summaryrefslogtreecommitdiff
path: root/source/application/api/use_case/kws/src/KwsProcessing.cc
blob: 843ac583ca72a950700a88e7b711328e87951a77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 * Copyright (c) 2022 Arm Limited. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "KwsProcessing.hpp"
#include "log_macros.h"
#include "MicroNetKwsModel.hpp"

namespace arm {
namespace app {

    KwsPreProcess::KwsPreProcess(TfLiteTensor* inputTensor, size_t numFeatures, size_t numMfccFrames,
            int mfccFrameLength, int mfccFrameStride
        ):
        m_inputTensor{inputTensor},
        m_mfccFrameLength{mfccFrameLength},
        m_mfccFrameStride{mfccFrameStride},
        m_numMfccFrames{numMfccFrames},
        m_mfcc{audio::MicroNetKwsMFCC(numFeatures, mfccFrameLength)}
    {
        this->m_mfcc.Init();

        /* Deduce the data length required for 1 inference from the network parameters. */
        this->m_audioDataWindowSize = this->m_numMfccFrames * this->m_mfccFrameStride +
                (this->m_mfccFrameLength - this->m_mfccFrameStride);

        /* Creating an MFCC feature sliding window for the data required for 1 inference. */
        this->m_mfccSlidingWindow = audio::SlidingWindow<const int16_t>(nullptr, this->m_audioDataWindowSize,
                this->m_mfccFrameLength, this->m_mfccFrameStride);

        /* For longer audio clips we choose to move by half the audio window size
         * => for a 1 second window size there is an overlap of 0.5 seconds. */
        this->m_audioDataStride = this->m_audioDataWindowSize / 2;

        /* To have the previously calculated features re-usable, stride must be multiple
         * of MFCC features window stride. Reduce stride through audio if needed. */
        if (0 != this->m_audioDataStride % this->m_mfccFrameStride) {
            this->m_audioDataStride -= this->m_audioDataStride % this->m_mfccFrameStride;
        }

        this->m_numMfccVectorsInAudioStride = this->m_audioDataStride / this->m_mfccFrameStride;

        /* Calculate number of the feature vectors in the window overlap region.
         * These feature vectors will be reused.*/
        this->m_numReusedMfccVectors = this->m_mfccSlidingWindow.TotalStrides() + 1
                - this->m_numMfccVectorsInAudioStride;

        /* Construct feature calculation function. */
        this->m_mfccFeatureCalculator = GetFeatureCalculator(this->m_mfcc, this->m_inputTensor,
                                                             this->m_numReusedMfccVectors);

        if (!this->m_mfccFeatureCalculator) {
            printf_err("Feature calculator not initialized.");
        }
    }

    bool KwsPreProcess::DoPreProcess(const void* data, size_t inferenceIndex)
    {
        if (data == nullptr) {
            printf_err("Data pointer is null");
        }

        /* Set the features sliding window to the new address. */
        auto input = static_cast<const int16_t*>(data);
        this->m_mfccSlidingWindow.Reset(input);

        /* Cache is only usable if we have more than 1 inference to do and it's not the first inference. */
        bool useCache = inferenceIndex > 0 && this->m_numReusedMfccVectors > 0;

        /* Use a sliding window to calculate MFCC features frame by frame. */
        while (this->m_mfccSlidingWindow.HasNext()) {
            const int16_t* mfccWindow = this->m_mfccSlidingWindow.Next();

            std::vector<int16_t> mfccFrameAudioData = std::vector<int16_t>(mfccWindow,
                    mfccWindow + this->m_mfccFrameLength);

            /* Compute features for this window and write them to input tensor. */
            this->m_mfccFeatureCalculator(mfccFrameAudioData, this->m_mfccSlidingWindow.Index(),
                                          useCache, this->m_numMfccVectorsInAudioStride);
        }

        debug("Input tensor populated \n");

        return true;
    }

    /**
     * @brief Generic feature calculator factory.
     *
     * Returns lambda function to compute features using features cache.
     * Real features math is done by a lambda function provided as a parameter.
     * Features are written to input tensor memory.
     *
     * @tparam T                Feature vector type.
     * @param[in] inputTensor   Model input tensor pointer.
     * @param[in] cacheSize     Number of feature vectors to cache. Defined by the sliding window overlap.
     * @param[in] compute       Features calculator function.
     * @return                  Lambda function to compute features.
     */
    template<class T>
    std::function<void (std::vector<int16_t>&, size_t, bool, size_t)>
    KwsPreProcess::FeatureCalc(TfLiteTensor* inputTensor, size_t cacheSize,
                               std::function<std::vector<T> (std::vector<int16_t>& )> compute)
    {
        /* Feature cache to be captured by lambda function. */
        static std::vector<std::vector<T>> featureCache = std::vector<std::vector<T>>(cacheSize);

