summaryrefslogtreecommitdiff
path: root/source/math/PlatformMath.cc
blob: b666d29788710aafbd15d80bfecbb641fd07bb99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * Copyright (c) 2021-2022 Arm Limited. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "PlatformMath.hpp"
#include "log_macros.h"
#include <algorithm>

namespace arm {
namespace app {
namespace math {

    float MathUtils::CosineF32(float radians)
    {
#if ARM_MATH_DSP
        return arm_cos_f32(radians);
#else /* ARM_MATH_DSP */
        return cosf(radians);
#endif /* ARM_MATH_DSP */
    }

    float MathUtils::SineF32(float radians)
    {
#if ARM_MATH_DSP
        return arm_sin_f32(radians);
#else /* ARM_MATH_DSP */
        return sinf(radians);
#endif /* ARM_MATH_DSP */
    }

    float MathUtils::SqrtF32(float input)
    {
#if ARM_MATH_DSP
        float output = 0.f;
        arm_sqrt_f32(input, &output);
        return output;
#else /* ARM_MATH_DSP */
        return sqrtf(input);
#endif /* ARM_MATH_DSP */
    }

    float MathUtils::MeanF32(float* ptrSrc, const uint32_t srcLen)
    {
        if (!srcLen) {
            return 0.f;
        }

#if ARM_MATH_DSP
        float result = 0.f;
        arm_mean_f32(ptrSrc, srcLen, &result);
        return result;
#else /* ARM_MATH_DSP */
        float acc = std::accumulate(ptrSrc, ptrSrc + srcLen, 0.0);
        return acc/srcLen;
#endif /* ARM_MATH_DSP */
    }

    float MathUtils::StdDevF32(float* ptrSrc, const uint32_t srcLen,
                               const float mean)
    {
        if (!srcLen) {
            return 0.f;
        }
#if ARM_MATH_DSP
        /**
         * Note Standard deviation calculation can be off
         * by > 0.01 but less than < 0.1, according to
         * preliminary findings.
         **/
        UNUSED(mean);
        float stdDev = 0;
        arm_std_f32(ptrSrc, srcLen, &stdDev);
        return stdDev;
#else /* ARM_MATH_DSP */
        auto VarianceFunction = [=](float acc, const float value) {
            return acc + (((value - mean) * (value - mean))/ srcLen);
        };

        float acc = std::accumulate(ptrSrc, ptrSrc + srcLen, 0.0,
                                    VarianceFunction);

        return sqrtf(acc);
#endif /* ARM_MATH_DSP */
    }

    void MathUtils::FftInitF32(const uint16_t fftLen,
                               FftInstance& fftInstance,
                               const FftType type)
    {
        fftInstance.m_fftLen = fftLen;
        fftInstance.m_initialised = false;
        fftInstance.m_optimisedOptionAvailable = false;
        fftInstance.m_type = type;

#if ARM_MATH_DSP
        arm_status status = ARM_MATH_ARGUMENT_ERROR;
        switch (fftInstance.m_type) {
        case FftType::real:
            status = arm_rfft_fast_init_f32(&fftInstance.m_instanceReal, fftLen);
            break;

        case FftType::complex:
            status = arm_cfft_init_f32(&fftInstance.m_instanceComplex, fftLen);
            break;

        default:
            printf_err("Invalid FFT type\n");
            return;
        }

        if (ARM_MATH_SUCCESS != status) {
            printf_err("Failed to initialise FFT for len %d\n", fftLen);
        } else {
            fftInstance.m_optimisedOptionAvailable = true;
        }
#endif /* ARM_MATH_DSP */

        debug("Optimised FFT will be used: %s.\n", fftInstance.m_optimisedOptionAvailable? "yes": "no");

        fftInstance.m_initialised = true;
    }

    static void FftRealF32(std::vector<float>& input,
                           std::vector<float>& fftOutput)
    {
        const size_t inputLength = input.size();
        const size_t halfLength = input.size() / 2;

        fftOutput[0] = 0;
        fftOutput[1] = 0;
        for (size_t t = 0; t < inputLength; t++) {
            fftOutput[0] += input[t];
            fftOutput[1] += input[t] *
                MathUtils::CosineF32(2 * M_PI * halfLength * t / inputLength);
        }

        for (size_t k = 1, j = 2; k < halfLength; ++k, j += 2) {
            float sumReal = 0;
            float sumImag = 0;

            const auto theta = static_cast<float>(2 * M_PI * k / inputLength);

            for (size_t t = 0; t < inputLength; t++) {
                const auto angle = static_cast<float>(t * theta);
                sumReal += input[t] * MathUtils::CosineF32(angle);
                sumImag += -input[t]* MathUtils::SineF32(angle);
            }

