_threads
            )
            self.interpreter.allocate_tensors()

        # Get input and output tensors.
        self.input_details = self.interpreter.get_input_details()
        self.output_details = self.interpreter.get_output_details()
        details = list(self.input_details) + list(self.output_details)
        self.handle_from_name = {d["name"]: d["index"] for d in details}
        self.shape_from_name = {d["name"]: d["shape"] for d in details}
        self.batch_size = next(iter(self.shape_from_name.values()))[0]

    def __call__(self, named_input: dict) -> dict:
        """Execute the model on one or a batch of named inputs \
            (a dict of name: numpy array)."""
        input_len = next(iter(named_input.values())).shape[0]
        full_steps = input_len // self.batch_size
        remainder = input_len % self.batch_size

        named_ys = defaultdict(list)
        for i in range(full_steps):
            for name, x_batch in named_input.items():
                x_tensor = x_batch[i : i + self.batch_size]  # noqa: E203
                self.interpreter.set_tensor(self.handle_from_name[name], x_tensor)
            self.interpreter.invoke()
            for output_detail in self.output_details:
                named_ys[output_detail["name"]].append(
                    self.interpreter.get_tensor(output_detail["index"])
                )
        if remainder:
            for name, x_batch in named_input.items():
                x_tensor = np.zeros(  # pylint: disable=invalid-name
                    self.shape_from_name[name]
                ).astype(x_batch.dtype)
                x_tensor[:remainder] = x_batch[-remainder:]
                self.interpreter.set_tensor(self.handle_from_name[name], x_tensor)
            self.interpreter.invoke()
            for output_detail in self.output_details:
                named_ys[output_detail["name"]].append(
                    self.interpreter.get_tensor(output_detail["index"])[:remainder]
                )
        return {k: np.concatenate(v) for k, v in named_ys.items()}

    def input_tensors(self) -> list:
        """Return name from input details."""
        return [d["name"] for d in self.input_details]

    def output_tensors(self) -> list:
        """Return name from output details."""
        return [d["name"] for d in self.output_details]


def sample_tfrec(input_file: str, k: int, output_file: str) -> None:
    """Count, read and write TFRecord input and output data."""
    total = numpytf_count(input_file)
    next_sample = sorted(random.sample(range(total), k=k), reverse=True)

    reader = numpytf_read(input_file)
    with NumpyTFWriter(output_file) as writer:
        for i, data in enumerate(reader):
            if i == next_sample[-1]:
                next_sample.pop()
                writer.write(data)
                if not next_sample:
                    break