        return [=](std::vector<int16_t>& audioDataWindow,
                   size_t index,
                   bool useCache,
                   size_t featuresOverlapIndex)
        {
            T* tensorData = tflite::GetTensorData<T>(inputTensor);
            std::vector<T> features;

            /* Reuse features from cache if cache is ready and sliding windows overlap.
             * Overlap is in the beginning of sliding window with a size of a feature cache. */
            if (useCache && index < featureCache.size()) {
                features = std::move(featureCache[index]);
            } else {
                features = std::move(compute(audioDataWindow));
            }
            auto size = features.size();
            auto sizeBytes = sizeof(T) * size;
            std::memcpy(tensorData + (index * size), features.data(), sizeBytes);

            /* Start renewing cache as soon iteration goes out of the windows overlap. */
            if (index >= featuresOverlapIndex) {
                featureCache[index - featuresOverlapIndex] = std::move(features);
            }
        };
    }

    template std::function<void (std::vector<int16_t>&, size_t , bool, size_t)>
    KwsPreProcess::FeatureCalc<int8_t>(TfLiteTensor* inputTensor,
                                       size_t cacheSize,
                                       std::function<std::vector<int8_t> (std::vector<int16_t>&)> compute);

    template std::function<void(std::vector<int16_t>&, size_t, bool, size_t)>
    KwsPreProcess::FeatureCalc<float>(TfLiteTensor* inputTensor,
                                      size_t cacheSize,
                                      std::function<std::vector<float>(std::vector<int16_t>&)> compute);


    std::function<void (std::vector<int16_t>&, int, bool, size_t)>
    KwsPreProcess::GetFeatureCalculator(audio::MicroNetKwsMFCC& mfcc, TfLiteTensor* inputTensor, size_t cacheSize)
    {
        std::function<void (std::vector<int16_t>&, size_t, bool, size_t)> mfccFeatureCalc = nullptr;

        TfLiteQuantization quant = inputTensor->quantization;

        if (kTfLiteAffineQuantization == quant.type) {
            auto* quantParams = (TfLiteAffineQuantization*) quant.params;
            const float quantScale = quantParams->scale->data[0];
            const int quantOffset = quantParams->zero_point->data[0];

            switch (inputTensor->type) {
                case kTfLiteInt8: {
                    mfccFeatureCalc = this->FeatureCalc<int8_t>(inputTensor,
                                                          cacheSize,
                                                          [=, &mfcc](std::vector<int16_t>& audioDataWindow) {
                                                              return mfcc.MfccComputeQuant<int8_t>(audioDataWindow,
                                                                                                   quantScale,
                                                                                                   quantOffset);
                                                          }
                    );
                    break;
                }
                default:
                printf_err("Tensor type %s not supported\n", TfLiteTypeGetName(inputTensor->type));
            }
        } else {
            mfccFeatureCalc = this->FeatureCalc<float>(inputTensor, cacheSize,
                    [&mfcc](std::vector<int16_t>& audioDataWindow) {
                return mfcc.MfccCompute(audioDataWindow); }
                );
        }
        return mfccFeatureCalc;
    }

    KwsPostProcess::KwsPostProcess(TfLiteTensor* outputTensor, KwsClassifier& classifier,
                                   const std::vector<std::string>& labels,
                                   std::vector<ClassificationResult>& results, size_t averagingWindowLen)
            :m_outputTensor{outputTensor},
             m_kwsClassifier{classifier},
             m_labels{labels},
             m_results{results}
    {
        this->m_resultHistory = {averagingWindowLen, std::vector<float>(labels.size())};
    }

    bool KwsPostProcess::DoPostProcess()
    {
        return this->m_kwsClassifier.GetClassificationResults(
                this->m_outputTensor, this->m_results,
                this->m_labels, 1, true, this->m_resultHistory);
    }

} /* namespace app */
} /* namespace arm */