            /* Arrange output to [real0, realN/2, real1, im1, real2, im2, ...] */
            fftOutput[j] = sumReal;
            fftOutput[j + 1] = sumImag;
        }
    }

    static void FftComplexF32(std::vector<float>& input,
                           std::vector<float>& fftOutput)
    {
        const size_t fftLen = input.size() / 2;
        for (size_t k = 0; k < fftLen; k++) {
            float sumReal = 0;
            float sumImag = 0;
            const auto theta = static_cast<float>(2 * M_PI * k / fftLen);
            for (size_t t = 0; t < fftLen; t++) {
                const auto angle = theta * t;
                const auto cosine = MathUtils::CosineF32(angle);
                const auto sine = MathUtils::SineF32(angle);
                sumReal += input[t*2] * cosine + input[t*2 + 1] * sine;
                sumImag += -input[t*2] * sine + input[t*2 + 1] * cosine;
            }
            fftOutput[k*2] = sumReal;
            fftOutput[k*2 + 1] = sumImag;
        }
    }

    void MathUtils::FftF32(std::vector<float>& input,
                           std::vector<float>& fftOutput,
                           arm::app::math::FftInstance& fftInstance)
    {
        if (!fftInstance.m_initialised) {
            printf_err("FFT uninitialised\n");
            return;
        } else if (input.size() < fftInstance.m_fftLen) {
            printf_err("FFT len: %" PRIu16 "; input len: %zu\n",
                fftInstance.m_fftLen, input.size());
            return;
        } else if (fftOutput.size() < input.size()) {
            printf_err("Output vector len insufficient to hold FFTs\n");
            return;
        }

        switch (fftInstance.m_type) {
        case FftType::real:

#if ARM_MATH_DSP
            if (fftInstance.m_optimisedOptionAvailable) {
                arm_rfft_fast_f32(&fftInstance.m_instanceReal, input.data(), fftOutput.data(), 0);
                return;
            }
#endif /* ARM_MATH_DSP */
            FftRealF32(input, fftOutput);
            return;

        case FftType::complex:
            if (input.size() < fftInstance.m_fftLen * 2) {
                printf_err("Complex FFT instance should have input size >= (FFT len x 2)");
                return;
            }
#if ARM_MATH_DSP
            if (fftInstance.m_optimisedOptionAvailable) {
                fftOutput = input; /* Complex function works in-place */
                arm_cfft_f32(&fftInstance.m_instanceComplex, fftOutput.data(), 0, 1);
                return;
            }
#endif /* ARM_MATH_DSP */
            FftComplexF32(input, fftOutput);
            return;

        default:
            printf_err("Invalid FFT type\n");
            return;
        }
    }

    void MathUtils::VecLogarithmF32(std::vector <float>& input,
                                    std::vector <float>& output)
    {
#if ARM_MATH_DSP
        arm_vlog_f32(input.data(), output.data(),
                     output.size());
#else /* ARM_MATH_DSP */
        for (auto in = input.begin(), out = output.begin();
             in != input.end() && out != output.end(); ++in, ++out) {
            *out = logf(*in);
        }
#endif /* ARM_MATH_DSP */
    }

    float MathUtils::DotProductF32(float* srcPtrA, float* srcPtrB,
                                   const uint32_t srcLen)
    {
        float output = 0.f;

#if ARM_MATH_DSP
        arm_dot_prod_f32(srcPtrA, srcPtrB, srcLen, &output);
#else /* ARM_MATH_DSP */
        for (uint32_t i = 0; i < srcLen; ++i) {
            output += *srcPtrA++ * *srcPtrB++;
        }
#endif /* ARM_MATH_DSP */

        return output;
    }

    bool MathUtils::ComplexMagnitudeSquaredF32(float* ptrSrc,
                                               const uint32_t srcLen,
                                               float* ptrDst,
                                               const uint32_t dstLen)
    {
        if (dstLen < srcLen/2) {
            printf_err("dstLen must be greater than srcLen/2");
            return false;
        }

#if ARM_MATH_DSP
        arm_cmplx_mag_squared_f32(ptrSrc, ptrDst, srcLen/2);
#else /* ARM_MATH_DSP */
        for (uint32_t j = 0; j < srcLen/2; ++j) {
            const float real = *ptrSrc++;
            const float im = *ptrSrc++;
            *ptrDst++ = real*real + im*im;
        }
#endif /* ARM_MATH_DSP */
        return true;
    }

    void MathUtils::SoftmaxF32(std::vector<float>& vec)
    {
        /* Fix for numerical stability and apply exp. */
        auto start = vec.begin();
        auto end = vec.end();

        float maxValue = *std::max_element(start, end);
        for (auto it = start; it != end; ++it) {
            *it = std::exp((*it) - maxValue);
        }

        float sumExp = std::accumulate(start, end, 0.0f);

        for (auto it = start; it != end; ++it) {
            *it = (*it)/sumExp;
        }
    }

    float MathUtils::SigmoidF32(float x)
    {
        return 1.f/(1.f + std::exp(-x));
    }

} /* namespace math */
} /* namespace app */
} /* namespace arm */